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» is a method for computing weakly-hard bounds on response
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TWCA:
» means Typical Worst-Case Analysis

» is a method for computing weakly-hard bounds on response
times and deadline misses.

» applies to systems with sporadic overload
» does not provides guarantees for sporadic tasks

Advantages
» This approach is computationally efficient
» m-out-of-k constraints are easy to understand
» We make no assumptions w.r.t. dependencies
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TWCA in a nutshell

Principle:

» Identify typical bounds for the behavior of a system and how
often the system may leave these bounds

Output for each task: a set of weakly-hard guarantees

» Response-time view:
1. a hard bound on its response times: WCRT
2. a so-called typical bound: TWCRT
3. afunction err s.t. out of every k consecutive executions, at
most err(k) response times may be larger than TWCRT
» Deadline miss view: a deadline miss model, i.e., a function
dmm such that out of every k consecutive executions, at most
dmm(k) jobs may miss their deadline.



Basic principle: preliminary definitions

System model
» Uniprocessor with Fixed-Priority Preemptive (FPP) scheduling
» Tasks: C;, mj and an activation model

Activation model: we use arrival curves

> 67 (k) lower bounds the minimum size of an interval
containing k activations of task i

> 67 can be converted into a time-based functions n;"
» non-sporadic tasks also have an upper bound 6,.+
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System model
» Uniprocessor with Fixed-Priority Preemptive (FPP) scheduling
» Tasks: C;, mj and an activation model

Activation model: we use arrival curves

> 67 (k) lower bounds the minimum size of an interval
containing k activations of task i

> 67 can be converted into a time-based functions n;"
» non-sporadic tasks also have an upper bound 6,.+

For TWCA, tasks have 3 curves:
» a worst-case bound ¢;

i.typ

» an overload bound 6; ..

» a typical bound 6§



Basic principle: preliminary definitions

Level-i quiet time: instant t such that all tasks of priority higher
than or equal to i released strictly before t have completed at t.
Level-i busy window: interval [t;, tz[ such that:

» a task with a priority higher than or equal to i is activated at t;;

» 1y and ko are level-i quiet times;

» there is no other level-i quiet time between t; and t.



Basic principle: preliminary definitions

Level-i quiet time: instant t such that all tasks of priority higher
than or equal to i released strictly before t have completed at t.
Level-i busy window: interval [t;, tz[ such that:

» a task with a priority higher than or equal to i is activated at t;;

» 1y and ko are level-i quiet times;

» there is no other level-i quiet time between t; and t.

The longest level-i busy window is bounded by BW; = Bf(K,)
where

B(q)=Cixq+ > (7 (B'(q)xC)
jehpe(i)

Ki = min{qg > 1 B;*(q) <67 (q + 1))



Basic principle: preliminary definitions

WCRT,

largest level-2 busy window




Basic principle: computation of WCRT and TWCRT

» The worst-case response time of task i is bounded by

WCRT; = max {B."(q) - 6; (q)}
1<qg<K;
» TWCRT; is obtained following the same approach but using

the 5Ztyp curves.



Basic principle: computation of WCRT and TWCRT

» The worst-case response time of task i is bounded by

WCRT; = max {B."(q) - 6; (q)}
1<qg<K;
» TWCRT; is obtained following the same approach but using

the 5Ztyp curves.

We now focus on the computation of err;: the number of jobs in a
sequence of k consecutive executions that may have a response
time larger than TWCRT



Basic principle: computation of err;

1. compute A;(k), the time interval during which a higher priority
overload activation may impact one of the k activations

2. bound the number of overload activations of each higher
priority task in Aj(k)

3. bound their impact
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2. number of overload activations of each higher priority task in
Ai(k) is bounded by 77 (Aj(k))

3. impact of each overload activation: at most K;
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Basic principle: computation of err;

1. Aj(k) = BW; + 6; (k) + WCRT;

2. number of overload activations of each higher priority task in
Ai(k) is bounded by 77 (Aj(k))

3. impact of each overload activation: at most K;

err, = Kix Z 771 over
jehpe(i)

The impact of each activation is largely overestimated!
Example: not all activations in the worst-case busy window miss
their deadlines (N; < Kj).
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NB: Focus on deadline misses rather than response times

Schedulable combination ¢: a set of tasks that may experience
overload in the same busy window without any deadline miss
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NB: Focus on deadline misses rather than response times

Schedulable combination ¢: a set of tasks that may experience
overload in the same busy window without any deadline miss

Improved deadline miss model:

dmmij(k) = m@{dmm (k)}

where

C(K
dmm{ (k) = N; x Z 77, over )}
jehpe(i)
jec

and S denotes the set of schedulable combinations (U is the set of
schedulable combinations).



Improvements using combinations

Further improvement: knapsack problem formulation where the
objective is to pack as many unschedulable combinations as
possible into Aj(k)
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Improvements using combinations

A(5)

Improved deadline miss model:

dmmi(k) = max{N;x > x| ¥j € hpe(i), > xe <nl. (Ai(K)))
cel F%e‘_u_
s.t. jec

where xz is the number of busy windows which correspond to ¢



Improvements using combinations
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Improved deadline miss model:

dmmi(k) = max{N;x > x| ¥j € hpe(i), > xe <nl. (Ai(K)))

ceU

cell_
s.t. jec

where xz is the number of busy windows which correspond to ¢

— ILP problem
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How to obtain input data for TWCA through tracing



Using traces to get the input models

Trace analysis and overload extraction
» based on assumptions similar to derived worst-case analysis

» automated overload extraction possible for some activation
models: e.g. mixed messages in a CAN bus
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Extensions of TWCA

v

extension to FPNP (other policies in progress)
TWCA at the runnable level

TWCA for task chains

TWCA for budgeting (TAS case study)

TWCA in presence of limited buffers
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Conclusion and perspectives

Summary: TWCA so far
> uniprocessor
» static priority (non) preemptive scheduling
» dependent tasks with arbitrary activation patterns

Case studies
» Anonymized trace from an OEM
» CAN bus analysis for Daimler
» TAS case study

Work in progress
» extension to multiprocessor systems
» identification of the main sources of pessimism in the analysis
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