

TabICL: A Tabular Foundation Model for In-Context Learning on Large Data

Jingang QU, David Holzmüller, Gaël Varoquaux, Marine Le Morvan

ICML 2025

Learning with Tabular Data

Currency	Amount	Card type	Age	Fraud
USD	3497.74	Debit	55	Yes
EUR	1121.53	Prepaid	45	No
CNY	2867.57	Credit	31	No
USD	4100.37	Debit	59	?

Classification

- Heterogenous features (numerical, categorical, ...)
- Missing values, uninformative features, and outliers
- Lack of spatial or sequential relationships

In-context Learning with Transformer

[Tom et al. 2020]

The pattern here involves rearranging the jumbled letters to form the correct name of an animal. So, cmihp \Rightarrow chimp

$$p(y^* \mid x^*, \mathcal{D}_{train}; \theta)$$

Tokenization

Today<mark>,</mark> I will present Tab<mark>ICL</mark> at the kick-off of Soda.

		- m \/ m
\boldsymbol{Y}	\subseteq	$\mathbf{P}^{n \times m}$
_	$\overline{}$	1 1

 $y \in \mathrm{R}^{n imes 1}$

Columns (Features)

אַ	Г
D	ı
_	ı
	H
=	ı
. $ abla$	ı
n	H
	ı
מי	ı
>	H
≥	ı
<u> </u>	ı

x_{11}	x_{12}	• • •	x_{1m}
x_{21}	x_{22}	• • •	x_{2m}
• • •	• • •	• • •	• • •
x_{n1}	x_{n2}	• • •	x_{nm}

Target

y_1	
y_2	
• • •	
y_n	

$$\{(x_1, y_1), ..., (x_n, y_n)\}, x^*$$

Tabular Prior-Data Fitted Network (TabPFN)

[Hollmann et al. 2023]

$$X \in \mathbf{R}^{n \times m}$$

Columns (Features)

x_{11}	x_{12}	•••	x_{1m}
x_{21}	x_{22}	• • •	x_{2m}
•••	• • •	• • •	•••
x_{n1}	x_{n2}	•••	x_{nm}

Rows (Samples)

- Each row is a token
- $h_i = Linear(row_i)$
- Attention between h_i with $\mathcal{O}(n^2)$

Complexity =>
$$\mathcal{O}(n^2)$$

	Pretraining		Inference			
	# of samples	# of features	# of classes	# of samples	# of features	# of classes
TabPFN	1,024	100	10	3,000	100	10

TabPFNv2

[Hollmann et al. 2025]

Each cell is a token

We predict this entry

Each node represents one entry in the table

 $\mathcal{O}(m \cdot n^2)$

1D sample attention

Complexity => $\mathcal{O}(n \cdot m^2) + \mathcal{O}(m \cdot n^2)$

	Pretraining		Inference			
	# of samples	# of features	# of classes	# of samples	# of features	# of classes
TabPFN	1,024	100	10	3,000	100	10
TabPFNv2	2,048	160	10	10,000	500	10

TabICL: A Tabular Foundation Model for Large Data

	Pretraining		Inference			
	# of samples	# of features	# of classes	# of samples	# of features	# of classes
TabPFN	1,024	100	10	3,000	100	10
TabPFNv2	2,048	160	10	10,000	500	10
TabICL	60,000	100	10	100,000	500	Any

Distribution-aware Column-wise Embedding

[Juho et al. 2019]

Learned embeddings encode statistical properties of feature distributions.

Attention-based Row-wise Interaction

Rotary Positional Embedding (RoPE)

[Juho et al. 2019]

RoPE alleviates the representation collapse.

Synthetic Prior Datasets

Structural causal models

[Hollmann et al. 2022]

The weights and biases of the linear layer are randomly sampled.

XGBoost is trained on fake targets drawn from Gaussian noise.

Comparison between TabPFNv2 and TabICL

	Aspect	TabPFNv2	TabICL
Architecture	Attention	Alternating column / row attentions	Column -> Row -> ICL
	Collapse Issue	Feature grouping and random feature vectors	RoPE
	Label Fusion	Early (input layer)	Late (for ICL)
	SCM	Growing network with redirection (Code not open-source)	Layered structure
Pre-training	# of datasets	82 million	130 million
Cu	Curriculum learning	$\#$ of samples $\leq 2,048$	# of samples 1K -> 60K
Saalabilitu.	# of samples	≤ 10K	100K (only 5GB GPU)
Scalability	# of classes	≤ 10	Any (Hierarchical classification)

Performance of TabICL on the TALENT Benchmark

Average accuracy ranking over 171 classification datasets (≤ 10 classes) from the TALENT benchmark

[Ye et al. 2024]

Relative accuracy improvement over MLP (\uparrow)

Time comparison per dataset

Speedup of TabICL vs. TabPFNv2

Model rankings vs. sample size

TabICL enables memory-efficient inference

CPU and GPU memory during inference for a dataset with 100K samples and 500 features (< **5GB GPU memory**)

TabICL: A Tabular Foundation Model for Large Data

- > Tabular foundation models can be scaled to an order of magnitude larger data!
 - **Expressive yet computationally efficient architecture**
 - ❖ Large-scale pre-training via curriculum learning by gradually increasing data size
 - ❖ Memory-efficient inference through CPU offloading, adaptive batching, etc.
- Faster and better than TabPFNv2 despite
 - Simpler preprocessing
 - ❖ Simpler prior (no random graphs, no categorical vectors/discretization)
- ➤ Open-source everything : https://github.com/soda-inria/tabicl

Thanks for your attention!