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What is TWCA?

TWCA:
I means Typical Worst-Case Analysis
I is a method for computing weakly-hard bounds on response

times and deadline misses.
I applies to systems with sporadic overload
I does not provides guarantees for sporadic tasks

Advantages
I This approach is computationally efficient
I m-out-of-k constraints are easy to understand
I We make no assumptions w.r.t. dependencies
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TWCA in a nutshell

Principle:
I Identify typical bounds for the behavior of a system and how

often the system may leave these bounds

Output for each task: a set of weakly-hard guarantees

I Response-time view:
1. a hard bound on its response times: WCRT
2. a so-called typical bound: TWCRT
3. a function err s.t. out of every k consecutive executions, at

most err(k) response times may be larger than TWCRT

I Deadline miss view: a deadline miss model, i.e., a function
dmm such that out of every k consecutive executions, at most
dmm(k) jobs may miss their deadline.
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Basic principle: preliminary definitions

System model
I Uniprocessor with Fixed-Priority Preemptive (FPP) scheduling
I Tasks: Ci , πi and an activation model

Activation model: we use arrival curves
I δ−i (k) lower bounds the minimum size of an interval

containing k activations of task i
I δ−i can be converted into a time-based functions η+

i
I non-sporadic tasks also have an upper bound δ+

i

For TWCA, tasks have 3 curves:
I a worst-case bound δ−i
I a typical bound δ−i,typ

I an overload bound δ−i,over
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Basic principle: preliminary definitions

Level-i quiet time: instant t such that all tasks of priority higher
than or equal to i released strictly before t have completed at t .

Level-i busy window: interval [t1, t2[ such that:
I a task with a priority higher than or equal to i is activated at t1;
I t1 and t2 are level-i quiet times;
I there is no other level-i quiet time between t1 and t2.

The longest level-i busy window is bounded by BW i = B+
i (Ki)

where
B+

i (q) = Ci × q +
∑

j∈hpe(i)

(η+
j (B+

i (q)) × Cj)

Ki = min{q ≥ 1 | B+
i (q) ≤ δ−i (q + 1)}
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Basic principle: preliminary definitions

T1

T2

largest level-2 busy window

WCRT2 

δ-
1(2)

δ-
1(4)

δ-
1(3)
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Basic principle: computation of WCRT and TWCRT

I The worst-case response time of task i is bounded by

WCRTi = max
1≤ q ≤Ki

{B+
i (q) − δ−i (q)}

I TWCRT i is obtained following the same approach but using
the δ−i,typ curves.

We now focus on the computation of err i : the number of jobs in a
sequence of k consecutive executions that may have a response
time larger than TWCRT
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Basic principle: computation of err i

1. compute ∆i(k), the time interval during which a higher priority
overload activation may impact one of the k activations

2. bound the number of overload activations of each higher
priority task in ∆i(k)

3. bound their impact

T1

Ti

T2

T3

WCRTi   BWi Δi(5)
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Basic principle: computation of err i

1. ∆i(k) = BW i + δ−i (k) + WCRT i

2. number of overload activations of each higher priority task in
∆i(k) is bounded by η+

i (∆i(k))

3. impact of each overload activation: at most Ki

err i(k) = Ki ×
∑

j∈hpe(i)

η+
j,over∆i(k)

The impact of each activation is largely overestimated!
Example: not all activations in the worst-case busy window miss
their deadlines (Ni ≤ Ki).
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Improvements using combinations

NB: Focus on deadline misses rather than response times

Schedulable combination c̄: a set of tasks that may experience
overload in the same busy window without any deadline miss

Improved deadline miss model:

dmmi(k) = min
c̄∈S
{dmmc̄

i (k)}

where
dmmc̄

i (k) = Ni ×
∑

j∈hpe(i)
j<c̄

η+
j,over(∆i(k))}

and S denotes the set of schedulable combinations (U is the set of
schedulable combinations).
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Improvements using combinations

Further improvement: knapsack problem formulation where the
objective is to pack as many unschedulable combinations as
possible into ∆i(k)

T1

Ti

T2

T3

WCRTi   BWi Δi(5)
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Improvements using combinations

T1

Ti

T2

T3

WCRTi   BWi Δi(5)

Improved deadline miss model:

dmmi(k) = max{Ni ×
∑
c̄∈U

xc̄ | ∀j ∈ hpe(i),
∑
c̄∈U

s.t. j∈c̄

xc̄ ≤ η
+
j,over(∆i(k))}

where xc̄ is the number of busy windows which correspond to c̄

−→ ILP problem
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Using traces to get the input models

Trace analysis and overload extraction
I based on assumptions similar to derived worst-case analysis
I automated overload extraction possible for some activation

models: e.g. mixed messages in a CAN bus
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Extensions of TWCA

I extension to FPNP (other policies in progress)
I TWCA at the runnable level
I TWCA for task chains
I TWCA for budgeting (TAS case study)
I TWCA in presence of limited buffers
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Conclusion and perspectives

Summary: TWCA so far
I uniprocessor
I static priority (non) preemptive scheduling
I dependent tasks with arbitrary activation patterns

Case studies
I Anonymized trace from an OEM
I CAN bus analysis for Daimler
I TAS case study

Work in progress
I extension to multiprocessor systems
I identification of the main sources of pessimism in the analysis
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