Shape Reconstruction

Pierre Alliez Inria

Ínría_

Outline

- Sensors
- Problem statement
- Computational Geometry
 - Convex hull, Voronoi/Delaunay, alpha-shapes
- Variational formulations
 - Poisson / spectral

nía

SENSORS

(nría_

Laser scanning

Ínría

Car-based Laser

Ínría_

Airborne Lidar

Ínría

Multi-View Stereo (MVS)

Ínría

Depth Sensors

(nría_

PROBLEM STATEMENT

(nría_

Reconstruction Problem

- <u>Input</u>: point set *P* sampled over a surface *S*:
 - Non-uniform sampling
 - With holes
 - With uncertainty (noise)

point set

Output: surface

Approximation of S in terms of topology and geometry

Desired:

- Watertight
- Intersection free

reconstruction

surface

Ill-posed Problem

Many candidate surfaces for the reconstruction problem!

Ill-posed Problem

Many candidate surfaces for the reconstruction problem! How to pick?

Priors

Smooth

Piecewise Smooth

"Simple"

Ínría_

Surface Smoothness Priors

Local fitting No control away from data Solution by interpolation Global Smoothness

Global: linear, eigen, graph cut, ... Robustness to missing data

Sharp near features Smooth away from features

Ínría

Domain-Specific Priors

Ínría

Warm-up

Smooth

Piecewise Smooth

"Simple"

CONVEX HULL

Inría

Convex Hull

Ínría_

VORONOI / DELAUNAY

(nría_

Voronoi Diagram

Let $\mathcal{E} = {\mathbf{p_1}, \ldots, \mathbf{p_n}}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

$$V(\mathbf{p}_{\mathbf{i}}) = \{ \mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x} - \mathbf{p}_{\mathbf{i}}\| \le \|\mathbf{x} - \mathbf{p}_{\mathbf{j}}\|, \forall j \le n \}.$$

Delaunay Triangulation

Dual structure of the Voronoi diagram.

The Delaunay triangulation of a set of sites E is a simplicial complex such that k+1 points in E form a Delaunay simplex if their Voronoi cells have nonempty intersection

Delaunay-based

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.

First define

Medial axis Local feature size Epsilon-sampling

nnía

Alpha-Shapes [Edelsbrunner, Kirkpatrick, Seidel]

Segments: point pairs that can be touched by an empty disc of radius alpha.

Alpha-Shapes

- In 2D: family of piecewise linear simple curves constructed from a point set P.
- Subcomplex of the Delaunay triangulation of P.
- Generalization of the concept of the convex hull.

Alpha-Shapes

 $\alpha = 0$ Alpha controls the desired level of detail.

 $\alpha = \infty$

Ínría

(nría-

Ínría

MEDIAL AXIS

(nría_

For a shape (curve/surface) a *Medial Ball* is a circle/sphere that only meets the shape tangentially, in at least two points.

For a shape (curve/surface) a *Medial Ball* is a circle/sphere that only meets the shape tangentially, in at least two points.

The centers of all such balls make up the *medial axis/skeleton*.

Ínría

(nría_
Medial Axis

(nría_

Medial Axis

<u>Observation*</u>:

For a reasonable point sample, the medial axis is wellsampled by the Voronoi vertices.

*In 3D, this is only true for a subset of the Voronoi vertices - the poles.

Voronoi & Medial Axis

(nría_

Local Feature Size

Ínría

Epsilon-Sampling

Ínría

Crust [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a point set, the shape boundary can be described as a subset of the Delaunay edges.

- Q: How do we determine which edges to keep?
- A: Two types of edges:
 - 1. Those connecting adjacent points on the boundary
 - 2. Those traversing the shape.

Discard those that traverse.

Crust [Amenta et al. 1998]

Observation:

Edges that traverse cross the medial axis.

Although we don't know the axis, we can sample it with the Voronoi vertices.

Edges that traverse must

be near the Voronoi vertices.

Crust [Amenta et al.]

Ínría

Delaunay Triangulation

Ínría_

Delaunay Triangulation & Voronoi Diagram

(nría_

Inría

Refined Delaunay Triangulation

(nría_

Ínría_

Ínría_

Crust (variant)

<u>Algorithm</u>:

- 1. Compute the Delaunay triangulation.
- 2. Compute the Voronoi vertices
- Keep all edges for which there is a circle that contains the edge but no Voronoi vertices.

SPECTRAL « CRUST »

Ínría_

Space Partitioning

Given a set of points, construct the Delaunay triangulation.

If we label each triangle as inside/outside, then the surface of interest is the set of edges that lie between inside and outside triangles.

nnía

Space Partitioning

- Q: How to assign labels?
- A: Spectral Partitioning
- Assign a weight to each edge indicating if the two triangles are likely to have the same label.

Space Partitioning

Assigning edge weights

Q: When are triangles on opposite sides of an edge likely to have the same label?

A: If the triangles are on the same side, their circumscribing circles intersect <u>deeply</u>.

Use the angle of intersection to set the weight.

Small Weight

Crust

Several Delaunay algorithms provably correct

Ínría_

Delaunay-based

Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

— perfect data ?

nría

Noise & Undersampling

Ínría

Delaunay-based

Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

Motivates reconstruction by fitting **approximating** implicit surfaces

VARIATIONAL FORMULATIONS

Smooth

Piecewise Smooth

"Simple"

Ínría

Poisson Surface Reconstruction

[Kazhdan et al. SGP'06]

Indicator Function

Construct indicator function from point samples

Ínría

Indicator Function

Construct indicator function from point samples

nnía

2D Poisson Reconstruction

Ínría_

Poisson Reconstruction

Requires <u>oriented normals</u>, as many other implicit approaches.

nnía

Poisson Reconstruction

Requires <u>oriented normals</u>, as many other implicit approaches.

Normal estimation Normal orientation

ill-posed problems

Poisson Reconstruction

Can we deal with <u>unoriented normals</u>?

Ínría_

Spectral Surface Reconstruction

[A., Cohen-Steiner, Tong & Desbrun. SGP'07]

Unoriented Normals?

Algorithm Overview

Ínría_

Tensor Estimation

 $\int_{\Omega} (X-p)(X-p)^T dV$

Noise-free vs Noisy

Dealing with Noise

Implicit Function

tensors

implicit function

(nría_

Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.

Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.

Rewards <u>alignment</u> with tensors

Rationale

On areas with:

anisotropic tensors: favors alignment

isotropic tensors: favors smoothness

Large aligned gradients + smoothness

leads to consistent orientation of ∇f

nnía

Generalized Eigenvalue Problem

Given a tensor field *C*, find the *maximizer f* of:

$$E_C^D(f) = \int_{\Omega} \nabla f^t C \nabla f \text{ subject to:} \int_{\Omega} \left[|\Delta f|^2 + \varepsilon |f|^2 \right] = 1$$

A: anisotropic Laplacian operator

$$E_C^D(F) \approx F^t A F$$

B: isotropic Bilaplacian operator

 $E^{B}(f) \approx F^{t} B F$

$$AF = \lambda BF$$

max

Eigenvector (PWL function)

Ínría

(nría_

Noise

Ínría_

vs Poisson Reconstruction

Oriented points

Poisson

Spectral

Ínría_