Providing Weakly-Hard Guarantees
using TWCA

Sophie Quinton — INRIA Grenoble Rhéne-Alpes

rd

Crzia— | »

LI G

UNIVERSITE
' Grenoble
& Alpes

Beyond the Deadline
ESWeek Tutorial, October 15, 2017

Outline

Basics of TWCA

Improvements using combinations

How to obtain input data for TWCA through tracing

Extensions of TWCA

Conclusion and perspectives

Outline

Basics of TWCA

What is TWCA?

TWCA:
» means Typical Worst-Case Analysis

» is a method for computing weakly-hard bounds on response
times and deadline misses.

» applies to systems with sporadic overload
» does not provides guarantees for sporadic tasks

What is TWCA?

TWCA:
» means Typical Worst-Case Analysis

» is a method for computing weakly-hard bounds on response
times and deadline misses.

» applies to systems with sporadic overload
» does not provides guarantees for sporadic tasks

Advantages
» This approach is computationally efficient
» m-out-of-k constraints are easy to understand
» We make no assumptions w.r.t. dependencies

TWCA in a nutshell

Principle:

» Identify typical bounds for the behavior of a system and how
often the system may leave these bounds

TWCA in a nutshell

Principle:

» Identify typical bounds for the behavior of a system and how
often the system may leave these bounds

Output for each task: a set of weakly-hard guarantees

TWCA in a nutshell

Principle:

» Identify typical bounds for the behavior of a system and how
often the system may leave these bounds

Output for each task: a set of weakly-hard guarantees

» Response-time view:
1. a hard bound on its response times: WCRT
2. a so-called typical bound: TWCRT
3. afunction err s.t. out of every k consecutive executions, at
most err(k) response times may be larger than TWCRT

TWCA in a nutshell

Principle:

» Identify typical bounds for the behavior of a system and how
often the system may leave these bounds

Output for each task: a set of weakly-hard guarantees

» Response-time view:
1. a hard bound on its response times: WCRT
2. a so-called typical bound: TWCRT
3. afunction err s.t. out of every k consecutive executions, at
most err(k) response times may be larger than TWCRT
» Deadline miss view: a deadline miss model, i.e., a function
dmm such that out of every k consecutive executions, at most
dmm(k) jobs may miss their deadline.

Basic principle: preliminary definitions

System model
» Uniprocessor with Fixed-Priority Preemptive (FPP) scheduling
» Tasks: C;, mj and an activation model

Activation model: we use arrival curves

> 67 (k) lower bounds the minimum size of an interval
containing k activations of task i

> 67 can be converted into a time-based functions n;"
» non-sporadic tasks also have an upper bound 6,.+

Basic principle: preliminary definitions

System model
» Uniprocessor with Fixed-Priority Preemptive (FPP) scheduling
» Tasks: C;, mj and an activation model

Activation model: we use arrival curves

> 67 (k) lower bounds the minimum size of an interval
containing k activations of task i

> 67 can be converted into a time-based functions n;"
» non-sporadic tasks also have an upper bound 6,.+

For TWCA, tasks have 3 curves:
» a worst-case bound ¢;

i.typ

» an overload bound 6; ..

» a typical bound 6§

Basic principle: preliminary definitions

Level-i quiet time: instant t such that all tasks of priority higher
than or equal to i released strictly before t have completed at t.
Level-i busy window: interval [t;, tz[such that:

» a task with a priority higher than or equal to i is activated at t;;

» 1y and ko are level-i quiet times;

» there is no other level-i quiet time between t; and t.

Basic principle: preliminary definitions

Level-i quiet time: instant t such that all tasks of priority higher
than or equal to i released strictly before t have completed at t.
Level-i busy window: interval [t;, tz[such that:

» a task with a priority higher than or equal to i is activated at t;;

» 1y and ko are level-i quiet times;

» there is no other level-i quiet time between t; and t.

The longest level-i busy window is bounded by BW; = Bf(K,)
where

B(q)=Cixq+ > (7 (B'(q)xC)
jehpe(i)

Ki = min{qg > 1 B;*(q) <67 (q + 1))

Basic principle: preliminary definitions

WCRT,

largest level-2 busy window

Basic principle: computation of WCRT and TWCRT

» The worst-case response time of task i is bounded by

WCRT; = max {B."(q) - 6; (q)}
1<qg<K;
» TWCRT; is obtained following the same approach but using

the 5Ztyp curves.

Basic principle: computation of WCRT and TWCRT

» The worst-case response time of task i is bounded by

WCRT; = max {B."(q) - 6; (q)}
1<qg<K;
» TWCRT; is obtained following the same approach but using

the 5Ztyp curves.

We now focus on the computation of err;: the number of jobs in a
sequence of k consecutive executions that may have a response
time larger than TWCRT

Basic principle: computation of err;

1. compute A;(k), the time interval during which a higher priority
overload activation may impact one of the k activations

2. bound the number of overload activations of each higher
priority task in Aj(k)

3. bound their impact

. L | L
SO O A A O A
T v \|/
3
S R R AR O
<—>: <—>
BW, (WCRT;
i

Basic principle: computation of err;

1. Aj(k) = BW; + 6; (k) + WCRT;

2. number of overload activations of each higher priority task in
Ai(k) is bounded by 77 (Aj(k))

3. impact of each overload activation: at most K;

Basic principle: computation of err;

1. Aj(k) = BW; + 6; (k) + WCRT;

2. number of overload activations of each higher priority task in
Ai(k) is bounded by 77 (Aj(k))

3. impact of each overload activation: at most K;

err, = Kix Z nj over
jehpe(i)

Basic principle: computation of err;

1. Aj(k) = BW; + 6; (k) + WCRT;

2. number of overload activations of each higher priority task in
Ai(k) is bounded by 77 (Aj(k))

3. impact of each overload activation: at most K;

err, = Kix Z 771 over
jehpe(i)

The impact of each activation is largely overestimated!
Example: not all activations in the worst-case busy window miss
their deadlines (N; < Kj).

Outline

Improvements using combinations

Improvements using combinations

NB: Focus on deadline misses rather than response times

Schedulable combination ¢: a set of tasks that may experience
overload in the same busy window without any deadline miss

Improvements using combinations

NB: Focus on deadline misses rather than response times

Schedulable combination ¢: a set of tasks that may experience
overload in the same busy window without any deadline miss

Improved deadline miss model:

dmmij(k) = m@{dmm (k)}

where

C(K
dmm{ (k) = N; x Z 77, over)}
jehpe(i)
jec

and S denotes the set of schedulable combinations (U is the set of
schedulable combinations).

Improvements using combinations

Further improvement: knapsack problem formulation where the
objective is to pack as many unschedulable combinations as
possible into Aj(k)

. L |
a ML UL Ll
.] |
LIl
s PR
BW, WCRT
A(5)

Improvements using combinations

A(5)

Improved deadline miss model:

dmmi(k) = max{N;x > x| ¥j € hpe(i), > xe <nl. (Ai(K)))
cel F%e‘_u_
s.t. jec

where xz is the number of busy windows which correspond to ¢

Improvements using combinations

T|
IR IR
T, |
o LRI LV L ULy
—>: 1<—>
BW, WCRT
A(5)

Improved deadline miss model:

dmmi(k) = max{N;x > x| ¥j € hpe(i), > xe <nl. (Ai(K)))

ceU

cell_
s.t. jec

where xz is the number of busy windows which correspond to ¢

— ILP problem

Outline

How to obtain input data for TWCA through tracing

Using traces to get the input models

Trace analysis and overload extraction
» based on assumptions similar to derived worst-case analysis

» automated overload extraction possible for some activation
models: e.g. mixed messages in a CAN bus

Outline

Extensions of TWCA

Extensions of TWCA

v

extension to FPNP (other policies in progress)
TWCA at the runnable level

TWCA for task chains

TWCA for budgeting (TAS case study)

TWCA in presence of limited buffers

v

v

\{

v

Outline

Conclusion and perspectives

Conclusion and perspectives

Summary: TWCA so far
> uniprocessor
» static priority (non) preemptive scheduling
» dependent tasks with arbitrary activation patterns

Case studies
» Anonymized trace from an OEM
» CAN bus analysis for Daimler
» TAS case study

Work in progress
» extension to multiprocessor systems
» identification of the main sources of pessimism in the analysis

	Basics of TWCA
	Improvements using combinations
	How to obtain input data for TWCA through tracing
	Extensions of TWCA
	Conclusion and perspectives

