Knowledge pre-training for tabular learning

Jun Kim

Ínría_

Outline

Introduction

Knowledge pre-training for tabular learning

CARTE: Context-Aware Representation of Table Entries

TARTE: Transformer Augmented Representation of Table Entries

Empirical studies

Discussion

Introduction

Knowledge pre-training for tabular learning

CARTE: Context-Aware Representation of Table Entries

TARTE: Transformer Augmented Representation of Table Entries

Empirical studies

Discussion

Tabular Data

country	description d	lesignatio	points	price	province	region_1	region_2	taster_nar	title	variety	winery	
Italy	Aromas in V	/ulkà Biar	87		Sicily & Sa	Etna		Kerin Oâ€ [™]	Nicosia 20	White Bler	Nicosia	
Portugal	This is ripe A	Avidagos	87	15	Douro			Roger Vos	Quinta dos	Portugues	Quinta dos	Avidagos
US	Tart and sna	appy, the f	87	14	Oregon	Willamette	Willamette	Paul Gregu	Rainstorm	Pinot Gris	Rainstorm	
US	Pineapple R	Reserve La	87	13	Michigan	Lake Michi	gan Shore	Alexander	St. Julian 2	Riesling	St. Julian	
US	Much like (V	/intner's R	87	65	Oregon	Willamette	Willamette	Paul Gregu	Sweet Che	Pinot Noir	Sweet Che	eks
Spain	Blackberry A	Ars In Vitro	87	15	Northern S	Navarra		Michael Sc	Tandem 20	Tempranill	Tandem	
Italy	Here's a br B	Belsito	87	16	Sicily & Sa	Vittoria		Kerin Oâ€ [†]	Terre di Gi	Frappato	Terre di Gi	urfo
France	This dry and	restraine	87	24	Alsace	Alsace		Roger Vos	Trimbach 2	Gewürztı	Trimbach	
Germany	Savory drie S	hine	87	12	Rheinhess	en		Anna Lee (Heinz Eifel	Gewürztı	Heinz Eifel	
France	This has gr L	es Nature	87	27	Alsace	Alsace		Roger Vos	Jean-Bapti	Pinot Gris	Jean-Bapti	ste Adam
US	Soft, suppl N	//ountain	87	19	California	Napa Valle	Napa	Virginie Bo	Kirkland Sig	Cabernet S	Kirkland Sig	gnature
France	This is a dry	wine, ver	87	30	Alsace	Alsace		Roger Vos	Leon Beye	Gewürztı	Leon Beye	r
US	Slightly redu	ced, this v	87	34	California	Alexander	Sonoma	Virginie Bo	Louis M. N	Cabernet S	Louis M. N	lartini
Italy	This is don R	Rosso	87		Sicily & Sa	Etna		Kerin Oâ€ [†]	Masseria S	Nerello Ma	Masseria S	etteporte
US	Building on 3	150 years	87	12	California	Central Co	Central Co	Matt Kettr	Mirassou 2	Chardonna	Mirassou	
Germany	Zesty oran D)evon	87	24	Mosel			Anna Lee (Richard BÂ	Riesling	Richard BÃ	¶cking
Argentina	Baked plur F	elix	87	30	Other	Cafayate		Michael Sc	Felix Lavac	Malbec	Felix Lavac	lue
Argentina	Raw black V	Vinemake	87	13	Mendoza I	Mendoza		Michael Sc	Gaucho Ar	Malbec	Gaucho An	dino
Spain	Desiccated V	/endimia 9	87	28	Northern S	Ribera del	Duero	Michael Sc	Pradorey 2	Tempranill	Pradorey	

Wine dataset (Wine Enthusiasts)

Abundant tabular data

Tabular data dominate the data landscape for enterprises and institutions

The immeasurable **volume** and **central role** in many applications have led numerous **deep learning** methods

The preferred choice, yet remains to be the **Gradient Boosted Decision Trees**

Deep learning to foundation models

The key component of success in deep learning: pretrain and transfer

Pushing the **next paradigm** to the extreme with **foundation models**

Foundation models:

Any model trained on broad data that can be adapted to a wide range of downstream tasks

Foundation models for tabular data

Prior Fitted Networks (PFNs)

Trained from tremendous amount of synthetic data

High performants for tables of numerical values

TabPFNv2

Hollmann, Noah, et al. "Accurate predictions on small data with a tabular foundation model." Nature 637.8045 (2025): 319-326.

TabICL

Qu, Jingang, et al. "TabICL: A Tabular Foundation Model for In-Context Learning on Large Data." arXiv preprint arXiv:2502.05564 (2025).

Foundation models for tabular data

Finetune on language models (LLMs)

Serialization of data (creating sentences for each row)

Finetune the LLM on task-specific prompt

Hegselmann, Stefan, et al. "Tabllm: Few-shot classification of tabular data with large language models." *International Conference on Artificial Intelligence and Statistics*. PMLR, 2023.

Gardner, Josh, Juan Perdomo, and Ludwig Schmidt. "Large scale transfer learning for tabular data via language modeling." *Advances in Neural Information Processing Systems* 37 (2024): 45155-45205.

Foundation models for tabular data

CARTE: Context-Aware Representation of Table Entries

Myung Jun Kim, Léo Grinsztajn, Gaël Varoquaux

- Generalization of table entries with graph representation
 - ✓ No schema or entity matching across tables
- Pretrain from large knowledgebases (knowledge graphs)
 - ✓ Train over 18.1 million triplets of 6.3 million entities in YAGO
- Graph-attentional network that leverage context in tabular data

Introduction

Knowledge pre-training for tabular learning

CARTE: Context-Aware Representation of Table Entries

TARTE: Transformer Augmented Representation of Table Entries

Empirical studies

Discussion

Abundant but heterogenous tabular data

		Name		Term				Party		VP				
		George Bu	ge Bush 19		1989 ~ 1993			Republican		Dan Quayle				
(1		Bill Clinton		1993 - 2001		Democratic		Al Gore						
		George Bu	ge Bush 2		2001~2009		Republican		Dick Cheney					
	Name In			cumbency			Party			Country		С	City	
	To	Tony Blair		2007 ~ 2001			Labour			Angleterre		Londres		
	Nicolas Sarkozy		20	01 ^	L ~ 2009 L			es Républicains		France		Pa	aris	
						Г	_						_	
					(3			Name		<i>X</i> ₁	X_2			
						L	\dashv	London	0.	0256	0.1267	7		

Different table specifications

✓ Number of columns, inference tasks

Different entry types

Out of vocabularies

- ① "George Bush"? 41st or 43rd president?
- (2) 'Term' and 'Incumbency' are they same columns?
- (3) 'London' and 'Londres' are they same entities?

Graph representation of table entries

[Graph Representation]

Set the **column name** as the identifier of the **edges**

Set the value to the corresponding edge as the value of the corresponding node

Use the language model to set the features for the nodes and edges

Simple initialization of **numerical values**

The pretrained model: data

YAGO: Yet Another Great Ontology

Amarilli, Antoine, et al. "Recent topics of research around the YAGO knowledge base." *Web Technologies and Applications: 16th Asia-Pacific Web Conference, APWeb 2014, Changsha, China, September 5-7, 2014. Proceedings 16.* Springer International Publishing, 2014.

A large general-purpose knowledge-base created from Wikipedias with WordNet, GeoNames, etc.,

Contains over **18.1 million triplets** of **6.3 million entities** in YAGO

(Now **5.5 million entities** with **30 million facts**)

CARTE pretraining process

The pretrained model: architecture

Model details

12 layers and multi-head attentions

300 feature dimension

9.3 million parameters

Incorporation of edge information

Use of graph structure

CARTE markedly outperforms the alternatives

CARTE performs well but...

Computationally expensive

Methods	Preprocessing	Learning $n = 64$	Learning $n = 512$
CARTE	50.20 ± 63.68	85.43±60.30	315.49±119.84
CatBoost	-	0.98 ± 1.19	1.05 ± 1.06
TabVec-XGB	64.72 ± 139.23	0.40 ± 0.21	1.19 ± 0.94
S-LLM-XGB	207.87 ± 361.56	0.87 ± 0.71	3.49 ± 1.79

CARTE performs well but...

Benefits from pretraining?

TARTE improves with knowledge pre-training

Transformer with a language model captures well the inductive bias

TARTE - Knowledge pre-training for data semantics

TARTE: Transformer Augmented Representation of Table Entries

Myung Jun Kim, Félix Lefebvre, Gaëtan Brison, Alexandre Perez-Lebel, Gaël Varoquaux

ļ	Title	Release	Production	Country	Language	Popularity	Revenue	Runtime	×layers
	Jumanji	1995.12.15	Tristar Pictures	United States	English	21.94694	262,797,249	104	Add & Norm
	A.I.	2001.06.29	Dream Works	United States	English	13.24936	235,926,552	146	Add & Norm × heads Matmul
1 (* $LM(\cdot)$: Language Model / $D(\cdot)$: Datetime converter $LM(\text{Title}) \qquad LM(\text{Release}) \qquad LM(\text{Production}) \qquad \dots \qquad LM(\text{Revenue}) \qquad LM(\text{Runtime}) \qquad \dots \qquad \dots \qquad \dots \qquad \dots$							Softmax Matmul & Scale V(I) V(I)	
L.	<i>LM</i> (A.I.)	(2001.06.29) M(Release)	.M(Dream Works	<i>LM</i> (Rec 235, 92	6,552 14	[Linear		RTE Input (Z)	TARTE Transformer

Transformer backbone for knowledge pretraining

More flexible representation of tabular entries

TARTE - Knowledge pre-training for data semantics

TARTE: Transformer Augmented Representation of Table Entries

Myung Jun Kim, Félix Lefebvre, Gaëtan Brison, Alexandre Perez-Lebel, Gaël Varoquaux

Larger and richer pretrain data to account for heterogeneity

Better control of the pretraining

Learning with the backbone

Specializing to a domain

From **fine-tuned models** of related tables, **TARTE** can **readily extract embeddings**

The **TARTE** embeddings can be used with the **boosting scheme**

Residuals are sequentially fitted with embeddings from each fine-tuned model

Introduction

Knowledge pre-training for tabular learning

CARTE: Context-Aware Representation of Table Entries

TARTE: Transformer Augmented Representation of Table Entries

Empirical studies

Discussion

On small tables: few-shot learning

On larger tables $(n = 10\ 000)$

TARTE helps both for prediction and scalability

Domain specialization – single source

TARTE improves with domain specialized representations

Domain specialization - multiple sources

TARTE stays efficient with multiple source tables

Introduction

Knowledge pre-training for tabular learning

CARTE: Context-Aware Representation of Table Entries

TARTE: Transformer Augmented Representation of Table Entries

Empirical studies

Discussion

TARTE

Knowledge pre-training that helps tabular learning

A re-usable backbone

New research directions for tabular data

Applications to domains specific problems

you