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Mission Statement 

  “Make the large body of geometric 

algorithms developed in the field of 

computational geometry available for 

industrial applications” 

 

   CGAL Project Proposal, 1996 

 

 

 



Algorithms and Datastructures 



CGAL in Numbers 
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Some Commercial Users 

Geophysics 

(Oil&Gas) 

CAD/CAM 

Image 

Processing 

Telecom 

 

 

Medical 

GIS 

Digital maps 

Scientific 

visualization 

VLSI 



CGAL Open Source Project  



Project = « Planned Undertaking »  

• Institutional members make a long term commitment: 

Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, 

ETHZ, GeometryFactory, FU Berlin, Forth, U Athens  

• Editorial Board  

– Steers and animates the project  

– Reviews submissions 

• Development Infrastructure  

– Gforge: svn, tracker, nightly testsuite,...  

– 120p developer manual and mailing list   

– Two 1-week developer meetings per year 



Contributions 

• Submission of specifications of new 

contributions 

• Review and decision by the Editorial Board  

 

• Value for contributor 

– Integration in the CGAL community 

–Gain visibility in a mature project 

– Publication value for accepted 

contributions 

 

 



  

Exact Geometric Computing  



Predicates and Constructions 

       Predicates                                 Constructions 

orientation              in_circle                     intersection          circumcenter 



Robustness Issues 

• Naive use of floating-point arithmetic causes 

geometric algorithms to: 

– Produce [slightly] wrong output 

– Crash after invariant violation 

– Infinite loop 

 

• There is a gap between  

–  Geometry in theory 

–  Geometry with floating-point arithmetic 

 

 



Geometry in Theory 

ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s)  ccw(p,q,r) 

 

 

 

 

 

 

 

Correctness proofs of algorithms rely on such 

theorems 



Demo: The Trouble with Double 
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Exact Geometric Computing  [Yap]  

 

 
Make sure that the control flow in the  
implementation corresponds to the control  

flow with exact real arithmetic 

<0 >0 

=0 

orientation(p,q,r) 



Filtered Predicates 

• Generic functor adaptor Filtered_predicate<> 

– Try the predicate instantiated with intervals 

– In case of uncertainty, evaluate the predicate 

with multiple precision arithmetic 

 

• Refinements: 

– Static error analysis 

– Progressively increase precision 



Filtered Constructions 
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Lazy number = interval and arithmetic  

                       expression tree 

Lazy object = approximated object and  

                     geometric operation tree 

Test that may trigger an exact re-evaluation: 

(3.2 + 1.5) * 13 



The User Perspective 

• Convenience Kernels 
– Exact_predicates_inexact_constructions_kernel 

– Exact_predicates_exact_constructions_kernel 

– Exact_predicates_exact_constructions_kernel_with_sqrt 

• Number Types 
– double, float 

– CGAL::Gmpq (rational), Core (algebraic) 

– CGAL::Lazy_exact_nt<ExactNT>  

• Kernels 

– CGAL::Cartesian<NT> 

– CGAL::Filtered_kernel<Kernel> 

–  CGAL::Lazy_kernel<NT> 

CGAL manual 

http://www.cgal.org/Pkg/Kernel23


Merits and Limitations 

• Ultimate robustness inside the black box 

 

• The time penalty is reasonable,  e.g. 10% for  

3D Delauny triangulation of 1M random points 

 

• Limitations of Exact Geometric Computing 

– Topology preserving rounding is non-trivial 

– Construction depth must be reasonable 

– Cannot handle trigonometric functions  

 



         

Generic Programming 



 
  

STL Genericity 

STL manual 

template <class Key, class Less> 

class set { 

  Less less; 

 

  insert(Key k) 

  { 

     if (less(k, treenode.key)) 

       insertLeft(k); 

     else 

       insertRight(k); 

  } 

}; 

http://www.sgi.com/tech/stl/


CGAL Genericity 

template < class Geometry > 

class Delaunay_triangulation_2 { 

    Geometry::Orientation orientation; 

    Geometry::In_circle in_circle; 

 

    void insert(Geometry::Point t) { 

       ... 

       if(in_circle(p,q,r,t)) {...} 

       ... 

       if(orientation(p,q,r){...} 

    } 

}; 



Courtesy: IPF,Vienna University  
of Technology & Inpho GmbH  

CGAL Genericity Demo 

Without explicit conversion to points in the plane 

• Triangulate the terrain in an xy-plane 

• Triangulate the faces of a Polyhedron 



Summary: Overview  

• Open Source project 

 

• Clear focus on geometry 

• Interfaces with de facto standards/leaders:  

STL, Boost, GMP, Qt, blas 

 

• Robust and fast through exact geometric 

computing   

• Easy to integrate through generic programming 


