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Introduction
High Performance Computing applications suffer from Load Imbalance

● Unpredictable applications, dynamic domain decompositions…
● Workload is not evenly distributed in a Parallel Machine

A solution to this issue is periodically moving Jobs among resources 

Dynamic Load Balancing

Sierra supercomputer in the Lawrence Livermore National Lab (US) 2



Introduction

Scalability is important!

As machines and applications grow 
larger, load balancing solutions 
must be able to scale along.

IBM Summit supercomputer at the Oak Ridge National Lab (US) 3
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Scheduling for Parallel Machines
Let M be the set of machines available in a Parallel Machine.

Let J be the ordered list of jobs to be computed in the Parallel 
Machine.

Assume that each job j in J, is mapped to some machine Mi in M.
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Scheduling for Parallel Machines
The cost of a job j is given by the time takes on CPU, noted by Cj.

The cost of computing all jobs in a machine Mi, is given by CMi.

Alas, the overall cost of a parallel computation is the maximum 
among all machines:

Cmax = max(CMi for each Mi in M)
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Scheduling for Parallel Machines
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The cost of computation in a machine 
is given by the sum of the costs of its 
jobs:

CM3= CJ10+ CJ5



Scheduling for Parallel Machines
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The application makespan, or the 
time it takes to finish, is given by the 
machine with maximum cost:

Cmax = max (CM(1, .., 4))



Premises
The objective is to minimize application makespan (the List 
Scheduling problem):

P || Cmax : The burden of computation is divided, but the 
machine that finishes its work last defines the overall cost of 
computation.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer. 9



Premises for Distributed Load Balancing
● We assume that jobs are already allocated to machines;
● We want to remap the jobs that make the machine 

overloaded;
● Choosing what jobs to migrate and where to should be 

done in parallel;
● We need fast and useful decisions. 

○ They don’t have to be greedy.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer. 10



Distributed Load Balancing
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Jobs Machines

Assume that each job is 
mapped to some machine.

Each machine decides which 
jobs they want to move.
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Distributed Scheduling
The load of a machine is given by the 
sum of the loads of its jobs.

M
ac

hi
ne

 lo
ad

Max

Min 12



Distributed Scheduling
Overloaded machines will have 
stimulus to migrate their jobs!
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Distributed Scheduling
Underloaded machines will have 
stimulus to receive jobs!
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Distributed Scheduling
Leading to an overall balanced state of 
the system
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Complex Decision Making
Parallel applications are overdecomposed to overlap 
computing and communication as well as having more 
scheduling options.

This means that |J| >> |M|; which leads to a high complexity 
when we have to account for every job in J in our algorithms.
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Domain (Over-) Decomposition
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Applications may be spatially decomposed into multiple cells, which may be 
executed in parallel with periodical synchronizations
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Parallel Iterative Applications
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The Packing Model
Discretize the problem of load balancing. 

Make it into a balls into bins problem.

* non-uniform tasks * “uniform” packs of tasks
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PackDrop: 

Sender Initiated 
Load Balancing
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Initially, our algorithm uses a Gossip 
Protocol to spread load information. 

This way overloaded and underloaded 
machines have a broad view of the state 
of other machines.

PackDrop - Sender Initiated
Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced: ...
b. ...
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Overloaded machines will try to send 
their workload away their underloaded 
counterparts.

1) Information on who is overloaded 
or underloaded is spread by a 
Gossip Protocol.

2) Overloaded and underloaded 
machines will portray different 
behaviors.

PackDrop - Sender Initiated
Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced: ...
b. ...
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PackDrop - Sender Initiated
i) Initially, overloaded machines will 
remove the tasks that make themselves 
overloaded following a Shortest 
Processing Time policy (increasing order 
of load).

ii) These tasks will be divided into 
approximately uniform packs, which will 
be migrated to other machines.

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced:
i. Remove tasks in 

increasing order of 
load

ii. Create uniform packs 
with removed tasks

b. ...
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PackDrop - Sender Initiated
b) Then, machines will randomly choose 
underloaded targets to receive these 
packs.

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced ...
b. Send packs uniformly 

at random to 
underloaded machines

3. Else ...
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PackDrop - Sender Initiated
3) Receiving or not a pack is decided 
with a three-way handshake protocol.

a) Underloaded or balanced 
resources will only accept a pack if 
this pack does not lead them to an 
overloaded state.

b) If everything is ok, the pack will be 
received and its local load updated.

Simplified algorithm

1. Gossip load information
2. If overloaded …
3. Else: When receive a pack:

a. Check if accepting the 
pack will make me 
overloaded.

b. No: receive the pack
c. Yes: ... 
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PackDrop - Sender Initiated
c) Otherwise, the pack will be rejected

d) At this time the original owner of the 
pack will choose (uniformly at random) 
another target for its remaining load.

Simplified algorithm

1. Gossip load information
2. If overloaded …
3. Else: When receive a pack:

a. Check ...
b. No: ...
c. Yes: Reject pack.
d. Its owner will look for 

another receiver
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PackSteal: 

Receiver Initiated 
Load Balancing
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PackSteal - Receiver Initiated
PackSteal uses a “piggybacking” message 
exchanging protocol.

Information on Machine load is passed 
along on every message.

Simplified algorithm

1. Reduce Average Load
2. If overloaded:

a. Send a HINT message 
to a local neighbor

3. ...
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PackSteal - Receiver Initiated
2 a) The HINT message will stimulate 
other Machines to STEAL its load.

Simplified algorithm

1. Reduce Average Load
2. If overloaded:

a. Send a HINT message 
to a local neighbor

3. ...
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PackSteal - Receiver Initiated
3 a) The STEAL message will require the 
Machine to send load to a remote 
Machine.

When a machine cannot send load back to 
a STEAL, it will forward the message, 
sending a STEAL to another machine as if 
it was sent by the original thief.

Simplified algorithm

1. Reduce Average Load
2. If overloaded: …
3. If underloaded:

a. Send a STEAL msg to a 
random known 
machine*

* Target chosen at random if there is no 
known machine, OR if known machines 
are denying steal attempts 32
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Experimental Evaluation
LB Test - Synthetic Benchmark 
for Load Balancing evaluation in 
Charm++.

Measuring impacts of:

● Communication patterns
● LB Frequency
● Number of Chares

On a NUMA machine with 40 
cores and 128GB of RAM.
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300 Iterations of Synthetic Load
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300 Iterations of Synthetic Load
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Experimental Evaluation
LeanMD - Molecular Dynamics 
Benchmark for Performance 
Evaluation in Charm++.

Measuring impacts of:

● Simulation size

On Irene supercomputer with 
960 cores in total.

Communication between nodes 
using MPI.
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300 Iterations of MD Load
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Work in Progress
Complete discretization of application 
workload

Implementation of well-behaved 
distributed load balancing algorithms 
for discrete workloads in the HPC 
context

● Selfish Load Balancing Games
● Random Matching Algorithms
● Other reinforcement learning 

algorithms

Communication-aware discretization of 
application workload

● Graph partitioning
● Migration cost estimation
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Preliminary observation of convergence time in Distributed Selfish Load Balancing
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Varying LB frequency
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Cumulative LB Time
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300 Iterations of MD Load
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