# Primitive-based surface reconstruction 

Florent Lafarge
Inria Sophia Antipolis - Mediterranee

- Geometric primitive extraction
- Region growing
- Ransac
- Accumulation methods
- Global regularities
- Surface reconstruction using geometric primitives
- Two words on template matching


## Why Geometric primitives can be interesting for surface reconstruction?



## Why Geometric primitives can be interesting for surface reconstruction?



## Why Geometric primitives can be interesting for surface reconstruction?



## Why Geometric primitives can be interesting for surface reconstruction?



How to extract Geometric primitives from point sets?


Region growing

- Iterative method
- Spatial propagation of a primitive


Hypothesis

- deterministic
- Efficient for relatively "clean" Data

Region growing

- select a point and a primitive hypothesis


Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if they verify the hypothesis

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if

they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.
- select a remaining point and a primitive Hypothesis, and iterate

Region growing

- select a point and a primitive hypothesis
- propagate to the neighbors if they verify the hypothesis, and iterate until no point verifies the hypothesis anymore.
- select a remaining point and a primitive Hypothesis, and iterate


## the parameters to specify

- minimum number of points needed to fit the primitive
- fitting tolerance

Region growing

- need to know the nearest neighbors
- the primitive hypothesis has to be relevant when starting the growing
- .. but the primitive hypothesis can also be updated during the growing
- not optimal when noisy data

Region growing

using normals

using Euclidian distance

using normals and Euclidian distance

## Ransac (RANdom SAmple Consensus)

- Iterative method
- Estimation of the primitive parameters by a random sampling of data
- Designed to be efficient with outlier-laden Data
- Non-deterministic

Ransac Algorithm

- Sample (randomly) the number of points required to fit the primitive

- Solve for primitive parameters using samples
- Score by the fraction of inliers within a preset threshold of the primitive

Repeat these 3 steps until the best primitive is found with high confidence

Ransac Algorithm

- Sample (randomly) the number of points required to fit the primitive

- Solve for primitive parameters using samples
- Score by the fraction of inliers within a preset threshold of the primitive

Repeat these 3 steps until the best primitive is found with high confidence

Ransac Algorithm

- Sample (randomly) the number of points required to fit the primitive

- Solve for primitive parameters using samples
- Score by the fraction of inliers
within a preset threshold of the primitive
Repeat these 3 steps until the best primitive is found with high confidence


## Ransac Algorithm

- Sample (randomly) the number of points required to fit the primitive
- Solve for primitive parameters using samples


$$
N_{I}=6
$$

- Score by the fraction of inliers
within a preset threshold of the primitive
Repeat these 3 steps until the best primitive is found with high confidence

Ransac Algorithm

- Sample (randomly) the number of points required to fit the primitive
- Solve for primitive parameters using samples

$$
N_{I}=14
$$

- Score by the fraction of inliers
within a preset threshold of the primitive
Repeat these 3 steps until the best primitive is found with high confidence
the parameters to specify
- minimum number of points needed to fit the primitive
- Distance threshold $\delta$
- Number of samples

To be chosen so that at least one random sample is free from outliers with a certain probability

## Accumulation methods

- Accumulate local primitive hypotheses in a space of primitive parameters
- extract the local maxima from the parameter space
- the parameter space must be discretized

Accumulation methods: Hough transform

Case of lines in 2D


Origin
$(x, y)$ space


Íniá [Hough, 1959]

## Accumulation methods: Hough transform



## Accumulation methods: Gaussian sphere



For each point of the data, we increment the sphere cell targeted by the point normal from the sphere center


## Accumulation methods: Gaussian sphere



For each point of the data, we increment the sphere cell targeted by the point normal from the sphere center


## Accumulation methods

- can be computationally expensive
- restricted to certain types of primitives
- can be interesting for "structuring" the primitive configuration with global regularities


## Global regularity discovering



Global regularity discovering

- usually primitives are detected locally, without interaction between each others
- It can be usefull to introduce interactions between primitives at a global scale


Ínría [Li et al., 2011]

## Global regularity discovering [Globfit]



## Global regularity discovering [Globfit]



- Geometric primitive extraction
- Surface reconstruction using geometric primitives
- Graph-based
- Space partitioning
- Hybrid reconstruction
- Two words on template matching


## Surface reconstruction from geometric primitives

Q: What can we do once we have extracted the primitives?

A1: compute the primitive adjacency graph, and reconstruct the surface as the dual of this graph.


Inría

A1: compute the primitive adjacency graph, and reconstruct the surface as the dual of this graph.


If you are lucky..

A1: compute the primitive adjacency graph, and reconstruct the surface as the dual of this graph.


## Ideal case: this never happens in practice

- No guarantee of finding the right primitive configuration and right adjacency graph

A1: compute the primitive adjacency graph, and reconstruct the surface as the dual of this graph.


Ideal case: this never happens in practice

- No guarantee of finding the right primitive configuration and right adjacency graph
- No guarantee that the observed scene can be entirely explained by geometric primitives
- A2: Use primitives to partition the space into cells to be labeled as inside or outside

- works well when no missing primitive


Ínría [Labatut et al., 2009]

## - when primitives are missed or cannot be detected, use of ghost primitives



## - when primitives are missed or cannot be detected, use of ghost primitives



## - when primitives are missed or cannot be detected, use of ghost primitives




## Énia <br> [Chauve et al., 2010]

-A3: reconstruct an hybrid surface as a combination of canonical parts idealizing the primitives and free-form parts representing the smooth or undetected canonical elements


## Hybrid reconstruction by structuring

Starting from a point set and a configuration of planar primitives extracted under a tolerance $\varepsilon$


## - 3 ideas



Inica

## - 3 ideas

- Meaning insertion



## - 3 ideas

- Meaning insertion
- Structure idealization under Delaunay triangulation



## - 3 ideas

- Meaning insertion
- Structure idealization under Delaunay triangulation
- Complexity reduction



## Replacement of the inliers by an ideal layout of planar points

- Occupancy 2D-grid projected on the planar primitive



## Replacement of the inliers by an ideal layout of planar points

- Occupancy 2D-grid projected on the planar primitive
- Facet existence condition in Delaunay: $L_{p}<\sqrt{2} \varepsilon$



## Preservation of edges between adjacent primitives

- Occupancy 1D-grid projected on the intersection line
- Facet existence condition in Delaunay:

$$
\left\{\begin{array}{l}
L_{c}=2 \varepsilon \\
h_{c}=\varepsilon \times \cos \frac{\theta}{2}
\end{array}\right.
$$



- Corner points
added by detecting the potential n-cycles extracted from the detected 3-cycles from the primitive


## - Clutter points

correspond to the input points which have not been detected as belonging to planar primitives


## 8 әл!!!ш!!

ио!ұәәдәр
иэиәэе!
detection
6 primitives 0 adjacency


## Énia

## [Lafarge et Alliez]

## Space partitioning: 3D delaunay triangulation from the structured point set

- tetrahedra do not intersect the primitive-induced surfaces
- each vertex of the triangulation inherits from a structural type



## Labeling the Delaunay cells

- a graph $(\mathcal{C}, \mathcal{F})$
$\mathcal{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ the set of Delaunay cells
$\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ the set of triangular facets separating two cells
- a cut ( $\left.\mathcal{C}_{\text {in }}, \mathcal{C}_{\text {out }}\right)$ in the graph

The set of facets separating $\mathcal{C}_{\text {in }}$ from $\mathcal{C}_{\text {out }}$ forms a surface $\mathcal{S}$

- a cost function $C$ measuring the quality of a cut

$$
C(\mathcal{S})=\frac{\sum_{f_{i} \in \mathcal{S}} a\left(f_{i}\right) Q\left(f_{i}\right)}{\substack{\text { Geometric } \\ \text { quality }}}+\frac{\sum_{c_{k} \in \mathcal{C}_{\text {in }}} P_{\text {out }}\left(c_{k}\right)+\sum_{c_{k} \in \mathcal{C}_{\text {out }}} P_{\text {in }}\left(c_{k}\right)}{\text { Visibility prediction }}
$$

- an optimization algorithm for finding the optimal cut [Boykov2004]


## Visibility prediction

- detection of visibility patches by ray shooting
- inside/outside prediction of Delaunay cells crossed by a ray

$$
\left\{\begin{array}{l}
P_{\text {out }}\left(c_{k}\right)=\beta \cdot 1_{\left\{c_{k} \in \mathcal{P}_{\text {out }}\right\}} \\
P_{\text {in }}\left(c_{k}\right)=\beta \cdot 1_{\left\{c_{k} \in \mathcal{P}_{\text {in }}\right\}}
\end{array}\right.
$$

Input point set



## Geometric quality

- S-coherent facets Plausible facets as a portion of a canonical part
- FF-coherent facets Plausible facets as a portion of a freeform shape.

- Incoherent facets all the remaining cases
$Q\left(f_{i}\right)= \begin{cases}0 & \text { if } f_{i} S \text {-coherent } \\ g\left(f_{i}\right) & \text { if } f_{i} \text { FF-coherent } \\ \gamma & \text { if } f_{i} \text { incoherent }\end{cases}$


Surface simplification: edge-collapse exploiting the structural meaning of vertices

- canonical parts edge length cost to edges linking identical planar or crease vertices
- free-form parts Keep unchanged



## Hybrid vs smooth








Hausdorff distance to input point set (\% bbox diagonal)



Airborne Lidar

- point density: low \& variable - point accuracy: medium - occlusions: many - outliers: few


Ground-based Laser - point density: high \& regular - point accuracy: high - occlusions: few - outliers: n


Ground-based MVS 3

- point density: low \& variable - point accuracy: Iow - occlusions: many
- outliers: many



## Énia

- Geometric primitive extraction
- Surface reconstruction using geometric primitives
- Two words on template matching

Template matching

- Geometric primitives are usually simple, eg planes or cylinders
- But sometimes, we need to fit more complex primitives to the data..


India

## Problems

- Do we search for one or several objects in the data?
- Do we know the number of objects?
- Can objects interact between each others ?

- Here, we don't know the number of objects and interactions must be inserted (spatial overlapping, tree competition..)
- .. this is not surface reconstruction anymore


