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Related Work 

Classification: 

 Computational Geometry vs. Implicit Surfaces 

 Structured vs. Unstructured Data 

 Oriented vs. Unoriented Points 

 Watertight vs. Surface with Boundary Output 

 Etc. 



Related Work 

Classification: 

 Computational Geometry 

 Uses input to partition space 

 Use a subset of the partition to define the shape 

 Implicit Surfaces 

 Fit implicit function to the input 

 Extract iso-surface 



Outline 

 Computational geometry (briefly) 

 Convex hulls & Alpha-shapes 

 Delaunay triangulations 

 Voronoi diagrams 

 Medial axes 

 A sampling of smooth methods 

 A sampling of piecewise-smooth methods 

 



Computational Geometry 

Convex Hulls: 

a set S is convex if for any two points 

a,bS, the line segment between a 

and b is also in S. 

 

p 

q 

non-convex 

q 

p 

convex 

p 

q q 

p 

5 



Computational Geometry 

Convex Hulls: 

A set S is convex if for any two points 

a,bS, the line segment between a 

and b is also in S. 

 

The convex hull of a set of points is 

the smallest convex set containing S. 
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How to get alpha shapes 

The space generated by point pairs that can be touched  

by an empty disc of radius alpha. 

Alpha shapes: 



What are alpha shapes? 

Alpha Controls the desired level of detail. 



0 

Alpha shapes: 



Computational Geometry 

Delaunay Triangulation: 

A Delaunay Triangulation of S is the set of all 

triangles with vertices in S whose circumscribing 

circle contains no other points in S*. 

 

Compactness Property: 

This is a triangulation that 

maximizes the min angle of all 

The angles of the triangles 

(avoid skinny triangles) 



Computational Geometry 

Voronoi Diagrams: 

The Voronoi Diagram of S is a partition of space 

into regions V(p) (pS) such that all points in V(p) 

are closer to p than any other point in S. 

 

For a point on an edge, we 

can draw an empty circle 

that only touches the points 

in S separated by the edge. 



Computational Geometry 

Voronoi Diagrams: 

The Voronoi Diagram of S is a partition of space 

into regions V(p) (pS) such that all points in V(p) 

are closer to p than any other point in S. 

 

For a vertex, we can draw 

an empty circle that just 

touches the three points 

in S around the vertex. 



Computational Geometry 

Voronoi Diagrams: 

The Voronoi Diagram of S is a partition of space 

into regions V(p) (pS) such that all points in V(p) 

are closer to p than any other point in S. 

 

Duality: 

Each Voronoi vertex is in 

one-to-one correspondence 

with a Delaunay triangle. 



Computational Geometry 

Medial Axis: 

For a shape (curve/surface) a Medial Ball is a 

circle/sphere that only meets the shape 

tangentially, in at least two points. 

10 



Computational Geometry 

Medial Axis: 

For a shape (curve/surface) a Medial Ball is a 

circle/sphere that only meets the shape 

tangentially, in at least two points. 

The centers of all such balls make 

up the medial axis/skeleton. 

10 



Computational Geometry 

Observation*: 

For a reasonable point sample, the medial axis is 

well-sampled by the Voronoi vertices. 

*In 3D, this is only true for a subset of the Voronoi vertices – the poles. 



Outline 

 Computational geometry 

 A sampling of smooth methods 

 Space Partitioning 

 Crust 

 … from Unorganized Points 

 Poisson Reconstruction 

 

 

 A sampling of piecewise-smooth methods 

 

Computational Geometry 

Implicit Surfaces 



Space Partitioning 

Given a set of points, we can construct the 

Delaunay triangulation. 

If we label each triangle as inside/outside, then 

the surface of interest is the set of edges that lie 

between inside and outside triangles. 



Space Partitioning 

Q: How to assign labels? 

A: Spectral Partitioning 

 Assign a weight to each edge indicating if the 

two triangles are likely to have the same label. 

 

[Kolluri et al., 2004] 



Space Partitioning 

Assigning Edge Weights: 

Q: When are triangles on opposite sides of an 

edge likely to have the same label? 

A: If the triangles are on the same side, their 

circumscribing circles intersect deeply. 

Use the angle of intersection 

to set the weight. 

Large Weight Small Weight 

15 



Crust [Amenta et al. 1998] 

If we consider the Delaunay Triangulation of a 

point set, the shape boundary can be described as 

a subset of the Delaunay edges. 

Q: How do we determine which edges to keep? 

A: Two types of edges: 

1. Those connecting adjacent 

points on the boundary 

2. Those traversing the shape. 

Discard those that traverse. 



Crust [Amenta et al. 1998] 

Observation: 

Edges that traverse cross the medial axis. 

Although we don’t know the axis, we can sample 

it with the Voronoi vertices. 

Edges that traverse must  

be near the Voronoi vertices. 



Crust [Amenta et al. 1998] 

Algorithm: 

1. Compute the Delaunay triangulation. 

2. Compute the Voronoi vertices 

3. Keep all edges for which  

 there is a circle that  

 contains the edge but  

 no Voronoi vertices. 



Outline 

 Computational geometry 

 A sampling of smooth methods 

 Space Partitioning 

 Crust 

 … from Unorganized Points 

 Poisson Reconstruction 

 

 

 A sampling of piecewise-smooth methods 

 

Computational Geometry 

Implicit Surfaces 



Implicit Surface Reconstruction 

Key Idea: 

 Use the point samples to define a function whose 

values at the sample positions are zero. 

Sample Points 

>0 

<0 

0 



… Unorganized Points [Hoppe et al. 1992] 

Observation: 

For points on the the surface, the signed 

(Euclidean) distance transform has a gradient that 

equal to the normal. 

 
qppEDT

Sq



min)(
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… Unorganized Points [Hoppe et al. 1992] 

Computes a local signed distance transform by 

using the sample normals to define a linear 

approximation to the function. 

Extracts the zero level (where defined). 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 

A1: Fit a line to the neighbors of each point. 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 

A1: Fit a line to the neighbors of each point. 

This doesn’t guarantee a consistent orientation! 

 

For the orientation to be 

consistent, neighboring 

points should point in 

the same direction. 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 

A1: Fit a line to the neighbors of each point. 

A2: Build a (Euclidian) minimal spanning tree and 

propagate the orientation from a root. 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 

A1: Fit a line to the neighbors of each point. 

A2: Build a (Euclidian) minimal spanning tree and 

propagate the orientation from a root. 

Note: 

In 2D, building a good 

spanning tree is almost 

the same as fitting a 

closed curve, it’s not in 3D. 



… Unorganized Points [Hoppe et al. 1992] 

Q: How do we get the normals? 

A1: Fit a line to the neighbors of each point. 

A2: Build a (Euclidian) minimal spanning tree and 

propagate the orientation from a root. 

Note: 

If the spanning graph is 

not a tree, can prioritize 

propagation based on 

confidence. 



Poisson Reconstruction [Kazhdan et al. 

2006] 

Reconstructs the indicator function of the surface 

and then extracts the boundary. 

Q: How to fit the function to the samples? 

A: Normals sample the function’s gradients. 

 

Indicator function 

0 

1 

0 

0 
0 

0 

1 

1 

Oriented points Indicator gradient 

0 0 

0 

0 

0 

0 

[Kazhdan et al., 2006] 25 



Poisson Reconstruction [Kazhdan et al. 

2006] 

Oriented points Indicator gradient 

0 0 

0 

0 

0 

0 

2

min VFF
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  VFVF


           0

[Kazhdan et al., 2006] 



Poisson Reconstruction [Kazhdan et al. 

2006] 

Algorithm: 

1. Transform samples into a vector field. 

2. Fit a scalar-field to the gradients. 

3. Extract the isosurface. 

 

[Kazhdan et al., 2006] 



Outline 

 Computational geometry 

 A sampling of smooth methods 

 A sampling of piecewise-smooth methods 
 Feature extraction 

 Prior shape fitting 

 



Related Work 

Piecewise-smooth 

smooth piecewise-smooth 



Related Work 

feature detection: 

 

Goal: extract a set of sharp features from the point 

cloud in order to break the C1 property of the 

surface at some locations during the reconstruction 

process  

30 



Related Work 

feature detection 

Clusters of points  

polylines 

[Salman et al., 2011] 



Related Work 

Prior shape fitting 

 

Idea: fit a collection of shapes with sharp edges 

to the point cloud  

[Gal et al., 2007] 



Related Work 

Prior shape fitting 

[Gal et al., 2007] 



Related Work 

Prior shape fitting 

[Gal et al., 2007] 


