Computational Geometry
Algorithms Library

Pierre Alliez
INRIA

&7 5 9
((\( ‘ ) % %\ i
0 A ] :



Mission Statement

“Make the large body of geometric
algorithms developed in the field of
computational geometry available for
industrial applications”

CGAL Project Proposal, 1996



Algorithms and Datastructures

-

. S
_ < ‘
: h
i ’ ]
52N .
o \

Bounding Yolumes Polyhedral Surface Boolean Operations

Triangulations

Su!!ivision Simplification

Lower Envelope Arrangement

Ridge ' Neighbor Kinetic
Detection Search Datastructures

Parameterzation Streamlines

i
Intersection Minkowski
Detecion  Sum




CGAL in Numbers

500,000
10,000
3,500
3,000
1,000
120

920

20

12

2

lines of C++ code

downloads/year (+ Linux distributions)
manual pages

subscribers to cgal-announce
subscribers to cgal-discuss

packages

commercial users

active developers

months release cycle

licenses: Open Source and commercial




Some Commercial Users
Q Q@ VDRC % AVARA[‘)-EX

Drbotech. pulsic

TOSHIBA [e}¢ T
=g| SIATE

cadence

Agllent Technologies

BN BAE SYSTEMS

Geasystems V
- :rtaafwmd’

) &,

SAFE SOFTWARE l &-

- I'nlulee

55 mECL

DASSAULT
SYSTEMES

NOESIS

fisgram ) gl -
SHN AP TG C



CGAL Open Source Project



Project = « Planned Undertaking »

e |nstitutional members make a long term commitment:
Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U,
ETHZ, GeometryFactory, FU Berlin, Forth, U Athens

e Editorial Board
— Steers and animates the project
— Reviews submissions

e Development Infrastructure
— Gforge: svn, tracker, nightly testsuite,...
—120p developer manual and mailing list
— Two 1-week developer meetings per year



Contributions

* Submission of specifications of new
contributions

* Review and decision by the Editorial Board

e Value for contributor
—Integration in the CGAL community
—@Gain visibility in a mature project

—Publication value for accepted
contributions



Exact Geometric Computing



Predicates and Constructions

'.p p

orientation in_circle intersection circumcenter



Robustness Issues

* Naive use of floating-point arithmetic causes
geometric algorithms to:

— Produce [slightly] wrong output
— Crash after invariant violation
— Infinite loop

e There is a gap between
— Geometry in theory
— Geometry with floating-point arithmetic



Geometry in Theory
ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) ® ccw(p,q,r)

p

=

O

q r

Correctness proofs of algorithms rely on such
theorems



Demo: The Trouble with Double
orientation(p,q,r) = sign((p,-r,)(q,r,)-(P,T,)(q,T,))

q (24, 24)
negative positive
n - !'

*
*
"f
SX=Y
Ed

/e 1 (0.5 + ¢, 0.5 + ¢)

=7 p (0.5, 0.5)



Exact Geometric Computing [Yap]

Make sure that the control flow in the
implementation corresponds to the control
flow with exact real arithmetic




Filtered Predicates

* Generic functor adaptor Filtered_predicate<>
—Try the predicate instantiated with intervals

—In case of uncertainty, evaluate the predicate
with multiple precision arithmetic

e Refinements:
— Static error analysis
— Progressively increase precision



Filtered Constructions

Lazy object = approximated object and

Lazy number = interval and arithmetic _ _
geometric operation tree

expression tree

(3.2 + 1.5) * 13

" @ m' ([, ) {
0 13 " () ﬂ o' ([, [])R
AN : S

32 15
s2

Test that may trigger an exact re-evaluation:
if(n'<m) if (collinear(a',m’',b"))



The User Perspective

e Convenience Kernels

— Exact predicates_inexact constructions kernel
— Exact predicates_exact constructions kernel
— Exact predicates_exact constructions kernel with sqrt

* Number Types
— double, float
— CGAL: :Gmpq (rational), Core (algebraic)
— CGAL: :Lazy exact nt<ExactNT>

o Kernels

— CGAL: :Cartesian<NT>
— CGAL: :Filtered kernel<Kernel>

— CGAL::Lazy kernel<NT>

CGAL manual


http://www.cgal.org/Pkg/Kernel23

Merits and Limitations
o Ultimate robustness inside the black box

e The time penalty is reasonable, e.g. 10% for
3D Delauny triangulation of 1M random points

e Limitations of Exact Geometric Computing
— Topology preserving rounding is non-trivial
— Construction depth must be reasonable
— Cannot handle trigonometric functions



Generic Programming



STL Genericity

template <class Key, class Less>
class set {
Less less;

insert (Key k)
{
if (less(k, treenode.key))
insertLeft (k) ;
else
insertRight (k) ;
}
b

STL manual


http://www.sgi.com/tech/stl/

CGAL Genericity

template < class Geometry >
class Delaunay triangulation 2 {
Geometry: :Orientation orientation;
Geometry::In circle in circle;
void insert (Geometry: :Point t) {
if(in circle(p,q,r,t)) {...} r

if (orientation(p,q,r){...}

}s;



CGAL Genericity Demo

Without explicit conversion to points in the plane
 Triangulate the terrain in an xy-plane
 Triangulate the faces of a Polyhedron

ourtesy: IPFVienna University
of Technology & Inpho GmbH



Summary: Overview

e Open Source project

e Clear focus on geometry

e Interfaces with de facto standards/leaders:
STL, Boost, GMP, Qt, blas

* Robust and fast through exact geometric
computing
» Easy to integrate through generic programming



