Scalable Load Balancing
Distributed Algorithms & the Packing Model

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

r
] -
»)
)
o
i

Pos-Graduacao
CAPES mHBm UFSC

UNIVERSITE
cirs <PArels université

PARIS-SACLAY

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

o T

Introduction
| I - — .
High Performan&ce Cbm\pufing.applicaﬁons suffer from Load;lmbz‘[a ance

2 VY '\,

= b

o Unpredictable applications, dymamic-domain décomposifions

e Workloadfis not evenly distributediin a Parallel Machiné /

/
|
/ |
|

|

Vil

dicall

S

Sierra supercomputer in the Lawrence Livermore National Lab (US)

Introduction

IBM Summit supercomputer at the Oak Ridge National Lab (US) 3

Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

o0k WN

Introduction

Background (Algorithms & HPC)
The Packing Model

Load Balancing Algorithms
Experimental Evaluation
Work in Progress

Scheduling for Parallel Machines

Let M be the set of machines available in a Parallel Machine.

Let J be the ordered list of jobs to be computed in the Parallel
Machine.

Assume that each jobjin J, is mapped to some machine M. in M.

Scheduling for Parallel Machines

The cost of a job j is given by the time takes on CPU, noted by CJ..
The cost of computing all jobs in a machine M, is given by C_.

Alas, the overall cost of a parallel computation is the maximum
among all machines:

C__ =max(C,, foreach M in M)

ma

Scheduling for Parallel Machines

The cost of computation in a machine
) Jy J; is given by the sum of the costs of its
jobs:
J J
10 5 =
CM3 CJ1O+ CJ5
Jg)5 15
Jg Js

Scheduling for Par?llel Machines

The application makespan, or the
time it takes to finish, is given by the
machine with maximum cost:

@

= max (C

max M(1, .., 4))

Premises

The objective is to minimize application makespan (the List
Scheduling problem):

P [l C_: The burden of computation is divided, but the
machine that finishes its work last defines the overall cost of
computation.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer.

Premises for Distributed Load Balancing

e We assume that jobs are already allocated to machines;

e We want to remap the jobs that make the machine
overloaded,

e Choosing what jobs to migrate and where to should be
done in parallel,

e We need fast and useful decisions.
o They don’t have to be greedy.

Scheduling notation from: BRUCKER, P., “Scheduling Algorithms”, 5th Ed., Springer. 10

Distributed Load Balancing

Assume that each job is
mapped to some machine.

Each machine decides which
jobs they want to move.

Machines

11

Distributed Scheduling

The load of a machine is given by the
sum of the loads of its jobs.

Max

Machine load

Min 12

Distributed Scheduling

Overloaded machines will have
stimulus to migrate their jobs!

Max

Machine load

Min 13

Distributed Scheduling

Underloaded machines will have
stimulus to receive jobs!

H = =
LI

Max

Machine load

Min 14

Distributed Scheduling

Leading to an overall balanced state of
the system

Machine load

Max

Min 15

Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

O 01~ WN

Introduction

Background (Algorithms & HPC)
The Packing Model

Load Balancing Algorithms
Experimental Evaluation
Work in Progress

16

Complex Decision Making

Parallel applications are overdecomposed to overlap
computing and communication as well as having more
scheduling options.

This means that |[J| >> |M|; which leads to a high complexity
when we have to account for every job in J in our algorithms.

17

Domain (Over-) Decomposition

Applications may be spatially decomposed into multiple cells, which may be

executed in parallel with periodical synchronizations

00 {0110 | 11
0 1

02 {03 |12 | 13

20 [21|30 | 31
2 3

22 | 23 | 32 | 33

18

Parallel Iterative Applications

00

01

10

11

02

03

12

13

20

21

30

31

22

23

32

33

M,

JOO J01 J03 J02 | J00 JOl J03 J02
J12 Jll J13 10 “ J12 Jll J13 10
J23 J20 J21 J22 J23 J20 J21 J22

J33 J3 1 J3O J32 | J33 J3 1 J30 J32

19

Task of cost n

The Packing Model Q Packs of Tasks

Discretize the problem of load balancing.

Make it into a balls into bins problem.

Ell

* non-uniform tasks * “uniform” packs of tasks

20

Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

O Ul Ad WN

Introduction

Background (Algorithms & HPC)
The Packing Model

Load Balancing Algorithms
Experimental Evaluation
Work in Progress

21

PackDrop:

Sender Initiated
Load Balancing

PackDrop - Sender Initiated

Simplified algorithm Initially, our algorithm uses a Gossip

. Protocol to spread load information.
1. Gossip load information P

2. If overloaded:
a. Until balanced: ...

bh. .. This way overloaded and underloaded
machines have a broad view of the state
of other machines.

23

PackDrop - Sender Initiated

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced: ...

h.

Overloaded machines will try to send
their workload away their underloaded
counterparts.

1) Information on who is overloaded
or underloaded is spread by a
Gossip Protocol.

2) Overloaded and underloaded
machines will portray different
behaviors.

24

PackDrop - Sender Initiated

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced:

i. Remove tasks in
increasing order of
load

ii. Create uniform packs
with removed tasks

i) Initially, overloaded machines will
remove the tasks that make themselves
overloaded following a Shortest
Processing Time policy (increasing order
of load).

ii) These tasks will be divided into
approximately uniform packs, which will
be migrated to other machines.

25

PackDrop - Sender Initiated

Simplified algorithm

1. Gossip load information
2. If overloaded:

a. Until balanced ...

b. Send packs uniformly
at random to
underloaded machines

3. Else..

b) Then, machines will randomly choose
underloaded targets to receive these
packs.

26

PackDrop - Sender Initiated

Simplified algorithm 3) Receiving or not a pack is decided

ith a three- handshak t .
1. Gossip load information WITR a threc-way nanasid«e protoco

2. If overloaded ..
3. Else: When receive a pack:
a. Check if accepting the
pack will make me

a) Underloaded or balanced
resources will only accept a pack if
this pack does not lead them to an

overloaded. overloaded state.
b. No: receive the pack b) If everything is ok, the pack will be
c. Yes:.. received and its local load updated.

27

PackDrop - Sender Initiated

Simplified algorithm

1. Gossip load information

2. If overloaded ..

3. Else: When receive a pack:
Check ...

No: ...

Yes: Reject pack.

Its owner will look for
another receiver

B0 Ty

c) Otherwise, the pack will be rejected

d) At this time the original owner of the
pack will choose (uniformly at random)
another target for its remaining load.

28

PackSteal:

Receiver Initiated
Load Balancing

PackSteal - Receiver Initiated

Simplified algorithm

1. Reduce Average Load
2. If overloaded:
a. Send a HINT message
to a local neighbor

PackSteal uses a “piggybacking” message
exchanging protocol.

Information on Machine load is passed
along on every message.

30

PackSteal - Receiver Initiated

Simplified algorithm

1. Reduce Average Load
2. If overloaded:
a. Send a HINT message
to a local neighbor

2 a) The HINT message will stimulate
other Machines to STEAL its load.

31

PackSteal - Receiver Initiated

Simplified algorithm

1. Reduce Average Load
2. If overloaded: ..
3. If underloaded:
a. Send a STEAL msg to a
random known
machine*

* Target chosen at random if there is no
known machine, OR if known machines
are denying steal attempts

3 a) The STEAL message will require the
Machine to send load to a remote
Machine.

When a machine cannot send load back to
a STEAL, it will forward the message,
sending a STEAL to another machine as if
it was sent by the original thief.

32

Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

OO0l & WN

Introduction

Background (Algorithms & HPC)
The Packing Model

Load Balancing Algorithms
Experimental Evaluation
Work in Progress

33

Experimental Evaluation

LB Test - Synthetic Benchmark | Data members

for Load Balancing evaluation in | | Owned objects Entry
l method

Charm++. '

Measuring impacts of:

Chare (C++ object) Indexed collection
(User view)

e Communication patterns
e LB Frequency %\»
e Number of Chares

On a NUMA machine with 40] 3 :D \ﬁ
cores and 128GB of RAM. 3. . L &8 |

System view

rtesy of Abhinav Bhatele | www.bhatele.org

Image cou

g
w
N

—~
()

Application time (

300 Iterations of Synthetic Load

12000 tasks
180
160 || PackSteal O | T7 ,,,,,,,,,,,, JE—
PackDrop &z §

140 [| Distributed To [G NN .

Greedy 22| RO N AN | |
120 | Refine x|
100 || SyncDist zza _

Dummy —3
80 - .
o N B < N7 RENVN) |- —
40 AN 1 PRI INNZZA | RSN N NNNZA | ARSI |
s |

0
Ring 2D Mesh 3D Mesh Random Graph
Network topology

35

300 Iterations of Synthetic Load

24000 tasks
180
160 PackSteal =1 PackDrop &3 Distributed Greedy Refine =3 SyncDist 72 Dummy |
@ 140 [R -
O 1290 L. RS NN Y NN\l R NNV _
£ 120
c 100 .
= 80 -
Q
S 60 [IOKEAINN ANl e OSSN NN 1 RRSIRSIN N NN | .
Q
<< 40 | dPOBEINNN NN 1 BSARSINNL AN e LOCORRRRIN SN AN | —
20 -
0
Ring 2D Mesh 3D Mesh
Network topology

36

Experimental Evaluation

LeanMD - Molecular Dynamics
Benchmark for Performance
Evaluation in Charm++.

Measuring impacts of:
e Simulation size

On Irene supercomputer with
960 cores in total.

Communication between nodes
using MPI.

37

300 Iterations of MD Load

LeanMD execution times with different LB algorithms (size 120) LeanMD execution times with different LB algorithms (size 160)

851 150 *

80 — 140

~ T
130

~
[9;]

120

~
o

110

100+

[e)]
o

Total execution time (s)
a
>
I
Total execution time (s)

90

80 —|—

50 ; *

70
45

55

Baseline PackDrop PackSteal Distributed Greedy Refine Baseline PackDrop PackSteal Distributed — Greedy Refine
Load Balancing Algorithms Load Balancing Algorithms

Agenda

Scalable Load Balancing: Distributed
Algorithms & the Packing Model

O U1 A WN

Introduction

Background (Algorithms & HPC)
The Packing Model

Load Balancing Algorithms
Experimental Evaluation
Work in Progress

39

Work in Progress

Complete discretization of application
workload

Implementation of well-behaved
distributed load balancing algorithms
for discrete workloads in the HPC
context

e Selfish Load Balancing Games

e Random Matching Algorithms

e Other reinforcement learning
algorithms

Communication-aware discretization of

application workload

Graph partitioning
Migration cost estimation

40

Scalable Load Balancing
Distributed Algorithms & the Packing Model

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

r
] -
»)
)
o
i

Pos-Graduacao
CAPES mHBm UFSC

UNIVERSITE
cirs <PArels université

PARIS-SACLAY

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

Extra Turns

More Graphs for Gurious Minds

Vinicius Freitas, Laércio L. Pilla, Johanne Cohen
vfreitas@lri.fr ou vinicius.mct.freitas@gmail.com

2 . e UNIVERSITE @
' Chirs SPARIS universite
L[]

@CNPC’ @ P SU PARIS-SACLAY

caPEs masm UFSC

mailto:vfreitas@lri.fr
mailto:vinicius.mct.freitas@gmail.com

Preliminary observation of convergence time in Distributed Selfish Load Balancing

400 Tasks, 40 cores, Mesh2D
800 Tasks, 40 cores, Mesh2d
— \akes m— Optimal
o K = Makespan === Optimal

6,5
6 ~
5,5
5 1
45
2 4
4
1,5-
3,5
1 1 T 1
123456 78 91011121314151617181920212223242526272829303132333435363738 L L. AL L L., O, O, N, L, EUL S L,
123456 78 91011121314151617181920212223242526272829303132333435363738
1600 Tasks, 40 cores, Mesh2d 3200 Tasks, 40 cores, Mesh2d
= Makespan === Optimal = Makespan == Optimal
12 -
115
11+
10,5
10
95
9 -
8,5 -
8-
7,5 15
7+ 14

1234567 8 91011121314151617181920212223242526272829303132333435363738 1234567 8 91011121314151617181920212223242526272829303132333435363738

Varying LB frequency

3D Mesh with 24000 tasks

180
160
140
120
100
80
60
40
20
0

Application time (s)

Load Balancer

|40 =2 70 100 =2 -
) 7] 7
: 2 o
‘ SN SN
N\ N\ N\
i \\ NN % \ |
\\ \ o oso \\
\ SN I
X7 \N
\ \ \ “\E
i / 2N \ \ SN
\\\§ 5 \\\ |
§ %\\ }\ 0§: N
5 \\\ \\\\\\ .0 W
PackSteal PackDrop Distributed Greedy Refine SyncDist Dummy

44

Cumulative LB Time

—
O—L

-
o
o

Cumulative LB time (s), log scale

—_
S
N

3D Mesh with 24000 tasks

40 1 70 === 100 x4

107" |

@m %l

W

PackSteal PackDrop

Distributed

Greedy

Load Balancer

Refine

SyncDist

Dummy

45

Total execution time (s)

300 Iterations of MD Load

LeanMD execution times with different LB algorithms (size 240) LeanMD execution times with different LB algorithms (size 320)
360
2204
340+
O 320
200 [0}
£
b
< 300
e
)
>
1)
1 X
80 @ 280
I
(o)
|_
260
160
240
1401 220
Baséline Pack'Drop Pack'SteaI Baséline PaCk‘Drop PackISteaI

Load Balancing Algorithms Load Balancing Algorithms

