
Locality-Aware Scheduling in OpenMP
Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

2

About myself: Jannis Klinkenberg

• 2010: B.Sc. Scientific Programming (MATSE at RWTH / FH Aachen)
 Thesis: Pressure Calculation in Thermo-Dynamic Networks using Simulink and C++

• 2012: M.Sc. Artificial Intelligence at Maastricht University
 Focus: Machine Learning, Games and AI, Intelligent Search Techniques

 Thesis: Strategy for Complex Structured Games Using Kernels and Nearest Neighbor Techniques

• 2012 – 2016: Gaining Experience in Industry
 Areas: Software architecture & development for automotive industry and power plant optimization, data

management & processing solutions

• Since 2016: Research Assistant / PhD Student at Chair for High Performance Computing

• Research: Runtime Improvements for Dynamic, Complex and Heterogeneous Systems
 Chameleon: Dynamic load balancing in distributed memory for MPI + OpenMP task parallel programs

 H2M: Heuristics for heterogeneous memory (together with Inria)

 OpenMP Co-Chair of Affinity Subcommittee

 ML / DL: Failure prediction and performance prediction

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

3

Motivation for Thesis Topics

• Increasing complexity of today‘s HPC systems and software
 Performance variability

 Load imbalance

 Harder for users to exploit full potential

• Examples: Software
 Dynamic scheduling

 Adaptive mesh refinement (AMR)

Source: https://doi.org/10.3390/atmos2030484

• Initial domain decomposition

• Depending on situation either refinement or coarsening of cells

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

4

Motivation for Thesis Topics

• Increasing complexity of today‘s HPC systems and software
 Performance variability

 Load imbalance

 Harder for users to exploit full potential

• Examples: Software
 Dynamic scheduling

 Adaptive mesh refinement (AMR)

• Examples: Hardware / Design
 NUMA architecture design

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

Accessing

local memory is fast

Accessing

remote memory is slower

2-socket NUMA architecture (simplified)

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

5

Motivation for Thesis Topics

• Increasing complexity of today‘s HPC systems and software
 Performance variability

 Load imbalance

 Harder for users to exploit full potential

• Examples: Software
 Dynamic scheduling

 Adaptive mesh refinement (AMR)

• Examples: Hardware / Design
 NUMA architecture design

 Complex memory hierarchies

 HBM

 Non-Volatile Memory (NVM)

 DRAM

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

2-socket NUMA architecture (simplified)

DRAM HBM NVM DRAM HBM NVM

• Very different memory characteristics (latency / bandwidth, …)

• Q: Where to place data items? When to move data items?

• Q: How to minimize overhead for data movement?

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

6

Motivation for Thesis Topics

• Increasing complexity of today‘s HPC systems and software
 Performance variability

 Load imbalance

 Harder for users to exploit full potential

• Examples: Software
 Dynamic scheduling

 Adaptive mesh refinement (AMR)

• Examples: Hardware / Design
 NUMA architecture design

 Complex memory hierarchies

 HBM

 Non-Volatile Memory (NVM)

 DRAM

 Heterogeneous compute nodes

 Dynamic adjustments of machines

 Based on thermal conditions

 Turbo-Boost in modern CPUs

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

2-socket NUMA architecture (simplified)

GPU

GPU

GPU

GPU

• Location of threads accessing GPUs can affect performance
 Offload latency

 Transfer throughput

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

7

Motivation for Thesis Topics

• Increasing complexity of today‘s HPC systems and software
 Performance variability

 Load imbalance

 Harder for users to exploit full potential

• Examples: Software
 Dynamic scheduling

 Adaptive mesh refinement (AMR)

• Examples: Hardware / Design
 NUMA architecture design

 Complex memory hierarchies

 HBM

 Non-Volatile Memory (NVM)

 DRAM

 Heterogeneous compute nodes

 Dynamic adjustments of machines

 Based on thermal conditions

 Turbo-Boost in modern CPUs

……….

Node 0 Node N-1

• Q: How to balance the load between nodes without requiring

extensive user code adaptions?

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

8

Thesis Outline Extraction: Core Chapters

• Variability of Application Runs

• Locality-Aware Scheduling in OpenMP
 Task Affinity

 Thread-to-Device Affinity

• Reactive Load Balancing for Hybrid Task-Parallel Applications

• Heuristics for Heterogeneous Memory

covered today

Locality-Aware Scheduling in OpenMP
Task Affinity

References:
(1) Klinkenberg, J. et al. (2018). Assessing Task-to-Data Affinity in the LLVM OpenMP Runtime. In: de Supinski, B., Valero-Lara,

P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds) Evolving OpenMP for Evolving Architectures. IWOMP 2018. Lecture

Notes in Computer Science(), vol 11128. Springer, Cham. https://doi.org/10.1007/978-3-319-98521-3_16

(2) Poster on COLOC Workshop (EuroPar 2018)

https://doi.org/10.1007/978-3-319-98521-3_16

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

10

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

P

T1 T2

L1

L2

Memory controller

Shared L3

Memory

2-socket NUMA architecture (simplified)

Motivation for Task Affinity

• Execution of parallel programs
 Usually, OS can decide to migrate processes or

threads between processing units

 Existing techniques for process pinning &

thread binding (taskset, OMP_PROC_BIND)

 Avoid that process or threads are migrated

 Best practice in HPC in most cases

• OpenMP 3.0 introduced Tasking
 Allows parallelization of irregular and recursive

algorithms

 But: currently not much support for controlling /

influencing placement of OpenMP tasks on

OpenMP threads

 Generally: Tasks can be executed by any

thread in the task team

Task accessing

local memory is fast

Task accessing

remote memory is slower

• Unpredictable remote memory accesses & execution times

• High runtime variability

Data locality crucial to sustain performance

Need a way to specify affinity for tasks

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

11

Proposal: Task-Affinity Extension for OpenMP 5.0

• #pragma omp task affinity(list)
 Programmer specifies data used by task

 Recommended to execute task closely to data location

 Runtime identifies the location of the data and schedules task to a close thread

 Clear separation between dependencies and affinity

• Important: Non-prescriptive hint to the runtime
 Reduce NUMA effects and improve overall performance

 Do not prohibit task stealing & load balancing

• Further Research Questions

 Q1: How does the location where tasks are created affect the performance?

 Q2: Is task affinity able to improve performance and reduce the run time variability of task executions?

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

12

LLVM Reference Implementation

• Implementation based on the LLVM OpenMP runtime
 Compatible with compilers like Intel, AMD and Clang (large community)

 Simulating task affinity clause with API call right in front of the task construct

 Currently limited to a single data reference (but extension available)

 Remember: In LLVM, each OpenMP thread has a separate task queue

 Tasks are usually pushed to local thread queues

 Working on local tasks: remove at tail

 Under-utilized threads steal from random victim

0 1 2 3

Thread local queues

T1

T2

T3

OpenMP Threads

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

13

Directions & Approaches

• Fundamental directions / goals for task affinity
 Domain Mode

 Execute task where data is physically stored / allocated

 Temporal Mode

 Execute task where last task has been executed that used same data

 Reuse cached data and aim for temporal locality

 Book keeping required! (using a lookup table or map) – Assumption thread binding is used

• Fundamental approaches
 NUMA-aware task distribution

 Identify NUMA domain for data reference & push task to a close location

 NUMA-aware task stealing

 Prefer stealing from thread in same NUMA domain

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

14

NUMA-aware Task Distribution

Encounter

task region …

Task with

data

affinity?

Push to

local

queue

Location

for data item

known? (in

map)

Identify

NUMA

domain where

data is stored

Select thread

bound to

NUMA

domain

Save location

for data item

in map

Push task into

close thread’s

queue

end

Yes

No

Yes

No

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

15

NUMA-aware Task Distribution

Encounter

task region …

Task with

data

affinity?

Push to

local

queue

Location

for data item

known? (in

map)

Identify

NUMA

domain where

data is stored

Select thread

bound to

NUMA

domain

Save location

for data item

in map

Push task into

close thread’s

queue

end

Yes

No

Yes

No

Interesting parts

• Location in the map?
 Domain: NUMA domain where data

is physically allocated

 Temporal: Thread where data was

used the last time (by a task)

• How to select a thread inside a

NUMA domain?
 Random

 Round robin

 Thread with lowest queue size

 In total 6 versions

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

16

Evaluation – Benchmarks & Machines

1) Preliminary analysis with STREAM (tasking version)
 Address research questions

 Why STREAM?

 Easy to understand and balanced

 Simulate memory bound codes that use tasking

 Determine upper bound for improvement

2) Overall performance & scalability
 STREAM  tasking version, balanced

 Parallel merge sort (BOTS)  recursive divide & conquer

 Sparse CG (SPMXV)  iterative, natural imbalances

 Health benchmark (BOTS)  divide & conquer, tree-based structure

• Machines (with different NUMA characteristics)

 Intel® Xeon® E5-2650v4 (codename Broadwell)

 2 sockets, 12 cores per socket = 24 cores

 2.2 GHz base frequency

 128 GB memory

 Intel® Xeon® E7-8860v4 (codename Broadwell)

 8 sockets, 18 cores per socket = 144 cores

 2.2 GHz base frequency

 1 TB memory

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

17

Evaluation – Compilation & Environment

• Compiled all codes with –O3

• OpenMP thread binding
 OMP_PLACES=cores
 OMP_PROC_BIND=spread

• Data distribution across all NUMA domains
 Data initialized with first touch and
#pragma omp parallel for schedule(static)

• Additional settings
 Disabled automatic NUMA balancing (e.g. in RHEL)

 Disabled Transparent Huge Pages (THP)

 Set KMP_TASK_STEALING_CONSTRAINT=0

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

18

Preliminary analysis with STREAM (tasking version)

• Q1: How does the location where tasks are created affect the performance?

• Each kernel executed 10 times; large array split into n_threads*factor tasks

• Evaluate different task creation schemes
 Single task creator (master)

 Parallel task creators

 Parallel task creators but invert chunks

• Parallel creators: Each thread creates tasks for its assigned chunk

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

19

Preliminary analysis with STREAM (tasking version)

• Q1: How does the location where tasks are created affect the performance?

• Each kernel executed 10 times; large array split into n_threads*factor tasks

• Evaluate different task creation schemes
 Single task creator (master)

 Parallel task creators

 Parallel task creators but invert chunks

• Inverted: Each thread creates tasks for a different chunk

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

20

Preliminary analysis with STREAM (tasking version)

 Not much improvement when task created where data is located

 Otherwise: LLVM baseline clearly suffering

Sockets=8 Threads=64 N=231 double=16 GB Median of 15 runs

4.5 x

lower is better

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

21

Preliminary analysis with STREAM (tasking version)

• Q2: Is task affinity able to improve performance and reduce the run time variability of task executions?

• Same setup with single task creator scheme

• Measure individual task execution times

• Problem: Complexity & exec. time of STREAM kernels varies
 Hard to distinguish between real variations and those caused by different complexity

 Just considering Triad kernel for this test

 LLVM has much higher spread and median

 Significant reduction of runtime variability

 More reliable execution performance

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

22

Overall performance & scalability – Merge sort

Not much overhead but also not giving any speedup on 2 sockets

Stronger NUMA effects  better improvements

N=231 int=8 GB Median of 15 runs

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

23

Conclusion

• Not much room for improvement when:
 Parallel task creator scenarios & tasks are already created in chucks

where data is located + already pretty balanced workload

• Works well when:
 Working with a lot of data (memory-bound)

 Single task creator scenarios

 Tasks created in parallel but not all created close to data

 Suffering from load imbalances

• What has been done since then?
 Extended prototype that lifted restriction to single data reference

 Deal with array slices

 Deal with multiple affinities

 Affinity for tasks created by taskloop construct (ongoing)

Locality-Aware Scheduling in OpenMP
Thread-to-Device Affinity

References:
(1) Coming soon

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

25

Device Affinity: Potential Use Cases

1. Bind threads so they get distributed appropriately for using devices
 e.g. OMP_PLACES=devices
 Each place corresponds to the set of cores that are close to each device in the target machine

 Decisions:

 Not that easy. Could lead to ambiguous results for several devices/threads

 On some systems OMP_PLACES=sockets

2. Offload to devices that are close to the current thread

3. Offload to devices that are close to data – or – that already hold the required data
 Turns out to be also more complicated

 Might interfere with default device selection

 How to work with sets of devices?

 WiP

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

26

Thread-to-Device Affinity

• Goal: Find devices that are close to the current thread

• Requirements:
 Result of call should be deterministic!

 How to offer a general solution that is

also extendable in future?

S1 Mem

GPU

GPU

S0Mem

GPU

GPU

T

1

2

3

4

Sample Architecture 1

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

27

Thread-to-Device Affinity

• Proposal
 int omp_get_devices_in_order(int n_desired, int* dev_ids, double* val_order, <traits>)
 Traits could be used for filtering as well as ordering

 Returns number of devices found

• Example

• Questions
 What is distance or what does close mean? (could be implementation defined)

 Currently considering NUMA latency distances

 Could be more complex (respecting BW, PCI connection, …)

 How should traits look like? (Similar solution as for allocator traits)

int n=20; // desired number of devices
int n_dev_found; // actual number of devices found for request (<= desired value)
int dev_ids[n]; // buffer with ids returned
double vals_order[n]; // buffer with values returned for ordering devices

n_dev_found = omp_get_devices_in_order(n, dev_ids, vals_order, <trait_lowest_distance>);

#pragma omp target device(dev_ids[0]) // use closest device
#pragma omp target device(dev_ids[n_dev_found-1]) // use remote device (max distance)

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

28

Prototypes & Concepts

• Prototypes
 Prio 1: CUDA prototype for PoC

 Prio 2: Prototype implementation in LLVM OpenMP runtime

• Implemented Concept:
 Iterate over devices and NUMA domains (once during init)

 Identify where devices are connected (e.g., using hwloc)

 Currently: Use NUMA distances to order devices per NUMA domain

 Save that lookup table

 Reuse lookup table at run time when API routine

is called by threads (avoids overhead)

• Current Restrictions
 Only implemented for NVIDIA GPUs

 Not traits  focus on distance

Sample Architecture 1

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

29

Preliminary Results

• LLVM results on a 2 GPU system (1 Tesla P100-SXM2 per socket)

w/o computation – only invocation & transfer w/ computation – incl. invocation & transfer

Statistics (Computation): w/o numa_balancing
Min relative difference 0.358 %
Mean relative difference 10.029 %
Max relative difference 16.274 %

Statistics (Computation): w/ numa_balancing
Min relative difference 0.828 %
Mean relative difference 10.861 %
Max relative difference 16.194 %

Statistics (Computation): w/o numa_balancing
Min relative difference 0.132 %
Mean relative difference 0.549 %
Max relative difference 2.398 %

Statistics (Computation): w/ numa_balancing
Min relative difference -0.250 %
Mean relative difference 0.262 %
Max relative difference 0.898 %

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

30

Next Steps

• Extend support for AMD accelerators

• Extended experiments
 More architectures (NVIDIA DGX, Summit, Crusher, …)

 Vary how much computation is actually done (find threshold)

 Deeper look at GPU traces for more complex scenarios

• Create a first set of traits for the API proposal
 Extend prototypes to return values used for ordering

• Publication planned

Thank you!

Backup Slides

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

32

NUMA-aware Task Stealing

Thread idle

taskwait / barrier

1. Execute task

from local

queue

2. Try to steal

from random

victim (fallback)

Invoke task

task(s) in queue

queue empty

success

failed

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

33

NUMA-aware Task Stealing

Thread idle

taskwait / barrier

1. Execute task

from local

queue

2. Try to steal

from random

victim (fallback)

Invoke task

task(s) in queue

queue empty

success

failed

2. Try to steal

from random

thread in same

NUMA domain

success

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

34

Preliminary analysis with STREAM (tasking version)

 Not much improvement when task created where data is located

 Otherwise: LLVM baseline clearly suffering

Sockets=8 Threads=64 N=231 double=16 GB Median of 15 runs

4.5 x
Compared to default

STREAM:

Parallel: + 1-2 %

Single: + 80 %

lower is better

Locality-Aware Scheduling in OpenMP

Overview of thesis topics and deep dive into OpenMP related scheduling improvements

Jannis Klinkenberg

2022-07-18

35

Overall performance & scalability – STREAM (single creator)

 Baseline stops scaling earlier

 Suffering from remote memory accesses

 Temporal mode more prone to stealing from foreign NUMA domain

N=231 double=16 GB Median of 15 runs

