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Goals 

 3D simplicial mesh generation 

 optimize shape of elements 

 for matrix conditioning 

 isotropic 

 control over sizing 

 dictated by simulation 

 constrained by boundary 

 low number of elements desired 

 more elements = slower solution time 



Popular Meshing Approaches 

 advancing front 

 

 specific subdivision 

 octree 

 lattice (e.g. body 

centered cubic) 

 

 Delaunay 

 refinement 

 sphere packing 

 spring energy 

 Laplacian 

 non-zero rest length 

 aspect / radius ratios 

 dihedral / solid angles 

 max-min/min-max 

 volumes 

 edge lengths 

 containing sphere radii 

[Freitag Amenta Bern Eppstein] 

 sliver exudation 

[Edelsbrunner Goy] 

c
o

m
b

in
e

d
 w

it
h

 l
o

c
a

l 
o

p
ti
m

iz
a

ti
o
n

s
 



Variational? 

 Design one energy function such that good 

solutions correspond to low energy ones (global 

minimum in general a mirage). 

 Solutions found by optimization techniques. 



Example Energy in 2D 
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Lloyd Iteration 

demo 



2D Optimized Triangle Meshing 



2D Optimized Triangle Meshing 



Delaunay refinement 

Termination 

 shape criterion: radius-edge ratio 

 in 2D: max 2 (implies min 20.7º) 

 in 3D: max 2 (nothing similar on dihedral angles) 

[Chew, Ruppert, Shewchuk, ...] 



Delaunay refinement 

+ greedy (fast) 

+ easy incorporation of sizing field 

+ allows boundary conforming 
 possibly with Steiner points 

 even for sharp angles on boundary [Teng] 

+ guaranteed bounds on radius-edge ratio 

- blind to slivers 

- and experimentally...produces slivers 

   



Background 



Delaunay Triangulation 

 Duality on the paraboloid: Delaunay 

triangulation obtained by projecting the lower 

part of the convex hull. 



Delaunay Triangulation 

Project the 2D point set 

onto the 3D paraboloid 

z=x2+y2 

Compute the 3D  

lower convex hull 

z=x2+y2 

Project the 3D facets 

back to the plane. 

z=x2+y2 



Proof 

 The intersection of a plane with 

the paraboloid is an ellipse 

whose projection to the plane is 

a circle. 

 s lies within the circumcircle of 

p, q, r iff s’ lies on the lower side 

of the plane passing through p’, 

q’, r’. 

 

 

 p, q, r  S form a Delaunay 

triangle iff p’, q’, r’ form a face 

of the convex hull of S’. 
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Voronoi Diagram 

 Given a set S of points in the 

plane, associate with each 

point p=(a,b)S the plane 

tangent to the paraboloid at p: 

           z = 2ax+2by-(a2+b2). 

 

 VD(S) is the projection to the 

(x,y) plane of the 1-skeleton of 

the convex polyhedron formed 

from the intersection of the 

halfspaces above these planes.  

p q 

p’ q’ 



First Idea: Lloyd Algorithm 

(after Lloyd relaxation) 

...back to primal ? 



Centroidal Voronoi Tessellation 

distribution of radius ratios 

1 0 

Occurrences 

220 “slivers” (tets with radius ratio < 0.2) 

5K sites 

30K tets 



Tetrahedra Zoo 

well-spaced points generate only round or sliver tetrahedra 



Key Idea 

 adopt the "function approximation" point of 

view [Chen 04] Optimal Delaunay Triangulation 

 1D: f(x)=x2 centered at any vertex 

 minimize the L1 norm between f and PWL 

interpolation 



Key Idea 

 3D: x2 (graph in IR4) 

 approximation theory: 

 linear interpolation: optimal shape of the element 

related to the Hessian of f [Shewchuk] 

 Hessian(x2) = Id 

 regular tetrahedron best 

 note: FE ~ mesh that best interpolates a 

function + matrix conditioning 



Key Question 

 which mesh best approximates the paraboloid? 

 (PWL interpolates) 

 

 Answers: 

 for fixed point locations 

 Delaunay (lifts to lower facets of convex hull)  

 for fixed connectivity 

 quadratic energy 

 closed form for local optimum 



Function Approximation 

 Given: 

 triangulation  

 bounded domain  in IRn 

 

 Consider function approximation error: 
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linear interpolation 



Function Approximation 

Theorem [Chen 04]: 

 

 

 

 

 

 

[d’Azevedo-Simpson 89] in IR2, p =  

[Rippa 92] in IR2, 1  p   

[Melissaratos 93] in IRD, 1  p   
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set of all triangulations with a given set V 
 = convex hull of V 

Isotropic function 



Function Approximation 

Let us V vary 

Problem: 

 find triangulation T* such that: 

 

 

 

 

 

 

Proof: 

 existence 

 necessary condition for p=1 
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set of all triangulations with a at most N vertices 



Function Approximation 
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set of all triangulations with a given set V 
 = convex hull of V 

Isotropic function 

(2D) 



Function Approximation 

 xi: vertex 

 i: union of simplices incident to xi 

 |A|: Lebesgue measure of set A in IRn 

 i 

xi 



Function Approximation 
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f convex, fI,T PWL interpolant 



Function Approximation 
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Function Approximation 
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restrict to patch  i incident to vertex xi 

i xi 
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Function Approximation 
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Geometric Interpretation 
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1*

circumcenter 

 Note: optimal location depends only on the 1-

ring neighbors, not on the current location. If 

all incident vertices lie on a common sphere, 

optimal location is at sphere center. 

demo 



Optimization 

 alternate updates of 

 connectivity 

 vertex location 

 

 both steps minimize the same energy 

 as for Lloyd iteration 

 

 for convex fixed boundary 

 energy monotonically decreases 

 convergence to a (local) minimum 

 



Underlaid vs Overlaid Approximant 

 CVT 

 partition 

 approximant 

 compact Voronoi cells 

 isotropic sampling 

 ODT 

 overlapping decomposition 

 PWL interpolant 

 compact simplices 

 isotropic meshing 



Optimization 

Alternate updates of 

 connectivity (Delaunay triangulation) 

 vertex locations 
demo 



Optimal Delaunay Triangulation 

distribution of radius ratios 3 “slivers”, each with two vertices on boundary 



Algorithm 

 read input boundary  

 setup data structure & preprocessing 

 compute sizing field 

 generate initial sites inside  

 do 

- Delaunay triangulation of {xi} 

- move sites to optimal locations {xi
*} 

 until convergence or stopping criterion 

 extract interior mesh 



Input Boundary  

 surface triangle mesh 

 

 Requirements: 

 intersection free 

 closed 

 restricted Delaunay triangulation of the input 

vertices [Oudot-Boissonnat, Cohen-Steiner et al.] 



Input Boundary  

[Oudot-Boissonnat] 



Input Boundary  



Optimization: init 

0 

Distribution of radius ratios 



Optimization: step 1 

1 



Optimization: step 2 

2 



Optimization: step 50 

50 



Optimization: step 50 



Optimization: step 50 



Interior Mesh Extraction 

 Delaunay triangulation tessellates the convex 

hull 



Hand: lfs 



Hand: Sizing 



Hand: Sizing 



Hand: Sizing 



Hand: Radius Ratios 



Nested Spheres 



Torso 



Torso 



Torso 



Torso 



Fandisk 



Conclusion 

 Meshes 

 Definition, variety 

 Background 

 Voronoi 

 Delaunay 

 constrained Delaunay 

 restricted Delaunay 

 Optimization 

 2D, 3D 

 Lloyd iteration, function approximation approach 


