
2D Triangulations in

http://www.cgal.org

Pierre Alliez

 Mariette Yvinec

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Applications

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Exercises

http://www.cgal.org

Definitions

• A 2D triangulation is a set T of triangular

facets such that:

– two facets are either disjoint or share a lower

dimensional face (edge or vertex).

– the set of facets in T is connected for the

adjacency relation.

– the domain UT which is the union of facets in T

has no singularity.

http://www.cgal.org

Definitions

• A simplicial complex is a set T of simplices such that

– any face of a simplex in T is a simplex in T

– two simplices in T either are disjoint or share a common

subface.

• The dimension d of a simplicial complex is the

maximal dimension of its simplices.

• A simplicial complex T is pure if any simplex of T is

included in a simplex of T with maximal dimension.

http://www.cgal.org

Definitions

• Two simplexes in T with maximal dimension d are

said to be adjacent if they share a (d-1) dimensional

subface. A simplicial complex is connected if the

adjacency relation defines a connected graph over

the set of simplices of T with maximal dimension.

• The union UT of all simplices in T is called the

domain of T.

• A point p in the domain of T is said to singular if its

surrounding in UT is neither a topological ball nor a

topological disc.

http://www.cgal.org

2D Triangulations in CGAL

– Basic

– Delaunay

– Regular

– Constrained

– Constrained Delaunay

http://www.cgal.org

Basic Triangulation

• Lazy incremental construction, no

control over the shape of triangles

http://www.cgal.org

Delaunay Triangulation

• Empty circle property

http://www.cgal.org

Regular Triangulation

• Generalization of Delaunay

triangulation.

• Defined for a set of weighted

points. Each weighted point

can be considered as a sphere

whose square radius is equal

to the weight. The regular

triangulation is the dual of the

power diagram.

http://www.cgal.org

Constrained Triangulation

• Allows to enforce edges.

http://www.cgal.org

Constrained Delaunay

Triangulation

• Constrained triangulation which is as much

Delaunay as possible. Each triangle satisfies the

constrained empty circle property : its

circumscribing circle encloses no vertex visible from

the interior of the triangle, where enforced edges

are considered as visibility obstacles.

http://www.cgal.org

Derivation Tree (2D)

http://www.cgal.org

General Features

• Traversal:

– going from a face to its neighbors

– iterators to visit all faces of a triangulation

– circulators to visit all faces around a vertex or all faces

intersected by a line.

• Point location query

• Insertion, removal, flips:

– Features adapted to each type of triangulations (e.g., the

insertions

– and deletions in a Delaunay triangulation maintain the empty

circle property).

http://www.cgal.org

Additional Features

• For some triangulations

http://www.cgal.org

Additional Features

• Example for constrained and Delaunay

constrained triangulations:

– Insertion and removal of constraints

http://www.cgal.org

Additional Features

• For Delaunay triangulation

– Nearest neighbor queries

– Voronoi diagram

http://www.cgal.org

Traversal (1)

• Iterators

– All faces iterator

– All vertices iterator

– All edges iterator

http://www.cgal.org

Traversal (2)

• Circulators

– Face circulator

• faces incident to a vertex

– Edge circulator

• edges incident to a vertex

– Vertex circulator

• vertices incident to a vertex

http://www.cgal.org

Traversal (3)

• Line face circulator

http://www.cgal.org

Point Location & Insertion

http://www.cgal.org

Edge Flip

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Exercises

http://www.cgal.org

Triangulations as a Set of Faces

• All triangulations in CGAL tile the convex hull of

their vertices. Triangulated polygonal regions can

be obtained through constrained triangulations.

http://www.cgal.org

Triangulations as a Set of Faces

• All triangulations in CGAL tile the convex hull of

their vertices. Triangulated polygonal regions can

be obtained through constrained triangulations.

• An imaginary vertex (so-called infinite vertex is

added).

http://www.cgal.org

Triangulations as a Set of Faces

• All triangulations in CGAL tile the convex hull of

their vertices. Triangulated polygonal regions can

be obtained through constrained triangulations.

• An imaginary vertex (so-called infinite vertex is

added).

– Any face is a triangle.

– Any edge is incident to two exactly 2 faces.

– The set of faces is equivalent to a 2D topological sphere.

http://www.cgal.org

Triangulations as a Set of Faces

In any dimension,

the set of faces is

combinatorically

equivalent to a

triangulated

sphere.

0

1

2

3

http://www.cgal.org

Representation

• The internal representation is based on

faces and vertices.

• Edges are implicitly represented

• Vertex

– Face* v_face

• Face

– Vertex* vertex[3]

– Face* neighbor[3]

http://www.cgal.org

Representation

• functions cw(i) & ccw(i)

http://www.cgal.org

Representation

• From one Face to Another

http://www.cgal.org

Representation

• Around a vertex

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Exercises

http://www.cgal.org

Software Design

• Many CGAL classes are parameterized

by one or more template parameters:
– Polygon_2<Traits, Container>

– Polyhedron_3<Traits, HDS>

– Planar_map_2<Dcel,Traits>

– Arrangement_2<Dcel,Traits,Base node>

– Min_circle_2<Traits>

– Point_set_2<Traits>

– Range_tree_k<Traits>

http://www.cgal.org

Triangulation Classes

Triangulation_2<Traits, TDS>

Triangulation_3<Traits, TDS>

• Traits

– Geometric traits

• TDS

– Triangulation Data Structure

http://www.cgal.org

Geometric Traits

• Geometric traits classes provide :

– Basic geometric objects

– Predicates and Constructors

• Requirements for traits are documented

– basic library data structures and algorithms can

be used with user-defined objects

• Default traits classes are provided

http://www.cgal.org

Traits Class for

Delaunay Triangulation

• Requirements:

– Point

– Segment

– Triangle

– Line

– Ray

– orientation test

– in circle test

– circumcenter

– bisector

http://www.cgal.org

Traits Class for

Delaunay Triangulation

• Default traits class:
– Triangulation_euclidean_traits_2<Kernel>

• Delaunay triangulation of 2D points:
– typedef Cartesian<double> Kernel;

– typedef Triangulation_euclidean_traits_2<Kernel> Traits;

– typedef Delaunay_triangulation_2<Traits> Triangulation;

http://www.cgal.org

Predicates for

Delaunay Triangulation

http://www.cgal.org

Traits Class for Terrains

Needs

– 3D points

– orientation

– in circle

– on x and y coordinates

Triangulation_euclidean_traits_xy_3<kernel>

Definition:

typedef Cartesian<double> kernel;

typedef Triangulation euclidean traits xy 3<kernel> Traits;

typedef Delaunay triangulation 2<Traits> Triangulation;

http://www.cgal.org

Software Design

template< class Gt, class Tds>

Triangulation_2 ;

template<class Vb, class Fb>

Triangulation_data_structure_2;

http://www.cgal.org

Triangulation Design

Vertex base

Vertex base :: Point

Vertex base(Point p, void* f)

Point point();

void* face();

void* set point();

void* set face();

Face base

Face base(void* v0, void* v1, void* v2,

void* n0, void* n1, void* n2)

void* vertex(int i);

void* neighbor(int i);

void* set vertex(int i, void* v);

void* set neighbor(int i, void* f);

http://www.cgal.org

Triangulation Data Structure

Tds<Vb,Fb>

Types:

• Tds<Vb,Fb>::Vertex inherits from Vb

• Tds<Vb,Fb>::Face inherits from Fb

• Tds<Vb,Fb>::Face iterator

• Tds<Vb,Fb>::Edge iterator

• Tds<Vb,Fb>::Vertex iterator

• Tds<Vb,Fb>::Face circulator

• Tds<Vb,Fb>::Edge circulator

• Tds<Vb,Fb>::Vertex circulator

http://www.cgal.org

Combinatorial Operations

void insert_in_face (Vertex* v,Face* f)

void insert_in_edge (Vertex* v, Face* f, int i)

void remove_degre_3 (Vertex* v);

http://www.cgal.org

Combinatorial Operations

void flip (Face* f, int i);

(on-going work)

void split vertex (Vertex*, Face* f1, Face* f2)

void join vertices (Vertex* v1, vertex* v2)

http://www.cgal.org

The Triangulation Class

CGAL::Triangulation 2<Gt, Tds >

typedef Gt geometric_traits;

typedef Tds Triangulation_data_structure;

typedef Triangulation_2<Gt, Tds > Triangulation;

Types

Gt::Point_2

Gt::Segment_2

Gt::Triangle_2

Triangulation::Vertex inherits from Tds::Vertex

Triangulation::Face inherits from Tds::Face

Triangulation::Vertex_handle

Triangulation::Face_handle

typedef pair<Face handle, int>

Edge ;

Triangulation::Face_iterator

Triangulation::Edge_iterator

Triangulation::Vertex_iterator

Triangulation::Line_face_circulat

or

Triangulation::Face_circulator

Triangulation::Edge_circulator

Triangulation::Vertex_circulator

http://www.cgal.org

High Level Functions

enum Locate_type { VERTEX=0, EDGE, FACE,

 OUTSIDE_CONVEX_HULL,

 OUTSIDE_AFFINE_HULL}

Face_handle locate(Point query,

 Locate_type& lt,

 int& li,

 Face_handle h =Face_handle());

Vertex_handle insert(Point p)

void remove(Vertex_handle v)

http://www.cgal.org

Insertion

Vertex handle insert (Point p)

{

Locate type lt; int li;

Face handle loc = locate(p, lt, li);

switch(lt){

case VERTEX : return f->vertex(li);

case EDGE :return insert_in_edge(p, loc,li);

case FACE :return insert_in_face(v,loc);

case OUTSIDE CH :return insert_outside ch(p,loc);

case OUTSIDE AH :return insert_outside ah(p);

}}

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Exercises

http://www.cgal.org

Algorithms for Triangulation

• All CGAL triangulations are built through

incremental on-line insertion of vertices.

• The main algorithmic issue is therefore to deal with

point location.

• CGAL offers different algorithms :

– linewalk

– Zigzag walk

– jump and walk strategy

– the Delaunay hierarchy

http://www.cgal.org

Efficient Localization

• Delaunay Hierarchy

http://www.cgal.org

Outline
• Specifications

– Definition

– Triangulations in CGAL

– Features

• Representation

– As a set of faces

– Representation based on vertices and cells

• Software design

– Traits class

– Triangulation data structure

• Algorithms

– Point location

• Examples

• Exercises

http://www.cgal.org

#include <CGAL/Cartesian.h>

#include <CGAL/Triangulation_2.h>

using namespace CGAL;

using namespace std;

typedef Cartesian<double> Kernel;

typedef Triangulation_2<Kernel> Triangulation;

typedef Triangulation::Vertex_circulator Vertex_circulator;

typedef Kernel::Point_2 Point;

 Triangulation t;

 Point p;

 while(cin >> p) t.insert(p);

 Vertex_circulator vc = t.incident_vertices(t.infinite_vertex());

 Vertex_circulator done(vc);

 do

 cout << vc->point();

 while(++vc != done);

}

http://www.cgal.org

Drawing Generators...

template <class kernel, class TDS>

class DT2 : public CGAL::Delaunay_triangulation_2<kernel,TDS>

{

 public:

 void gl_draw_generators()

 {

 ::glBegin(GL_POINTS);

 Point_iterator it;

 for(it = points_begin();

 it != points_end();

 it++)

 {

 const Point& p = *it;

 ::glVertex2d(p.x(),p.y());

 }

 ::glEnd();

 }

}

http://www.cgal.org

Drawing Delaunay Edges...

 void gl_draw_delaunay_edges()

 {

 ::glBegin(GL_LINES);

 Edge_iterator it;

 for(it = edges_begin();

 it != edges_end();

 it++)

 {

 // edge = std::pair<Face_handle,int>

 Edge& edge = *it;

 const Point& p1 = edge.first->vertex(ccw(edge.second))->point();

 const Point& p2 = edge.first->vertex(cw(edge.second))->point();

 ::glVertex2f(p1.x(), p1.y());

 ::glVertex2f(p2.x(), p2.y());

 }

 ::glEnd();

 }

http://www.cgal.org

Drawing Voronoi Edges

 void gl_draw_voronoi_edges() {

 ::glBegin(GL_LINES);

 Edge_iterator hEdge;

 for(hEdge = edges_begin(); hEdge != edges_end(); hEdge++)

 {

 CGAL::Object object = dual(hEdge);

 Segment segment;

 Ray ray;

 Point source, target;

 if(CGAL::assign(segment,object))

 {

 source = segment.source();

 target = segment.target();

 }

 else if(CGAL::assign(ray,object))

 {

 source = ray.source();

 target = ray.point(1);

 }

 ::glVertex2f(source.x(),source.y());

 ::glVertex2f(target.x(),target.y());

 }

 ::glEnd(); }

