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Executive summary: We propose to explore using types in operating system source code as
a mean to get assurance on security properties. With the rise of memory-safe languages for
system programming like Rust, type-based techniques in operating system source have just
recently started being investigated to get assurance on functional correctness. With security
properties an additional challenge is the need to consider the whole program at once instead of
individual functions or modules. It is thus proposed to address three sub-challenges in the the-
sis: to identify relevant low-level security properties that support global, high-level properties,
to study methods to ensure these low-level properties using the type system of the program-
ming language, and finally to explore how to keep guarantees despite interactions with code in
memory-unsafe programming languages like C. Proof-of-concept implementations should be
done on Rust-based operating systems as well as on operating systems having added support
for Rust code, like Linux.
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Context and Description
Operating systems (OS), especially their kernel, are critical software to build applications aiming
at providing security properties. A vulnerability in the kernel opens a door for attackers to
bypass the application logic, whatever the correctness of the application itself.

Getting assurance on security properties of OS services is known to incur high costs. This
traditionally relies on careful design and heavy testing, with costs of up to 400% of a non-secure
development effort [1]. While formal verification remains a challenge for this class of software,
few projects achieved this goal for an up to 1000% cost [2].

We propose to explore a middle way to get assurance, relying on the compiler to check both
of memory safety and higher-level, logical, security properties that should be encoded in the
source code using types. It is expected that this reduces the debugging effort and it could make
formal verification easier.

Among the many type-based techniques that should be considered for OS development,
an example is the typestate design pattern [3]. This technique gives assurance on the imple-
mentation of state machines, by assigning a dedicated type to each state of the state machine



and encoding state machine transitions as functions converting from a source state to a target
state. Invalid transitions are thus made impossible because the converting functions just do not
exist. Session types [4] achieve a similar goal for protocols.

Applying type-based techniques, like typestate analysis, on production source code like the
Linux kernel shows that the security of such projects could be improved if types were used to
encode logical properties [5]. On the other hand, using the type system of the programming
language to ensure functional properties is still the topic of ongoing research [6, 7, 8, 9].
Challenge 1: Identify relevant security properties The security properties studied in OSes
are traditionally restricted to integrity, isolation between security contexts (memory), information
flow enforcement [10], and security policy enforcement [11]. The latter two are high-level and
rely on lower-level properties on the subjects and objects managed by the OS. These lower-
level properties are good candidates for a type-based approach and should first be identified.
Challenge 2: Ensure the security properties using the type system of the programming
language Although using types to achieve security has been known for decades, this practice
using the programming language of an OS is hardly explored. Current approaches rely on a
separate language and its compiler to write annotations in the original source code and verify
that the code satisfies the specified properties [12]. Moreover programming techniques should
be explored to address security properties of increasing complexity, notably going from static,
bounded sets of contexts (e.g. the two contexts of kernel and userspace memory) to dynamic,
unbounded sets (e.g. all the tasks running on Linux).
Challenge 3: Keep guarantees despite interactions with code in memory-unsafe pro-
gramming languages like C Since legacy OSes are mostly developed in memory-unsafe
programming languages, programming techniques like safe wrappers in Rust should be ex-
plored to adapt the code incrementally and keep the guarantees obtained with the type system.

During the thesis a strategy of incremental improvements to existing open-source OS projects
will be used to address the previous challenges. While studying code-adaptions and type-based
techniques several trade-offs will be considered between development and maintenance cost,
gained assurance, and possible performance overhead. Opportunities to help formal verifica-
tion will be considered for follow-up research.

The Rust programming language is especially a good candidate as it is strongly- and
statically-typed, by design the compiler checks the memory safety of programs, and it is the
basis of several open-source OS projects, including Redox, which explicitly targets security.
Moreover successful Rust-implementations were demonstrated for typestates [13] and session
types [14] and the Linux kernel has recently got support for kernel code in Rust.

To gradually study use cases of increasing complexity, the thesis work can thus start on the
pure-Rust Redox project before considering complex production-grade projects like Linux.
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