Mesh Optimization

Pierre Alliez Inria Sophia Antipolis - Mediterranee

Goals

- 3D simplicial mesh generation
- optimize shape of elements
 - for matrix conditioning
 - isotropic
- control over sizing
 - dictated by simulation
 - constrained by boundary
 - low number of elements desired
 - more elements = slower solution time

Popular Meshing Approaches

- advancing front
- specific subdivision
 - octree
 - lattice (e.g. body centered cubic)
- Delaunay

Innía

- refinement
- sphere packing

combined with local optimizations

- spring energy
 - Laplacian
 - non-zero rest length
- aspect / radius ratios
- dihedral / solid angles
- max-min/min-max
 - volumes
 - edge lengths
 - containing sphere radii

[Freitag Amenta Bern Eppstein]

sliver exudation

[Edelsbrunner Goy]

Variational?

- Design one energy function such that good solutions correspond to low energy ones (global minimum in general a mirage).
- Solutions found by optimization techniques.

Example Energy in 2D

 $E = \sum_{j=1..k} \int_{x \in R_j} ||x - x_j||^2 dx$ 0 o 0

Lloyd Iteration

2D Optimized Triangle Meshing

Inría

2D Optimized Triangle Meshing

Delaunay refinement

Termination

- shape criterion: radius-edge ratio
- in 2D: max $\sqrt{2}$ (implies min 20.7°)
- in 3D: max 2 (nothing similar on dihedral angles)

[Chew, Ruppert, Shewchuk, ...]

Delaunay refinement

- greedy (fast)
- easy incorporation of sizing field
- allows boundary conforming
 - possibly with Steiner points
 - even for sharp angles on boundary [Teng]
- guaranteed bounds on radius-edge ratio
- blind to slivers
 - and experimentally...produces slivers

nnia

Background

Delaunay Triangulation

 Duality on the paraboloid: Delaunay triangulation obtained by projecting the lower part of the convex hull.

Delaunay Triangulation

Proof

- The intersection of a plane with the paraboloid is an ellipse whose projection to the plane is a circle.
- s lies within the circumcircle of p, q, r iff s' lies on the lower side of the plane passing through p', q', r'.

Voronoi Diagram

- Given a set S of points in the plane, associate with each point p=(a,b)∈S the plane tangent to the paraboloid at p:
 z = 2ax+2by-(a2+b2).
- VD(S) is the projection to the (x,y) plane of the 1-skeleton of the convex polyhedron formed from the intersection of the halfspaces above these planes.

First Idea: Lloyd Algorithm

(after Lloyd relaxation)

...back to primal ?

Centroidal Voronoi Tessellation

distribution of radius ratios

220 "slivers" (tets with radius ratio < 0.2)

Tetrahedra Zoo

well-spaced points generate only round or sliver tetrahedra

Inría

Key Idea

- adopt the "function approximation" point of view [Chen 04] Optimal Delaunay Triangulation
- ID: f(x)=x² centered at any vertex
- minimize the L¹ norm between f and PWL interpolation

Key Idea

- 3D: ||x||² (graph in IR⁴)
- approximation theory:
 - linear interpolation: optimal shape of the element related to the Hessian of *f* [Shewchuk]
- Hessian($||x||^2$) = Id
 - regular tetrahedron best
- note: FE ~ mesh that best interpolates a function + matrix conditioning

nnia

Key Question

- which mesh best approximates the paraboloid?
 - (PWL interpolates)
- Answers:
 - for fixed point locations
 - Delaunay (lifts to lower facets of convex hull)
 - for fixed connectivity
 - quadratic energy
 - closed form for local optimum

- Given:
 - triangulation T
 - bounded domain Ω in \mathbb{R}^n
- Consider function approximation error:

$$Q(T, f, p) = \| f - f_{I,T} \|_{L^{p}, \Omega}$$
integration

Theorem [Chen 04]:

$$Q(DT, ||x||^2, p) = \min_{T \in P_V} Q(T, ||x||^2, p), 1 \le p \le \infty$$

$$\uparrow \text{ set of all triangulations with a given set V}$$

$$\blacksquare = \text{ convex hull of V}$$

Isotropic function

[d'Azevedo-Simpson 89] in IR^2 , $p = \infty$ [Rippa 92] in IR^2 , $1 \le p \le \infty$ [Melissaratos 93] in IR^D , $1 \le p \le \infty$

Let us V vary Problem:

find triangulation T* such that:

$$Q(T^*, f, p) = \inf_{T \in P_N} Q(T, f, p), 1 \le p \le \infty$$

$$\uparrow$$
set of all triangulations with a **at most N vertices**

Proof:

- existence
- necessary condition for *p*=1

$$Q(DT, ||x||^{2}, p) = \min_{T \in P_{V}} Q(T, ||x||^{2}, p), 1 \le p \le \infty$$

set of all triangulations with a **given set** V

= convex hull of V

Isotropic function

- x_i : vertex
- Ω_i : union of simplices incident to x_i
- |A|: Lebesgue measure of set A in IRⁿ

$$Q(T, f, p) = \left\| f_{I,T} - f \right\|_{L^{p},\Omega}$$

$$Q(T, f, p) = \left[\int_{\Omega} \left| f_{I,T}(x) - f(x) \right|^{p} dx \right]^{1/p}$$

$$Q(T, f, 1) = \int_{\Omega} (f_{I,T}(x) - f(x)) dx$$

$$f \text{convex, } f_{I,T} \text{PWL interpolant}$$

$$Q(T, f, 1) = \int_{\Omega} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$$

$$Q(T, f, 1) = \int_{\Omega} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$$

= $\sum_{\tau \in T} \int_{\tau} f_{I,T}(x) dx - \int_{\Omega} f(x) dx$
= $\frac{1}{n+1} \sum_{\tau \in T} \left(|\tau| \sum_{k=1}^{n+1} f(x_{\tau}, k) \right) - \int_{\Omega} f(x) dx$
= $\frac{1}{n+1} \sum_{x_i \in T} f(x_i) |\Omega_i| - \int_{\Omega} f(x) dx$ n+1 overlaps

restrict to patch \Box_i incident to vertex x_i

$$Q(\Omega_i, f, 1) = \frac{1}{n+1} \sum_{x_i \in \Omega_i} f(x_i) |\Omega_i| - \int_{\Omega_i} f(x) dx$$

=
$$\frac{1}{n+1} \sum_{\tau_j \in \Omega_i} \left(|\tau_j(x)| \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right) + \frac{|\Omega_i|}{n+1} f(x_i) - \int_{\Omega_i} f(x) dx$$

minimize

constant

 \mathbf{X}_{k}

Xi

$$E_{ODT} \equiv \sum_{\tau_j \in \Omega_i} \left(|\tau_j(x)| \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right) + |\Omega_i| f(x_i)$$

$$E_{ODT} \equiv \sum_{\tau_j \in \Omega_i} \left(|\tau_j(x)| \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right) + |\Omega_i| f(x_i)$$

minimum if $\nabla E_{ODT} = 0$

$$\nabla f(x_i^*) = -\frac{1}{|\Omega_i|} \sum_{\tau_j \in \Omega_i} \left(\nabla |\tau_j| (x_i) \sum_{x_k \in \tau_j, x_k \neq x_i} f(x_k) \right)$$

if
$$f(x) = ||x||^2$$

$$x_i^* = -\frac{1}{2 |\Omega_i|} \sum_{\tau_j \in \Omega_i} \left(\nabla |\tau_j| (x_i) \sum_{x_k \in \tau_j, x_k \neq x_i} ||x_k||^2 \right)$$

Geometric Interpretation

 Note: optimal location depends only on the 1ring neighbors, not on the current location. If all incident vertices lie on a common sphere, optimal location is at sphere center.

Optimization

- alternate updates of
 - connectivity
 - vertex location
- both steps minimize the same energy
 - as for Lloyd iteration
- for convex fixed boundary
 - energy monotonically decreases
 - convergence to a (local) minimum

Underlaid vs Overlaid Approximant

- CVT
 - partition
 - approximant
 - compact Voronoi cells
 - isotropic sampling

- ODT
 - overlapping decomposition
 - PWL interpolant
 - compact simplices
 - isotropic meshing

Optimization

Alternate updates of

- connectivity (Delaunay triangulation)
- vertex locations

demo

Innia

Optimal Delaunay Triangulation

distribution of radius ratios

3 "slivers", each with two vertices on boundary

Algorithm

- read input boundary $\partial \Omega$
- setup data structure & preprocessing
- compute sizing field
- generate initial sites inside Ω

do

- Delaunay triangulation of ${x_i}$
- move sites to optimal locations ${x_i}^*$

until convergence or stopping criterion

extract interior mesh

naía

Input Boundary $\partial \Omega$

- surface triangle mesh
- Requirements:
 - intersection free
 - closed
 - restricted Delaunay triangulation of the input vertices [Oudot-Boissonnat, Cohen-Steiner et al.]

Input Boundary $\partial \Omega$

Input Boundary $\partial \Omega$

Optimization: init

Distribution of radius ratios

Inría

Inría

Inría

Inría

Interior Mesh Extraction

 Delaunay triangulation tessellates the convex hull

Inría

Hand: Sizing

Inría

Hand: Sizing

Inría

Hand: Sizing

Inría

Hand: Radius Ratios

Nested Spheres

Inría

Torso

Inría

Torso

Torso

Inría

Fandisk

Ínría_

Conclusion

Meshes

- Definition, variety
- Background
 - Voronoi
 - Delaunay
 - constrained Delaunay
 - restricted Delaunay
- Optimization
 - 2D, 3D
 - Lloyd iteration, function approximation approach

Inría