Primitive-based surface reconstruction

Florent Lafarge Inria Sophia Antipolis - Mediterranee

- Geometric primitive extraction
 - Region growing
 - Ransac
 - Accumulation methods
 - Global regularities
- Surface reconstruction using geometric primitives
- Two words on template matching

How to extract Geometric primitives from point sets ?

Inría

- Iterative method
- Spatial propagation of a primitive Hypothesis
- deterministic
- Efficient for relatively "clean" Data

nnin

 select a point and a primitive hypothesis

- select a point and a primitive hypothesis
- propagate to the neighbors if they verify the hypothesis

 select a point and a primitive hypothesis

- they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

 select a point and a primitive hypothesis

- they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

 select a point and a primitive hypothesis

- they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

 select a point and a primitive hypothesis

- they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

select a remaining point and a primitive

Hypothesis, and iterate

 select a point and a primitive hypothesis

propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

select a remaining point and a primitive

Hypothesis, and iterate

the parameters to specify

- minimum number of points needed to fit the primitive
- fitting tolerance

- need to know the nearest neighbors
- the primitive hypothesis has to be relevant when starting the growing
- .. but the primitive hypothesis can also be updated during the growing
- not optimal when noisy data

using normals and Euclidian distance

using normals

Ínría

Ransac (RANdom SAmple Consensus)

- Iterative method
- Estimation of the primitive parameters by a random sampling of data
- Designed to be efficient with outlier-laden Data
- Non-deterministic

- Sample (randomly) the number of points required to fit the primitive
- Solve for primitive parameters using samples
- Score by the fraction of inliers within a preset threshold of the primitive

Sample (randomly)
 the number of points
 required to fit the primitive

- Solve for primitive parameters using samples
- Score by the fraction of inliers within a preset threshold of the primitive

- Sample (randomly) the number of points required to fit the primitive
- Solve for primitive parameters using samples
- Score by the fraction of inliers within a preset threshold of the primitive

- Sample (randomly) the number of points required to fit the primitive
- Solve for primitive parameters using samples

 Score by the fraction of inliers within a preset threshold of the primitive

Repeat these 3 steps until the best primitive is found with high confidence

 $N_{I} = 6$

- Sample (randomly) the number of points δ required to fit the primitive
- Solve for primitive parameters using samples

 $N_{I} = 14$

 Score by the fraction of inliers within a preset threshold of the primitive

the parameters to specify

- minimum number of points needed to fit the primitive
- Distance threshold δ
- Number of samples

To be chosen so that at least one random sample is free from outliers with a certain probability

Accumulation methods

Accumulate local primitive hypotheses in a space of primitive parameters

extract the local maxima from the parameter space

• the parameter space must be discretized

nnía

Accumulation methods: Hough transform

Accumulation methods: Hough transform

Accumulation methods: Gaussian sphere

For each point of the data, we increment the sphere cell targeted by the point normal from the sphere center

Accumulation methods: Gaussian sphere

For each point of the data, we increment the sphere cell targeted by the point normal from the sphere center

Accumulation methods

- can be computationally expensive
- restricted to certain types of primitives

 can be interesting for "structuring" the primitive configuration with global regularities

nnin

Global regularity discovering

Global regularity discovering

 usually primitives are detected locally, without interaction between each others

 It can be usefull to introduce interactions between primitives at a global scale

Global regularity discovering [Globfit]

Colored byorrendt bye Or Gentuation by Cooplanear by Coplanar

Global regularity discovering [Globfit]

- Geometric primitive extraction
- Surface reconstruction using geometric primitives
 - Graph-based
 - Space partitioning
 - Hybrid reconstruction
- Two words on template matching

Surface reconstruction from geometric primitives

Q: What can we do once we have extracted the primitives ?

nnía

If you are lucky..

Ideal case: this never happens in practice

 No guarantee of finding the right primitive configuration and right adjacency graph

Ideal case: this never happens in practice

 No guarantee of finding the right primitive configuration and right adjacency graph

No guarantee that the observed scene can be entirely explained by geometric primitives

A2: Use primitives to partition the space into cells to be labeled as inside or outside

works well when no missing primitive

when primitives are missed or cannot be detected, use of ghost primitives

when primitives are missed or cannot be detected, use of ghost primitives

when primitives are missed or cannot be detected, use of ghost primitives

[Chauve et al., 2010]

•A3: reconstruct an hybrid surface as a combination of canonical parts idealizing the primitives and free-form parts representing the smooth or undetected canonical elements

Hybrid reconstruction by structuring

Starting from a point set and a configuration of planar primitives extracted under a tolerance ϵ

Inría

Meaning insertion

Inría

- Meaning insertion
- Structure idealization under Delaunay triangulation

Innía

- Meaning insertion
- Structure idealization under Delaunay triangulation
- Complexity reduction

Innía

Replacement of the inliers by an *ideal* layout of planar points

Occupancy 2D-grid projected on the planar primitive

Replacement of the inliers by an *ideal* layout of planar points

- Occupancy 2D-grid projected on the planar primitive
- Facet existence condition in Delaunay: $L_p < \sqrt{2 \epsilon}$

Preservation of edges between adjacent primitives

- Occupancy 1D-grid projected on the intersection line
- Facet existence condition in Delaunay:

$$\begin{cases} L_c = 2\varepsilon \\ h_c = \varepsilon \times \cos \frac{\theta}{2} \end{cases}$$

Corner points

added by detecting the potential n-cycles extracted from the detected 3-cycles from the primitive

Clutter points

correspond to the input points which have not been detected as belonging to planar primitives

[Lafarge et Alliez]

Space partitioning: 3D delaunay triangulation from the structured point set

- tetrahedra do not intersect the primitive-induced surfaces
- each vertex of the triangulation inherits from a structural type

Labeling the Delaunay cells

- a cut (C_{in} , C_{out}) in the graph The set of facets separating C_{in} from C_{out} forms a surface S
- a cost function C measuring the quality of a cut

$$C(S) = \sum_{f_i \in S} a(f_i) Q(f_i) + \sum_{c_k \in C_{in}} P_{out}(c_k) + \sum_{c_k \in C_{out}} P_{in}(c_k)$$

Geometric quality Visibility prediction

• an optimization algorithm for finding the optimal cut [Boykov2004]

Visibility prediction

- detection of visibility patches by ray shooting
- inside/outside prediction of Delaunay cells crossed by a

ray

Inría

Geometric quality

S-coherent facets
 Plausible facets as a portion
 of a canonical part

FF-coherent facets
 Plausible facets as a portion
 of a freeform shape.

 Incoherent facets all the remaining cases

$Q(f_i) = \left\{ $	0	if f _i S-coherent
	$g(f_i)$	if f _i FF-coherent
	γ	if f _i incoherent

Surface simplification: edge-collapse exploiting the structural meaning of vertices

- canonical parts edge length cost to edges linking identical *planar* or *crease* vertices
- free-form parts
 Keep unchanged

Inría

Ínría

(nría_

Airborne Lidar • point density: low & variable • point accuracy: medium • occlusions: many • outliers: few

Airborne MVS • point density: high & regular • point accuracy: medium • occlusions: many • outliers: few Ground-based Laser • point density: high & regular • point accuracy: high • occlusions: few • outliers: no

Ground-based MVS 3

· point density: low & variable

· point accuracy: low

occlusions: many

outliers: many

Ínría

- Geometric primitive extraction
- Surface reconstruction using geometric primitives
- Two words on template matching

nnia

Template matching

- Geometric primitives are usually simple, eg planes or cylinders
- But sometimes, we need to fit more complex primitives to the data..

Problems

- Do we search for one or several objects in the data ?
- Do we know the number of objects?
- Can objects interact between each others ?

- Here, we don't know the number of objects and interactions must be inserted (spatial overlapping, tree competition..)
- this is not surface reconstruction anymore

Innía