
Computational Geometry

Algorithms Library

Pierre Alliez

INRIA

Mission Statement

 “Make the large body of geometric

algorithms developed in the field of

computational geometry available for

industrial applications”

 CGAL Project Proposal, 1996

Algorithms and Datastructures

CGAL in Numbers

500,000

 10,000

 3,500

 3,000

 1,000

 120

 90

 20

 12

 2

lines of C++ code

downloads/year (+ Linux distributions)

manual pages

subscribers to cgal-announce

subscribers to cgal-discuss

packages

commercial users

active developers

months release cycle

licenses: Open Source and commercial

Some Commercial Users

Geophysics

(Oil&Gas)

CAD/CAM

Image

Processing

Telecom

Medical

GIS

Digital maps

Scientific

visualization

VLSI

CGAL Open Source Project

Project = « Planned Undertaking »

• Institutional members make a long term commitment:

Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U,

ETHZ, GeometryFactory, FU Berlin, Forth, U Athens

• Editorial Board

– Steers and animates the project

– Reviews submissions

• Development Infrastructure

– Gforge: svn, tracker, nightly testsuite,...

– 120p developer manual and mailing list

– Two 1-week developer meetings per year

Contributions

• Submission of specifications of new

contributions

• Review and decision by the Editorial Board

• Value for contributor

– Integration in the CGAL community

–Gain visibility in a mature project

– Publication value for accepted

contributions

Exact Geometric Computing

Predicates and Constructions

 Predicates Constructions

orientation in_circle intersection circumcenter

Robustness Issues

• Naive use of floating-point arithmetic causes

geometric algorithms to:

– Produce [slightly] wrong output

– Crash after invariant violation

– Infinite loop

• There is a gap between

– Geometry in theory

– Geometry with floating-point arithmetic

Geometry in Theory

ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) ccw(p,q,r)

Correctness proofs of algorithms rely on such

theorems

Demo: The Trouble with Double

 orientation(p,q,r) = sign((p
x
-r

x
)(q

y
-r

y
)-(p

y
-r

y
)(q

x
-r

x
 ((

negative zero positive

Exact Geometric Computing [Yap]

Make sure that the control flow in the
implementation corresponds to the control

flow with exact real arithmetic

<0 >0

=0

orientation(p,q,r)

Filtered Predicates

• Generic functor adaptor Filtered_predicate<>

– Try the predicate instantiated with intervals

– In case of uncertainty, evaluate the predicate

with multiple precision arithmetic

• Refinements:

– Static error analysis

– Progressively increase precision

Filtered Constructions

[]

+

*

[]

3.2 1.5

13

if (collinear(a',m',b')) if (n' < m')

midpoin
t

intersect projection

 ([] ,[])

 ([] ,[]) ([] ,[]) ([] ,[])

b s1
s2 l

m'

i' p'

p

a

s1

s2

l

m

i

b

n'

Lazy number = interval and arithmetic

 expression tree

Lazy object = approximated object and

 geometric operation tree

Test that may trigger an exact re-evaluation:

(3.2 + 1.5) * 13

The User Perspective

• Convenience Kernels
– Exact_predicates_inexact_constructions_kernel

– Exact_predicates_exact_constructions_kernel

– Exact_predicates_exact_constructions_kernel_with_sqrt

• Number Types
– double, float

– CGAL::Gmpq (rational), Core (algebraic)

– CGAL::Lazy_exact_nt<ExactNT>

• Kernels

– CGAL::Cartesian<NT>

– CGAL::Filtered_kernel<Kernel>

– CGAL::Lazy_kernel<NT>

CGAL manual

http://www.cgal.org/Pkg/Kernel23

Merits and Limitations

• Ultimate robustness inside the black box

• The time penalty is reasonable, e.g. 10% for

3D Delauny triangulation of 1M random points

• Limitations of Exact Geometric Computing

– Topology preserving rounding is non-trivial

– Construction depth must be reasonable

– Cannot handle trigonometric functions

Generic Programming

STL Genericity

STL manual

template <class Key, class Less>

class set {

 Less less;

 insert(Key k)

 {

 if (less(k, treenode.key))

 insertLeft(k);

 else

 insertRight(k);

 }

};

http://www.sgi.com/tech/stl/

CGAL Genericity

template < class Geometry >

class Delaunay_triangulation_2 {

 Geometry::Orientation orientation;

 Geometry::In_circle in_circle;

 void insert(Geometry::Point t) {

 ...

 if(in_circle(p,q,r,t)) {...}

 ...

 if(orientation(p,q,r){...}

 }

};

Courtesy: IPF,Vienna University
of Technology & Inpho GmbH

CGAL Genericity Demo

Without explicit conversion to points in the plane

• Triangulate the terrain in an xy-plane

• Triangulate the faces of a Polyhedron

Summary: Overview

• Open Source project

• Clear focus on geometry

• Interfaces with de facto standards/leaders:

STL, Boost, GMP, Qt, blas

• Robust and fast through exact geometric

computing

• Easy to integrate through generic programming

