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Process Placement Background
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The Topology is not Flat
The higher we have to go into the hierarchy the 
costly the data exchange
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Communication Pattern 

Shared memory system: 

• The amount of data shared by threads vary

Distributed memory system: 

• The amount of data exchanged between processes vary

The time spent to exchange data depends on the thread/process mapping 

5 10 15 20 25 30 35

5
10

15
20

25
30

35

MPICH2_BERTHA_RR_sp.C.36.mat

Sender rank

R
ec

ei
ve

r r
an

k

0
2

4
6

8



04/03/2021-5

Process Placement Problem
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TreeMatch
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Project started in 2009

Many contributors: 

• Guillaume Mercier (intégration dans Open MPI)

• François Tessier (LB, constraints)

• Adèle Viliermet (Batch scheduler)

• Pierre Celor (Partitionning algorithm)

• Fatima El-Akkary (SW eng., noise analysis)

• Thibaut Lausecker (Scotch Interface)

• Laurent Dutertre (Preliminary XP)



04/03/2021-8

TreeMatch Basic Algorithm

Communication matrix + Tree Topology 
= Process permutation

0 4 1 5 2 6 3 7

0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

C: communication matrix

0 1 2 3 4 5 6 7

0 1012 202 4

1012 0 4 202

202 4 0 1012

4 202 1012 0

Grouped matrix 0 1 2 3 4 5 6 7
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Dealing with Constraints
Problem: 
• Given a hierarchichal topology
• An already mapped application 

onto a subset of the nodes
• Reorder process while ensuring

only this subset is used
0 4 1 5 2 6 3 7

0 1 2 34 5

5 1 2 40 35 1 2 40 3
Solution: 

• Extend the communication matrix with dummy nodes
• Process the tree backward by doing k-partitionning
• Force each partition to have the right number of dummy nodes 
• Process recursively
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Use-Cases
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Use-Case 1: Process Mapping

MiniGhost Application (Stencil)
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Use-Case 2: Rank reordering

1. Gather communication pattern

2. Compute new mapping

3. Change communicator

4. Exchange data

5. Continue computation with new 
communicator

Case of Conjugate Gradient (CG –NAS).
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Topology-Aware Load Balancing

Before LB

P1 P2 P3 P4
P1 P2P3 P4

P1 P2 P3 P4

After topology-aware LB

P1 P2 P3 P4

After LB

Results

kNeighbor

Benchmarks application designed to simulate regular intensive
communication between processes
Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550) - PlaFRIM
Cluster
Particularly compared to RefineCommLB

Takes into account load and communication

Minimizes migrations
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Francois Tessier TreeMatch in Charm++ 14 / 19Implemented within Charm++
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Batch Scheduling

1. Gather pattern before submitting job

2. Use TreeMatch to allocate resources to the job

t0

n0

0 1

n1

2 3

n2

4 5

t1

n3

6 7

n4

8 9

n5

10 11

0 1 2 3 4 5 6 7

0 1 6 7 2 3 4 5

0 1 6 7 2 3 4 5

Plain SLURM
SLURM then
TreeMatch

treematch within
SLURM

Figure 1: Tree topology of 6 nodes of 2 processing
units with one unavailable nodes: n3

on n2 and 4-5 on n4. This is the best possible so-
lution once the resources have been allocated. How-
ever, group 2-3 communicates a lot with group 4-5.
With such an allocation, all the communications will
transit through the root of the topology, a costly so-
lution in terms of hops. However, a better outcome is
achievable if TreeMatch performs the resource allo-
cation. Given such a topology and the above a�nity
matrix, TreeMatch will allocate group 0-1 on n0,
group 6-7 on n1, group 2-3 on n4 and 4-5 on n5 since
there are constraints on node n3.

In this case, all the communication between group
2-3 and group 4-5 will take only 2 hops instead of 4
and therefore the communication cost is even more
reduced.

3 A Topology-Aware Resource

and Job Management System

3.1 Software

In this section, we detail the various software ele-
ments that we use to implement the work described
in this paper. First, we describe Slurm, our tar-
get RJMS. Then, we explain the method employed
to gather information about the application commu-
nication scheme (a.k.a. our a�nity matrix ). Last,
we give more specific information about the Tree-
Match algorithm and the constraints mapping ex-
tension we have implemented.

3.1.1 SLURM

We did implement a new topology-aware placement
algorithm within the open-source resource and job
management system Slurm [29]. Slurm performs
workload management on six of the ten most power-

full computers in the world as listed by the Top5001,
including the top 1 system, Tianhe-2, which features
3,120,000 computing cores.

Slurm is specifically designed for the scalability re-
quirements of state-of-the-art supercomputers. It is
based upon a centralized server daemon, slurmctld
also known as the controller, which communicates
with client daemons slurmd running on each com-
puting node. Users can request the controller for re-
sources to execute interactive or batch applications,
referred to as jobs. The controller dispatches the
jobs on the available resources, whether full nodes
or partial nodes, according to a configurable set of
rules. The Slurm controller also features a modular
architecture composed of plugins responsible for dif-
ferent actions and tasks such as: job prioritization,
resources selection, task placement or accounting.

The resource selection process within Slurm takes
place as part of the global job scheduling proce-
dure. In particular, this procedure makes use of the
plugin/select, which is responsible for allocating
the computing resources to the jobs. Other plug-
ins are used to facilitate and extend this procedure
such as plugin/topology which takes into account
the network topology of the cluster, the plugin/gres
which can extend the allocation to di↵erent generic
resources and the plugin/task which provides the
isolation and possible binding of tasks on the re-
sources.

There are various resource selection plugins within
Slurm that can take into account the specificities of
the underlying platforms’ architecture such as linear
and cons res. The select/linear plugin allows the
allocation of complete nodes for jobs, using simple
and scalable best-fit algorithms, however, the small-
est allocatable unit is the node which is quite limiting
in the case of new multicore and manycore architec-
tures. The select/cons res plugin is ideal for this
type of architectures where nodes are viewed as col-
lections of consumable resources (such as cores and
memory). In this plugin, nodes can be used in an
exclusive or in a shared mode where a job may al-
locate its own set of resources di↵erently than other
jobs using the same node. The algorithms within the
cons res plugin are also scalable, featuring best-fit
placement of jobs but they are more complex than
select/linear since a finer granularity of allocat-
able resources is taken into account. One of the first
version of the select/cons res plugin is described
in [2].

1http://top500.org/lists/2015/11/
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TopoMatch
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TreeMatch is limted to Tree Topology
Scotch (https://gitlab.inria.fr/scotch/scotch):  a software package for 

• graph and mesh/hypergraph partitioning, 

• graph clustering

• sparse matrix ordering

Lift this limitation: 

• Scotch already used in TreeMatch: core graph partitionning

• Scotch manage different type of architectures
• Decomposition-defined (deco)
• Specific (Mesh, hypercube, tleaf), etc.
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Topomatch: Managing Scotch in 
TreeMatch

Same interface and same set of features:

• If standard tree topology : use TreeMatch

• If other topologies : use Scotch 

Important features: 

• Any kind of topology (including Hwloc)

• Manage constraints

• Manage oversubscribing

• Different evaluation metric (Hope-Byte, Sum-Com, Max-Com)

• Optional exhaustive search

• Fast mapping (multithreaded)

• Fast I/O

• Nice verbosity management
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Using Scotch
With constraints
C : constaint
T : The Scotch topology target Input: 
m : The communication matrix 

SCOTCH_archInit(sub_arch);
SCOTCH_archSub(sub_arch T, |C|, C);
local_sol ← scotch_partitioning(sub_arch, m); 

// Renumber solution to change frame of 
reference;
foreach i in 0..|C| − 1 do

global_sol[i] ← C[local_sol[i]]; 

Without constaints
T : The Scotch topology target
m :  The communication matrix 

graph ← com_mat_to_scotch_graph(m, |T|×
sparse_factor); 

strat ← set_scotch_strategy(SCOTCH_STRATBALANCE); 
partition ← SCOTCH_ComputeMapping (graph, T, strat); 
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Bucket grouping (group of size 2)
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Bucket grouping (group of size 2)
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Algorithm
• Sort bucket 1
• Find independent group 

stating from largest 
values of bucket 1

• If not enough groups : 
sort bucket 2

• Etc.

Gain need to sort a few 
buckets instead of all values
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Bucket grouping timings

Number of Partial sorting Full sorting
processes nb buckets sorted elements number of

buckets used
init time sort time grouping time init time sort time total time

4096 8 10251 1 0.14 0.004 0.16 0.11 7.55 7.68
8182 8 107234 1 0.56 0.04 0.62 0.45 26.08 36.60

16000 8 862567 1 2.41 0.48 2.99 5.32 1144.37 51.94
32768 16 22849 1 45.05 0.17 50.96 57.16 833.57 942.26

TABLE I: Bucket grouping timing. Partial sorting vs. full sorting comparison on an Intel Xeon CPU E5-2680 at 2.50GHz.

pi = sample[2i], 1  i  k � 1 and pk = 0. Now, groups
with affinity values between pi�1 and pi are assigned to bucket
i 2 [1, k]. Then, we start from the first bucket (the one with the
highest affinities), we sort it, and we consider each group in
decreasing affinity5. Using this order, a new group is selected
if none of its processes is in group that have already been
selected: the group is independent of all the previously selected
groups. The fact that, for computing the pivots, the samples,
once sorted are not taken uniformly but using a geometric
function has very strong advantages. The first bucket contains
few but high values. Sorting such bucket is very fast and
hence finding the independent groups within it is also very
fast. Moreover, the last buckets contain a lot of small values.
However, the process of selecting groups usually stops before
considering these buckets (hence they are not sorted) as each
process is put in a group early with the first buckets. This is
what is highlighted in Table I. In this table we see that in all
the cases we only had to build and sort the groups of the first
bucket which is much faster than building and sorting all the
groups (almost 19 times faster for the 32 768 processes case).

If the arity is lower than 5 we have implemented a fast
grouping strategy (line 7 of Algorithm 1). It consists, for all
the groups to be constructed, to greedily built 10 of them and
choose the best in terms of communication reduction.

If the arity is strictly greater than 5 we use a k-way
partitioning strategy (line 9 of Algorithm 1) that uses either
Scotch or a greedy partitioner that minimizes the cut.

When the total number of possible groups is lower than
T , we use a different method to compute the grouping (from
line 11 to line 18 of Algorithm 1). First, we compute a pack
mapping that consists in mapping process to the leftmost
leaves of the tree. This gives an initial solution which is often
the default solution of the process mapping. Then, we try to
improve this solution using three strategies that use the same
pattern. We built all the possible groups we sort these groups,
and we select the first compatible groups according to the
order: two groups are compatible if they do not share the same
processes. As shown in [22], the graph of compatible groups
is a Kneser graph. Hence, the goal of the try improve sol
procedure is to find a weighted maximum independent set of
the complement of such a graph: we look at the edges of
this graph using the order given by the sort procedure, and
we use the property of this particular kind the Kneser graph
that states that every maximal independent set is maximum,

5The laziness of this algorithm means that we will process the remaining
buckets only if we have not already selected the m groups

Algorithm 1: The Grouping Algorithm
Input: a// arity of the considered level of

the tree
Input: n // number of processes (or groups) to

map
Input: T // Threshold (30 000 by default)

1 number of groups  
�
n
a

�
// # of candidate groups;

2 if number of groups > T then
3 if a = 2 then
4 sol  bucket grouping();
5 else
6 if a  5 then
7 sol  fast grouping();
8 else
9 sol  k partition grouping();

10 else
11 sol  pack mapping();
12 groups  enumerate all groups() // build all

candidate groups;
13 groups  sort(groups, group list asc);
14 sol  try improve sol(sol, groups);
15 groups  sort(groups, group list dsc);
16 sol  try improve sol(sol, groups);
17 groups  sort(groups, weighted degree);
18 sol  try improve sol(sol, groups);
19 return sol;

meaning that when we cannot increase the number of nodes
in the independent set we have a maximum set [22]. The
three orders we use are: first groups with increasing amount
of communication outside a group then, decreasing amount
of communication. The last order is decreasing weighted
degree: the average amount of communication outside of all
incompatible groups.

In conclusion, Algorithm 1 is an adaptive algorithm that
allows performing an adaptive grouping depending on the
difficulty of the problem. If the problem is very complex (i.e.
the number of groups is very large), the algorithm computes
a grouping very fast and as we go up in the tree, the problem
becomes simpler and the algorithm compute a better and more
involved grouping. This strategy has two advantages. First, it
allows computing an overall solution very fast and second it
performs the optimized grouping at the top of the tree which
is the part that impacts the most the quality of the overall
solution. The user has the possibility to change the value of
T . If it increases T , faster but less precise algorithm will be
used on the contrary if mapping time is less important than
quality, it is possible to reduce the value of T .
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Results
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Mapping time
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Sparse factor : mapping time

Dense communication matrix : too many information for Scotch? 

Sparcify (keep only largest value) the input communication matrix.
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Sparse factor : mapping quality
Emulation : MPI_Alltoallv to execute random communication pattern in function of 
the sparse factor.

Conclusion : safe to use SF = 0.5 (default TopoMatch Value)
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TopoMatch + Scotch: Plafrim 2 (Miriel) results



04/03/2021-25

Impact of the noise

Difficult to have the exact value of the communication matrix. 

Four types of noise:

Negative entries are truncated to 0. 

(a) RR (b) TM (c) SF=0

Fig. 3: Communication Time Emulation Comparison of the Scotch Mapping with different sparse factors and Against Different
References for Various Number of MPI Processes on a Fat Tree Machine (Plafrim 2).

Fig. 4: Gain over the Round Robin Placement of TOPOMATCH
for the MiniGhost Application for Different Number of Dif-
ferent variables, Stencil Shape and Different Communication
Method.

1) M̃  M +M ⇤N (0, k) (Gaussian Multiplicative),
2) M̃  M +N (0, k) (Gaussian Additive),
3) M̃  M +M ⇤ U(�k, k) (Uniform Multiplicative),
4) M̃  M + U(�k, k) (Uniform Additive).

Where N (0, k) is a random variable that follows a normal
distribution of mean 0 and standard deviation of k and
U(�k, k) is a random variable that follows a continuous
uniform distribution in [�k, k]. Once the noise has been
added, negative entries in the noisy communication matrix are
truncated to 0.

In Fig. 5 we show the result of experiments on the Plafrim
2 machine and the MiniGhost application with 48 or 96 MPI
processes (2 or 4 nodes) and the 4 kinds of noise for different
MiniGhost applications. On each part of the figure, we plot 3
curves. The ’RND-MEAN’ curve corresponds to the average

runtime of random mappings. The ’RR-MEAN’ corresponds
to the standard round-robin mapping. These two mappings do
not depend on the value of k as they do not use the communi-
cation matrix. The ’TM-MEAN’ mapping corresponds to the
mapping computed by TOPOMATCH once we have applied
the noise using the value k which is represented on the x-
axis. Hence, when k is 0, we have the standard TOPOMATCH
mapping and the greater k the more noise is added to the input
communication matrix. We run several experiments for each
value of k. The number is such that the precision of the 95%
confidence interval (computed with the student t test) is less
than 10% (i.e. the 95% confidence interval width divided by
the mean is less than 0.1). The 95% confidence interval is
displayed as a shaded ribbon. The trend of the curves behaves
as expected. When k is small the mapping is efficient and as k
increases, the performance decreases up to the point it reaches
performance close to a complete random mapping.

More precisely, we see that for the case of multiplicative
noise we obtain similar results. These correspond to a similar
model of noise where only non-zero values are modified. We
see that the normal case is more sensitive to the small value
of k this is due to the fact that for N (0, k) 68.3% of the
values are in [�k, k] and 95.4% are in [�2k, 2k]. This means
that a significant portion of the values are increased by a
larger factor in the case of the normal distribution than for
the uniform distribution. However, when the noise is very
large many values are truncated to zero and, in this case,
the communication matrix has too little information to guide
TOPOMATCH. If TOPOMATCH does not have relevant input
from the communication matrix, it falls back to the round-
robin strategy. This why we see that in the case of multiplica-
tive noise: the performance degradation rarely reaches the full
random case. On the contrary, for the additive case all the
values are affected as the performance degrades only for large
value of k : the impact is seen only when k is close to the
largest values of the input matrix. Moreover, when k is very
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Impact of noise

Noise increase: TM perf degrades 
-> RR -> Random

48 node : TM similar to RR for 
small k. 

Uniform Additive Uniform Multiplicative

Gaussian Additive Gaussian Multiplicative
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Fig. 5: Impact of the Noise of the Input Communication Matrix on the Performance of TOPOMATCH for the MiniGhost
application. The different cases are presented by number of variables, size of the stencil (nx, ny, nz), number of processes,
type of stencil and type of communication (see [2] for more details).

large, the matrix is highly random and the performances are
similar to random placements.

We also see that in the case of 48 processes (Fig. 5d), there
is no difference between the round-robin case and the TOPO-
MATCH case. This is due to the fact that for 48 processes, we
only use two nodes and the difference between round-robin
and TOPOMATCH is not visible as most communications are
done within a node.

VI. CONCLUSION

Process mapping is an important algorithmic problem that
enables to optimize the way an application is launched and
executed. In this paper we have presented TOPOMATCH a
tool we are developing for 10 years since we initiated the

TreeMatch project. TOPOMATCH is a versatile and generic
tool to address the process mapping problem on any kind of
topologies. It features an adaptive set of algorithms to handle
very large problem and to provide trade-off between quality
and speed of the mapping. It manages constraints and handles
over- or under-subscribing of the resources. Several use-cases
have been presented as well as several experiments to study
the impact of the ”sparsification” as well as the sensibility of
the noise on the input target matrix. Results show that keeping
values greater than half of the largest value is sufficient to get
good performances and that, as soon as the noise is not on
the same order of magnitude than the largest data of the input
matrix the mapping strategy provides similar results as the
bottom-line case.

MiniGhost: Plafrim 2 (Miriel) results
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Conclusion

• Process placement helps in optimizing communication cost of parallel 
applications

• Useful in many context

• Main abstraction: communication matrix

• TopoMatch: generic tool for arbitrary topologies



Thank you!
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