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Mission Statement

“Make the large body of geometric
algorithms developed in the field of
computational geometry available for
industrial applications”

CGAL Project Proposal, 1996



Algorithms and Datastructures
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Bounding Yolumes Polyhedral Surface Boolean Operations

Triangulations

Su!!ivision Simplification

Lower Envelope Arrangement

Ridge ' Neighbor Kinetic
Detection Search Datastructures

Parameterzation Streamlines
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CGAL in Numbers
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licenses: Open Source and commercial




Some Commercial Users
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CGAL Open Source Project



Project = « Planned Undertaking »

e |nstitutional members make a long term commitment:
Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U,
ETHZ, GeometryFactory, FU Berlin, Forth, U Athens

e Editorial Board
— Steers and animates the project
— Reviews submissions

e Development Infrastructure
— Gforge: svn, tracker, nightly testsuite,...
—120p developer manual and mailing list
— Two 1-week developer meetings per year



Contributions

* Submission of specifications of new
contributions

* Review and decision by the Editorial Board

e Value for contributor
—Integration in the CGAL community
—@Gain visibility in a mature project

—Publication value for accepted
contributions



Exact Geometric Computing



Predicates and Constructions
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Robustness Issues

* Naive use of floating-point arithmetic causes
geometric algorithms to:

— Produce [slightly] wrong output
— Crash after invariant violation
— Infinite loop

e There is a gap between
— Geometry in theory
— Geometry with floating-point arithmetic



Geometry in Theory
ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) ® ccw(p,q,r)
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Correctness proofs of algorithms rely on such
theorems



Demo: The Trouble with Double
orientation(p,q,r) = sign((p,-r,)(q,r,)-(P,T,)(q,T,))
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Exact Geometric Computing [Yap]

Make sure that the control flow in the
implementation corresponds to the control
flow with exact real arithmetic




Filtered Predicates

* Generic functor adaptor Filtered_predicate<>
—Try the predicate instantiated with intervals

—In case of uncertainty, evaluate the predicate
with multiple precision arithmetic

e Refinements:
— Static error analysis
— Progressively increase precision



Filtered Constructions

Lazy object = approximated object and

Lazy number = interval and arithmetic _ _
geometric operation tree

expression tree
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Test that may trigger an exact re-evaluation:
if(n'<m) if (collinear(a',m’',b"))



The User Perspective

e Convenience Kernels

— Exact predicates_inexact constructions kernel
— Exact predicates_exact constructions kernel
— Exact predicates_exact constructions kernel with sqrt

* Number Types
— double, float
— CGAL: :Gmpq (rational), Core (algebraic)
— CGAL: :Lazy exact nt<ExactNT>

o Kernels

— CGAL: :Cartesian<NT>
— CGAL: :Filtered kernel<Kernel>

— CGAL::Lazy kernel<NT>

CGAL manual


http://www.cgal.org/Pkg/Kernel23

Merits and Limitations
o Ultimate robustness inside the black box

e The time penalty is reasonable, e.g. 10% for
3D Delauny triangulation of 1M random points

e Limitations of Exact Geometric Computing
— Topology preserving rounding is non-trivial
— Construction depth must be reasonable
— Cannot handle trigonometric functions



Generic Programming



STL Genericity

template <class Key, class Less>
class set {
Less less;

insert (Key k)
{
if (less(k, treenode.key))
insertLeft (k) ;
else
insertRight (k) ;
}
b

STL manual


http://www.sgi.com/tech/stl/

CGAL Genericity

template < class Geometry >
class Delaunay triangulation 2 {
Geometry: :Orientation orientation;
Geometry::In circle in circle;
void insert (Geometry: :Point t) {
if(in circle(p,q,r,t)) {...} r

if (orientation(p,q,r){...}

}s;



CGAL Genericity Demo

Without explicit conversion to points in the plane
 Triangulate the terrain in an xy-plane
 Triangulate the faces of a Polyhedron

ourtesy: IPFVienna University
of Technology & Inpho GmbH



Summary: Overview

e Open Source project

e Clear focus on geometry

e Interfaces with de facto standards/leaders:
STL, Boost, GMP, Qt, blas

* Robust and fast through exact geometric
computing
» Easy to integrate through generic programming



