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Embedded control systems - Relevant properties
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Is it necessary that all deadlines are met to guarantee properties of the control system?
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Outline

1 Functional verification of control systems

2 How to use weakly hard real-time constraints in control systems

3 Stability analysis with weakly hard real-time constraints

4 Controller design with weakly hard real-time constraints

5 Summary
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Functional verification - Stability

Standing
upright

Image source: Disney/Wikimedia Commons

This can be used to motivate/illustrate a major property of control systems:
(Asymptotic) stability

The upright equilibrium is unstable! ⇒ One needs a controller to stabilize it.

Goal: Guarantee asymptotic stability of the
upright equilibrium

with richer interfaces.
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Functional verification - Stability

Standing
upright

Image source: Disney/Wikimedia Commons

This can be used to motivate/illustrate a major property of control systems:
(Asymptotic) stability

The upright equilibrium is unstable! ⇒ One needs a controller to stabilize it.

Asymptotic Stability

The equilibrium at the origin of xk+1 = f(xk) is asymptotically stable if it is
stable and if δ can be chosen such that ‖xk0‖ < δ implies that ‖xk‖ → 0 when
k →∞.
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Control System

This talk: Linear time-invariant systems with full state available for feedback.

State-space representation of the plant:

xk+1 = Axk +Buk

Representation of the embedded controller:

uk = f(γk, xk, (uk−1)), γk ∈ {0, 1}

Plant

Controller
xk

uk
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Other important properties

Stabilization

Can we derive a (static state feedback) controller that renders the origin of the
closed loop asymptotically stable?

Performance

Can we derive a controller that minimizes a given cost functional?

Robustness

Can we derive a controller that is robust to uncertainties and disturbances?
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Other important properties

Stabilization

Can we derive a (static state feedback) controller that renders the origin of the
closed loop asymptotically stable?

Up to now:

• Stability and Stabilization as important properties and tasks for functional
verification of control systems.

Open tasks:

• Show that we can include richer interfaces in control system models.

• Analyze stability with richer interfaces.

• Design controllers with richer interfaces.
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Outline
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Motivation for using richer interfaces

Control Problem
xk+1 = Axk +Buk
A,B stabilizable

Embedded Controller
uk = f(γk, xk, (uk−1))

model of the process γk

Embedded Controller
uk = f(γk, xk, (uk−1))

max. # of successive deadline misses m

Embedded Controller
uk = f(γk, xk, (uk−1))

deadline miss probability p%

Embedded Controller
uk = f(γk, xk, (uk−1))

max. m deadline misses out of k transmissions

• Worst-case consecutive specification ⇒ introduces conservativity

• Statistical description ⇒ leads to statements for mean and variance

• Window based description ⇒ promising idea to bridge the gap

Goal

Include window based descriptions in the model of embedded control systems.
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Weakly hard real-time (WHRT) constraints to model task executions

Characterization of binary sequences γ by satisfaction of constraints λ ”(γ ` λ)”:

In any window of m consecutive executions, . . .

γ `
(
n
m

)
. . . there are at least n successful executions.

γ `
〈
n
m

〉
. . . there are at least n consecutive successful executions.

γ `
〈
n
m

〉
. . . there are never n consecutive unsuccessful executions.

Bernat et al. (2001). Weakly hard real-time systems.
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Partial order of constraints

Satisfaction Set

The satisfaction set of length N of a constraint λ, denoted SN (λ), is the set of
all sequences α ∈ {0, 1}N that satisfy λ. Formally,

SN (λ) :=
{
α ∈ {0, 1}N : α ` λ

}
.

Partial Order

Given two constraints λ′, λ. We say that λ′ is harder than λ (λ is weaker than
λ′), denoted λ′ � λ if all sequences that satisfy λ′ also satisfy λ. Formally,

λ′ � λ⇔ S∞(λ′) ⊆ S∞(λ).

Example:
At least 3 succ. executions in a row is harder than at least 2 succ. executions in a row.

Bernat et al. (2001). Weakly hard real-time systems.
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Model of the closed loop with richer interfaces

State-space representation of the plant:

xk+1 = Axk +Buk

Representation of the embedded controller:

uk = f(γk, xk, (uk−1))

, γ ` λ

Plant

γk
Embedded
Controller

xk

uk

Actuation strategies:

• zero strategy
uk = γkKxk

• hold strategy
uk = γkKxk + (1− γk)uk−1
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Representation of the embedded controller:

uk = f(γk, xk, (uk−1)), γ ` λ
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Up to now:

• Stability and Stabilization as important properties and tasks for functional
verification of control systems.

• We can include WHRT constraints in control system models.

Open tasks:

• Analyze stability with richer interfaces.

• Design controllers with richer interfaces.
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Outline

1 Functional verification of control systems

2 How to use weakly hard real-time constraints in control systems

3 Stability analysis with weakly hard real-time constraints
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Example 1: Scalar System

Plant:
xk+1 = axk + buk, xk ∈ R, a > 1⇒ unstable

Embedded Controller:
uk = γkKxk

Probabilistic description of γ:
Stabilizable in the mean square sense if and only if the success probability is greater
than 1− 1

a2
.

WHRT description of γ:

• Use dead-beat controller K = −a
b .

• Then x(k + 1) = 0 after the first successful execution.

The system is asymptotically stable for all sequences γ ` λ �
(
1
m

)
, where m might be

arbitrarily large but finite.

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.
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Closed loop as switched system

The closed loop can be modeled as a linear discrete-time switched system,

ξk+1 = Aγkξk, ξk ∈ Rnξ , γk ∈ {0, 1}, γ ` λ

Zero control:

• uk = γkKxk

• ξk = xk → nξ = n

• A0 = A

• A1 = A+BK

Hold control:

• uk = γkKxk + (1− γk)uk−1
• ξk = [xk, uk−1]→ nξ = n+ nu

• A0 =

[
A B
0 I

]
,A1 =

[
A+BK 0

K 0

]
Notation

Given a sequence w ∈ {0, 1}m, the state evolves as xk+|w| =
∏1
i=|w|Awixk.

Hence, we use Aw :=
∏1
i=|w|Awi .

Example: A1100101 = A1A0A1A0A0A1A1.
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Theorem 1 and procedure for stability analysis

Theorem 1

Given the constraint λ and the matrices A0,A1 ∈ Rnξ×nξ . If there exists a
symmetric, positive definite matrix P ∈ Rnξ×nξ such that

(Aw)ᵀ PAw − P < 0,∀w ∈ Sm(λ),

then the closed loop is asymptotically stable for all sequences γ ` λ′ � λ.

Procedure to check whether the origin of the closed-loop is asy. stable:

• Compute A0,A1 according to the actuation strategy.

• Derive all sequences in Sm(λ).
• Compute all Aw for w ∈ Sm(λ).
• Find a positive definite matrix P such that all LMI’s are satisfied.

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.
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Theorem 2 and procedure for stability analysis

Theorem 2

Given the constraint λ and the matrices A0,A1 ∈ Rnξ×nξ . If there exist sym-
metric, positive definite matrices Pw ∈ Rnξ×nξ , w ∈ Sm(λ) such that

(Aw1)ᵀ Pw1Aw1 − Pw2 < 0,∀w1, w2 ∈ Sm(λ), w1w2 ` λ

then the closed loop is asymptotically stable for all sequences γ ` λ′ � λ.

Procedure to check whether the origin of the closed-loop is asy. stable:

• Compute A0,A1 according to the actuation strategy.
• Derive all sequences in Sm(λ) and all combinations w1w2 ` λ.
• Compute all Aw for w ∈ Sm(λ).
• Find |Sm(λ)| positive definite matrices Pw such that LMI’s are satisfied

(combinations s.t. w1w2 ` λ).

⇒ increased possibility to find a solution

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.

S. Linsenmayer - Stability analysis and control design for weakly hard real-time systems 15



Theorem 2 and procedure for stability analysis

Theorem 2

Given the constraint λ and the matrices A0,A1 ∈ Rnξ×nξ . If there exist sym-
metric, positive definite matrices Pw ∈ Rnξ×nξ , w ∈ Sm(λ) such that

(Aw1)ᵀ Pw1Aw1 − Pw2 < 0,∀w1, w2 ∈ Sm(λ), w1w2 ` λ

then the closed loop is asymptotically stable for all sequences γ ` λ′ � λ.

Procedure to check whether the origin of the closed-loop is asy. stable:

• Compute A0,A1 according to the actuation strategy.
• Derive all sequences in Sm(λ) and all combinations w1w2 ` λ.
• Compute all Aw for w ∈ Sm(λ).
• Find |Sm(λ)| positive definite matrices Pw such that LMI’s are satisfied

(combinations s.t. w1w2 ` λ).

⇒ increased possibility to find a solution

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.

S. Linsenmayer - Stability analysis and control design for weakly hard real-time systems 15



Theorem 2 and procedure for stability analysis

Theorem 2

Given the constraint λ and the matrices A0,A1 ∈ Rnξ×nξ . If there exist sym-
metric, positive definite matrices Pw ∈ Rnξ×nξ , w ∈ Sm(λ) such that

(Aw1)ᵀ Pw1Aw1 − Pw2 < 0,∀w1, w2 ∈ Sm(λ), w1w2 ` λ

then the closed loop is asymptotically stable for all sequences γ ` λ′ � λ.

Procedure to check whether the origin of the closed-loop is asy. stable:

• Compute A0,A1 according to the actuation strategy.
• Derive all sequences in Sm(λ) and all combinations w1w2 ` λ.
• Compute all Aw for w ∈ Sm(λ).
• Find |Sm(λ)| positive definite matrices Pw such that LMI’s are satisfied

(combinations s.t. w1w2 ` λ). ⇒ increased possibility to find a solution
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Interpretation (as a graph)

Interpretation:

• Theorem 2 takes into account that the concatenation of sequences is actually
constrained.

• This can be represented by a graph.

Example: λ =
(
2
3

)
111 110

101 011
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Example 2

Plant:

xk+1 =

[
0 1
1 1

]
xk +

[
1
1

]
uk

Embedded Controller:

K =
[
−0.35 −0.85

]
used for zero and hold control

Goal

Check stability for
(
1
2

)
,
(
1
3

)
,
(
1
4

)
, and

(
2
3

)
.

Remark:
(
2
3

)
�
(
1
2

)
�
(
1
3

)
�
(
1
4

)
.

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.
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Example 2 (cont’d)

Plant:

xk+1 =

[
0 1
1 1

]
xk +

[
1
1

]
uk

Embedded Controller:

K =
[
−0.35 −0.85

]
used for zero and hold control

Zero strategy Hold strategy

λ =
(
2
3

)
Theorem 1X Theorem 1X

λ =
(
1
2

)

Theorem 1X

λ =
(
1
3

)

Theorem 2X A100,A010, and A001 are unstable7

λ =
(
1
4

)

e.g. A1000 and A0001 are unstable7 already unstable for λ =
(
1
3

)
7

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.
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Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.

S. Linsenmayer - Stability analysis and control design for weakly hard real-time systems 18



Example 2 (cont’d)
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Example 2 (cont’d)
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Example 2 (cont’d)

Plant:

xk+1 =

[
0 1
1 1

]
xk +

[
1
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uk

Embedded Controller:
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[
−0.35 −0.85

]
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Up to now:

• Stability and Stabilization as important properties and tasks for functional
verification of control systems.

• We can include WHRT constraints in control system models.

• We can analyze stability with WHRT constraints.

Open tasks:

• Design controllers with richer interfaces.

Blind, Allgöwer (2015). Towards networked control systems with guaranteed stability: Using weakly

hard real-time constraints to model the loss process.
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Outline

1 Functional verification of control systems

2 How to use weakly hard real-time constraints in control systems

3 Stability analysis with weakly hard real-time constraints

4 Controller design with weakly hard real-time constraints

5 Summary

S. Linsenmayer - Stability analysis and control design for weakly hard real-time systems 19



Problem setup for controller design

Up to now we considered all components as given and checked whether the origin
of the closed loop is asymptotically stable.

In the remainder:

Static state feedback stabilization

Given

• a weakly hard real-time constraint λ,

• a discrete-time linear control system (A,B stabilizable),

• and an actuation strategy (zero resp. hold),

find K s.t. the origin of the closed loop system with uk = γkKxk resp. uk =
γkKxk + (1− γk)uk−1 is asymptotically stable for all γ ` λ.
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Need for a different approach

Why do we need to develop new methods to solve this problem?

• We do not want to deal with sequences of length m, since K appears
nonlinear in the corresponding matrices, i.e. in Aw.

• For the computation of a controller one needs to take care that the
dimension of the controller does not vary with the chosen strategy, i.e.,
dimK may not be dependent on dim ξ.

⇒ This is covered by the introduction of an alternative discretization
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Alternative discretization

New sequences are derived based on γ :

• (τk)k∈N contains all time instants when the computation is executed in time.

• (αk)k∈N contains the number of deadline misses after an executed computation.

• Example:

γ = (0, 1, 0, 0, 1, 0, 1, . . . )

τ = (1, 4, 6, . . . )

α = (2, 1, . . . )

Those sequences are used for the restricted dynamical system

ξ̃k+1 = Ãαk ξ̃k

with ξ̃k := ξτk .

• Stability of the original closed loop system can be deduced from the x̃ dynamics
of the restricted system.

• The x̃ dynamics are in the form Axl +Bx
l K.
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Graph description

Derive a graph, s.t. the concatenation of its labels represents all possible se-
quences α that correspond to all γ ` λ.

Graph representation (Example γ `
〈
2
5

〉
):

v1

v2

v30
1

2

0

0

γ = (1, 0, 0, 1,

1, 1, 0, 1, 1, 0, 0, 1, . . . )

α = (2,

0, 0, 1, 0, 2, . . . )

Recall previous example:

γ = (0, 1, 0, 0, 1, 0, 1, . . . )

τ = (1, 4, 6, . . . )

α = (2, 1, . . . )

This sequence does not satisfy the constraint!
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Examples for other constraints

Example γ `
(
2
5

)
:

v1

v2

v3

v40

1

2

3

0

1

2
0

1

0

Example γ `
〈
2
5

〉
:

v1

v2

0

1 0
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Theorem 3 (Stabilization)

Theorem 3

Given a WHRT constraint λ and its graph representation G,

the discrete-time
linear control system is state feedback stabilizable under the zero (resp. hold)
strategy w.r.t. all λ′ � λ , if there exist nV symmetric matrices S1, . . . , SnV ∈
Rn×n and matrices G ∈ Rn×n, F ∈ Rnu×n, satisfying[

G+Gᵀ − Si (Axl G+Bx
l F )

ᵀ

Axl G+Bx
l F Sj

]
> 0, ∀(i, j, l) ∈ E.

A stabilizing state feedback controller is given by K = FG−1.

Linsenmayer, Allgöwer (2017). Stabilization of Networked Control Systems with weakly hard real-time

dropout description.
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Algorithm

Procedure to derive stabilizing controller:

1 Derive a labeled graph G for the constraint λ.

2 Compute the matrices Al, Bl for all labels,

Al = Al+1

Bl =

{
AlB zero strategy∑l

i=0A
iB hold strategy.

3 Find matrices F,G, S1, . . . , SnV , satisfying[
G+Gᵀ − Si (AlG+BlF )

ᵀ

AlG+BlF Sj

]
> 0, ∀(i, j, l) ∈ E.

4 Compute a stabilizing state feedback controller for all λ′ � λ,

K = FG−1.
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Recall Example 2

Plant:

xk+1 =

[
0 1
1 1

]
xk +

[
1
1

]
uk

Embedded Controller:

K =
[
−0.35 −0.85

]
was used for zero and hold control

Zero strategy Hold strategy

λ =
(
2
3

)
stable with K =

[
−0.35 −0.85

]
X stable with K =

[
−0.35 −0.85

]
X

λ =
(
1
2

)
stable with K =

[
−0.35 −0.85

]
X stable with K =

[
−0.35 −0.85

]
X

λ =
(
1
3

)
stable with K =

[
−0.35 −0.85

]
X unstable with K =

[
−0.35 −0.85

]
λ =

(
1
4

)
unstable with K =

[
−0.35 −0.85

]
unstable with K =

[
−0.35 −0.85

]
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Summary

In this talk:

• We motivated why stability and stabilization are important properties and tasks in
the context of functional verification of control systems.

• We presented a possibility to include WHRT constraints in control system models.
• We showed procedures for analyzing stability with WHRT constraints.
• We derived a procedure to design a controller for a given WHRT constraint.

Possible other directions:

• Design optimal/robust controllers for systems with WHRT constraints.

Answers to main questions

Q: Is it necessary that all deadlines are met to guarantee properties of the control
system?

A: No. We showed that we can also integrate richer interfaces, as WHRT con-
straints, such that we can e.g. guarantee stability although not all deadlines are
met.

Thank you for your attention!
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