
Scalable Load Balancing
Distributed Algorithms & the Packing Model

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

Introduction
High Performance Computing applications suffer from Load Imbalance

● Unpredictable applications, dynamic domain decompositions…
● Workload is not evenly distributed in a Parallel Machine

A solution to this issue is periodically moving Jobs among resources

Dynamic Load Balancing

Sierra supercomputer in the Lawrence Livermore National Lab (US) 2

Introduction

Scalability is important!

As machines and applications grow
larger, load balancing solutions
must be able to scale along.

IBM Summit supercomputer at the Oak Ridge National Lab (US) 3

Presentation
Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

1. Introduction
2. Background (Algorithms & HPC)

3. The Packing Model
4. Load Balancing Algorithms
5. Experimental Evaluation
6. Work in Progress

4

Scheduling for Parallel Machines
Let M be the set of machines available in a Parallel Machine.

Let J be the ordered list of jobs to be computed in the Parallel
Machine.

Assume that each job j in J, is mapped to some machine Mi in M.

5

Scheduling for Parallel Machines
The cost of a job j is given by the time takes on CPU, noted by Cj.

The cost of computing all jobs in a machine Mi, is given by CMi.

Alas, the overall cost of a parallel computation is the maximum
among all machines:

Cmax = max(CMi for each Mi in M)

6

Scheduling for Parallel Machines

7

M4

M3

M2

M1

J2

J10

J6

J9

J5

J8

J4

J7 J3

J1
The cost of computation in a machine
is given by the sum of the costs of its
jobs:

CM3= CJ10+ CJ5

Scheduling for Parallel Machines

8

M4

M3

M2

M1

J2

J10

J6

J9

J5

J8

J4

J7 J3

J1
The application makespan, or the
time it takes to finish, is given by the
machine with maximum cost:

Cmax = max (CM(1, .., 4))

Premises
The objective is to minimize application makespan (the List
Scheduling problem):

P || Cmax : The burden of computation is divided, but the
machine that finishes its work last defines the overall cost of
computation.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer. 9

Premises for Distributed Load Balancing
● We assume that jobs are already allocated to machines;
● We want to remap the jobs that make the machine

overloaded;
● Choosing what jobs to migrate and where to should be

done in parallel;
● We need fast and useful decisions.

○ They don’t have to be greedy.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer. 10

Distributed Load Balancing

...

M1 Mi
...

......

Jobs Machines

Assume that each job is
mapped to some machine.

Each machine decides which
jobs they want to move.

11

Distributed Scheduling
The load of a machine is given by the
sum of the loads of its jobs.

M
ac

hi
ne

 lo
ad

Max

Min 12

Distributed Scheduling
Overloaded machines will have
stimulus to migrate their jobs!

M
ac

hi
ne

 lo
ad

Max

Min 13

Distributed Scheduling
Underloaded machines will have
stimulus to receive jobs!

M
ac

hi
ne

 lo
ad

Max

Min 14

Distributed Scheduling
Leading to an overall balanced state of
the system

M
ac

hi
ne

 lo
ad

Max

Min 15

Presentation
Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

1. Introduction
2. Background (Algorithms & HPC)

3. The Packing Model
4. Load Balancing Algorithms
5. Experimental Evaluation
6. Work in Progress

16

Complex Decision Making
Parallel applications are overdecomposed to overlap
computing and communication as well as having more
scheduling options.

This means that |J| >> |M|; which leads to a high complexity
when we have to account for every job in J in our algorithms.

17

Domain (Over-) Decomposition

0

2 3

1
00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

Applications may be spatially decomposed into multiple cells, which may be
executed in parallel with periodical synchronizations

18

Parallel Iterative Applications

19

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

M4

M3

M2

M1

J00

J12

J23

J33

J11

J31

J01

J20 J21

J03 J02

J13 J10

J22

J30 J32

J00

J12

J23

J33

J11

J31

J01

J20 J21

J03 J02

J13 J10

J22

J30 J32

The Packing Model
Discretize the problem of load balancing.

Make it into a balls into bins problem.

* non-uniform tasks * “uniform” packs of tasks
20

3

8

n

1
4

Packs of Tasks

Task of cost n

10 10

3

4

8

1
3

10

10

6

6

Presentation
Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

1. Introduction
2. Background (Algorithms & HPC)

3. The Packing Model
4. Load Balancing Algorithms
5. Experimental Evaluation
6. Work in Progress

21

PackDrop:

Sender Initiated
Load Balancing

22

Initially, our algorithm uses a Gossip
Protocol to spread load information.

This way overloaded and underloaded
machines have a broad view of the state
of other machines.

PackDrop - Sender Initiated
Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced: ...
b. ...

23

Overloaded machines will try to send
their workload away their underloaded
counterparts.

1) Information on who is overloaded
or underloaded is spread by a
Gossip Protocol.

2) Overloaded and underloaded
machines will portray different
behaviors.

PackDrop - Sender Initiated
Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced: ...
b. ...

24

PackDrop - Sender Initiated
i) Initially, overloaded machines will
remove the tasks that make themselves
overloaded following a Shortest
Processing Time policy (increasing order
of load).

ii) These tasks will be divided into
approximately uniform packs, which will
be migrated to other machines.

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced:
i. Remove tasks in

increasing order of
load

ii. Create uniform packs
with removed tasks

b. ...

25

PackDrop - Sender Initiated
b) Then, machines will randomly choose
underloaded targets to receive these
packs.

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced ...
b. Send packs uniformly

at random to
underloaded machines

3. Else ...

26

PackDrop - Sender Initiated
3) Receiving or not a pack is decided
with a three-way handshake protocol.

a) Underloaded or balanced
resources will only accept a pack if
this pack does not lead them to an
overloaded state.

b) If everything is ok, the pack will be
received and its local load updated.

Simplified algorithm

1. Gossip load information
2. If overloaded …
3. Else: When receive a pack:

a. Check if accepting the
pack will make me
overloaded.

b. No: receive the pack
c. Yes: ...

27

PackDrop - Sender Initiated
c) Otherwise, the pack will be rejected

d) At this time the original owner of the
pack will choose (uniformly at random)
another target for its remaining load.

Simplified algorithm

1. Gossip load information
2. If overloaded …
3. Else: When receive a pack:

a. Check ...
b. No: ...
c. Yes: Reject pack.
d. Its owner will look for

another receiver

28

PackSteal:

Receiver Initiated
Load Balancing

29

PackSteal - Receiver Initiated
PackSteal uses a “piggybacking” message
exchanging protocol.

Information on Machine load is passed
along on every message.

Simplified algorithm

1. Reduce Average Load
2. If overloaded:

a. Send a HINT message
to a local neighbor

3. ...

30

PackSteal - Receiver Initiated
2 a) The HINT message will stimulate
other Machines to STEAL its load.

Simplified algorithm

1. Reduce Average Load
2. If overloaded:

a. Send a HINT message
to a local neighbor

3. ...

31

PackSteal - Receiver Initiated
3 a) The STEAL message will require the
Machine to send load to a remote
Machine.

When a machine cannot send load back to
a STEAL, it will forward the message,
sending a STEAL to another machine as if
it was sent by the original thief.

Simplified algorithm

1. Reduce Average Load
2. If overloaded: …
3. If underloaded:

a. Send a STEAL msg to a
random known
machine*

* Target chosen at random if there is no
known machine, OR if known machines
are denying steal attempts 32

Presentation
Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

1. Introduction
2. Background (Algorithms & HPC)

3. The Packing Model
4. Load Balancing Algorithms
5. Experimental Evaluation
6. Work in Progress

33

Experimental Evaluation
LB Test - Synthetic Benchmark
for Load Balancing evaluation in
Charm++.

Measuring impacts of:

● Communication patterns
● LB Frequency
● Number of Chares

On a NUMA machine with 40
cores and 128GB of RAM.

34

300 Iterations of Synthetic Load

35

300 Iterations of Synthetic Load

36

Experimental Evaluation
LeanMD - Molecular Dynamics
Benchmark for Performance
Evaluation in Charm++.

Measuring impacts of:

● Simulation size

On Irene supercomputer with
960 cores in total.

Communication between nodes
using MPI.

37

300 Iterations of MD Load

38

Presentation
Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

1. Introduction
2. Background (Algorithms & HPC)

3. The Packing Model
4. Load Balancing Algorithms
5. Experimental Evaluation
6. Work in Progress

39

Work in Progress
Complete discretization of application
workload

Implementation of well-behaved
distributed load balancing algorithms
for discrete workloads in the HPC
context

● Selfish Load Balancing Games
● Random Matching Algorithms
● Other reinforcement learning

algorithms

Communication-aware discretization of
application workload

● Graph partitioning
● Migration cost estimation

40

Scalable Load Balancing
Distributed Algorithms & the Packing Model

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

Extra Turns
More Graphs for Curious Minds

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

Preliminary observation of convergence time in Distributed Selfish Load Balancing

43

Varying LB frequency

44

Cumulative LB Time

45

300 Iterations of MD Load

46

