
1 /

Closing the gap between Edge and Cloud
Smart application deployment on hybrid architectures

Background

Item Item Item Item… …

The Edge (blue)

The Cloud

Stream: unbound collection of atomic items

The Fog (green)

Data ingestion

Stream processing

Background

• How is application performance affected by the difference of bandwidth between Edge and
Cloud?
• With a sufficiently large bandwidth (e.g. fiber), is it still necessary to execute some

computation on the Edge?

• How does Edge computing impact throughput and machine resources?
• The reduction in the amount of data transferred to the Cloud and the latency of the

response is not hindered by the processing time and energetic consumption on the Edge?

• How are Cloud-based frameworks impacted by Edge computing?

• Is Edge computing really necessary for all scenarios?

Background

Can Edge computing have a negative impact?

100% Cloud scenario

1ms
1KB 100ms

1KB

100ms
1KB

1ms
1KB

Total data transferred: 4Kb
Total time: 212ms

10ms

100% Edge scenario

1ms
1KB

1ms
1KB

Total data transferred: 2KB
Total time: 302ms

150ms

Hybrid scenario

1ms
1KB 50ms

512B

50ms
512B

1ms
512B

Total data transferred: 2.5KB
Total time: 257ms

5ms

300ms

Problem statement
The application graph

Applications are modeled as stream graphs, which are represented as DAGs

𝐴 = 𝑃, 𝐿
Where:
• 𝑃 is a set of operators
• 𝐿 is a set of streams, i.e. data dependencies between operators

3 types of operators are considered:
• Sources that only produce data

𝑆 = {𝑎, 𝑏}
• Processing operators that receive,

transform and send data
𝑂 = 𝑐, 𝑑, 𝑒, 𝑓

• Sinks that only consume data
𝐸 = {𝑔}

Problem statement
The application graph

An example of a simple application graph: CCTV surveillance

Source Map Map Window Sink

Transforms
(pre-process)

the image

Identifies, and count
number of people

Determines
busiest area

Problem statement
The application graph

Planner takes as input an application graph and select those operators that are best suited to
be executed on the Edge (in short, they must be stateless, and mustn’t have data

dependencies on any stateful operator.

There are 6 types of stateless operators:
• Map: takes one item and produces

one item.
• Flat Map: takes one item and

produces zero, one or more items.
• Filter: takes one item and produces

zero or one item.
• Split: takes one stream and produces

two or more streams.
• Union: takes two or more streams

and produces one stream.
• Select:

Each operator encodes the resources
constraints that a potential hosting machine
must satisfy. In the current work, two
resource constraints are defined:

• 𝑂234: millions of operations per second

• 𝑂262: RAM memory

which represent the minimal processing
capability and minimal amount of RAM
memory available on a potential hosting
machine 𝑂

Problem statement
The network graph

The network graph is represented as a DAG

𝐺 = 𝐻, 𝑋
Where:
• 𝐻 is the set of hosting machines
• 𝑋 is the set of connections between them

Each hosting machine ℎ ∈ 𝐻 has a series of
parameters that describe its capabilities:
• ℎ234: millions of operations per second
• ℎ262: available RAM memory
• ℎ<3=>: renting cost of the machine
• ℎ?@: energetic cost of the machine
• ℎA<: cost per unit of time

Host machines are organized in layers,
which are abstract representations of
regions in the infrastructure.

The set of layers is defined as 𝐿, and
each ℓ ∈ 𝐿 has an associated
parameter ℓC24, which is the cost of
enabling ℓ in order to use its machines.

ℓD 𝑓𝑜𝑟 𝑝 ∈ 𝑃

denotes the layer of operator 𝑝.

Layer 1

Problem statement
Layer 2 Layer 3 Layer 4

Data sources Data centers

Connections between machines depends
on the layers they belong to

𝑥ℓI,ℓJ ∈ 𝑋

represents a connection between machines
belonging to layers ℓK ∈ 𝐿 and ℓL ∈ 𝐿

Connections also have parameters that
denote their capabilities:
• 𝑥ℓI,ℓJ

M@ : average bandwidth
• 𝑥ℓI,ℓJ

MN : average bitrate

Problem statement
To run an application, the application graph needs to be deployed onto the network graph,

that is, operators need to be put on machines.

Source Map Map Window Sink

Edge SPE Cloud SPE

Application

The Edge The Cloud

• Minifi
• Edgent

• Kafka
• Spark
• Flink
• Storm
• Sanza
• Pulsar

Such mapping is called an execution plan.

𝑚:𝑂 → 𝐻

hence

𝑚Q = ℎ 𝑓𝑜𝑟 𝑜 ∈ 𝑂 𝑎𝑛𝑑 ℎ ∈ 𝐻, 𝑜262 ≤ ℎ262

For the sake of clarity, 𝒎𝒐 is used instead of 𝒎 𝒐

Data model
Throughput

The set of all data items is denoted by 𝐷, and 𝐷W denotes the set of data items produced
by operator 𝑖 ∈ 𝑃/𝐸

As with operators and machines, data items also have parameters:
• 𝑑W=CZ6: the size of the item
• 𝑑W234: computing power needed to process it

Throughput: amount of items produced per unit of time by an operator

Source

𝑐

For sources, the throughput is constant, and specific for each data source.

Data Model
Throughput

For processing operators, throughput depends on the amount of data that arrives at the
operator, and its processing power (how much data I receive, and how fast I can manage it).

a
b

c

d

𝑁\ represents the set of operators
connected to an operator 𝑞

𝑁\ = {𝑎, 𝑏, 𝑐}

The throughput of an operator 𝑞 is defined as

𝑇\ =
𝑚\
234

ℐ\ ` 𝑑\234
`
1
𝑁\

` 𝑝\

q 𝑑\ 𝑑\ 𝑑\ 𝑑\

𝑚\

𝑁\

ℐ\

ℐ\ represents the amount of data
arriving in operator 𝑞

ℐ\ = b
c∈de

𝑥ℓf,ℓe
MN `

1
𝑇c ` 𝑑c=CZ

𝑥ℓg,ℓe

𝑑h 𝑑h 𝑑h 𝑑h
𝑝\ is the selectivity of
an operator of type 𝑞

Data Model
Latency

Processing latency: time that a processing operator takes to process a data item.

The processing latency 𝐴\ of a processing operator 𝑞 ∈ 𝑂 depends on the amount of data ítems 𝑑\
arriving at 𝑞, the amount of processing necessary to transform 𝑑\, and the processing capacity of the
machine 𝑚\ hosting 𝑞.

a
b

c

d

q 𝑑\ 𝑑\ 𝑑\ 𝑑\

𝑚\

ℐ\

𝐴\ =
ℐ\ ` 𝑑\234

𝑚\
234

The total processing latency
𝐴 can be estimated as

𝐴 = b
\∈3

𝐴\

Cost Model
The proposed algorithm takes into account up to four different types of costs: network
(𝐶d6>), implantation (𝐶C24), energetic (𝐶?@) and on-demand (𝐶3j).

The network cost depends on the amount of
data being sent on the network

𝐶d6> = b
W∈4\l

𝑇W ` 𝑑W=CZ6 ` 𝑥ℓm,ℓe
<3=> ∀ 𝑗 ∈ 𝑃

The implantation cost is associated to the
number of layers having machines hosting
operators

𝐶C24 =b
ℓ∈p

qℓ
C24

0
𝑖𝑓 ∃ℓQ = ℓ 𝑓𝑜𝑟 𝑜 ∈ 𝑂K

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1: Only processing operators are used, since sources and sinks are considered to be already deployed and thus, there is no implantation cost deriving from them.

The energetic cost depends on the processing
load of hosting machines (i.e. the rate between
available and needed processing capacity)

𝐶?@ = b
Q∈3

𝑚Q
234

ℐQ ` 𝑑Q234
` 𝑚Q

?@

The on demand cost is relative to hosting
machine renting cost, or any periodic cost in the
case where the infrastructure is private

𝐶3j = b
Q∈3

𝑚Q
<3=>

The total cost 𝐶 is simply the sum of previous costs

𝐶 = 𝐶d6> + 𝐶C24 + 𝐶?@ + 𝐶3j

Proposed solution
CIPA: Complex Infrastructure Placing Algorithm

Input: An application graph 𝐴 = (𝑃, 𝐿) and an infrastructure graph 𝐺 = (𝐻, 𝑋).
Output: An execution plan, represented as a function 𝑚:𝑂 ⊂ 𝑃 → 𝐻

Simulated annealing(initial_solution, temp_max, temp_min, step_max): solution

temp ß temp_max
solution ß initial_solution
while temp > temp_min do:

step ß 0
while step < step_max

step ß step + 1
new_solution ß generate_solution()
delta_energy ß energy(new_solution)-energy(solution)
if delta_energy <= 0 then:

solution ß new_solution
end if

end while
temp ß update(temp)

end while
return solution

Proposed solution

a
b

c

d

q

n.next() returns the nodes
depending on data from n

𝑎. 𝑛𝑒𝑥𝑡 = 𝑏, 𝑞

𝑐. 𝑛𝑒𝑥𝑡 = {𝑞}

n.previous() returns the
nodes to which n is

dependant

𝑞. 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑎, 𝑏, 𝑐

𝑏. 𝑛𝑒𝑥𝑡 = {𝑎}

n.level() returns the current
layer level onto which n’s

hosting machine is deployed
(null if undeployed)

𝑞. 𝑙𝑒𝑣𝑒𝑙 = 3

𝑑. 𝑙𝑒𝑣𝑒𝑙 = 𝑛𝑢𝑙𝑙

Layer 1

Layer 2

Layer 3

Proposed solution
CIPA: Complex Infrastructure Placing Algorithm

Input: An application graph 𝐴 = (𝑃, 𝐿) and an infrastructure graph 𝐺 = (𝐻, 𝑋).
Output: An execution plan, represented as a function 𝑚:𝑂 ⊂ 𝑃 → 𝐻

generate_solution(sinks ⊂ 𝑃): solution

node_queue ß [e.previous() for e in E]
while node_queue is not empty do:

n ß node_queue.pop()
if 𝑛 ∈ 𝑆 ∪ 𝐸 then continue
max_level ß ∞, min_level ß 0
for m in n.next() do:

max_level ß min(m.level, max_level)
for p in n.previous() do:

min_level ß max(p.level, min_level)
node_queue.push(p)

n.level ß random(min_level, max_level)
bpp(p, machines_in_level(n.level))

Proposed solution
CIPA: Complex Infrastructure Placing Algorithm

Input: An application graph 𝐴 = (𝑃, 𝐿) and an infrastructure graph 𝐺 = (𝐻, 𝑋).
Output: An execution plan, represented as a function 𝑚:𝑂 ⊂ 𝑃 → 𝐻

bpp(node ∈ 𝑂, machines ⊂ 𝐻, tolerance): hosting_machine

filter_too_small_and_too_large(machines, tolerance)
sorted_machines ß sort_by_cost()

return sorted_machines.first()

Next steps

• Hardcode sample stream processing applications to use as tests
• CCTV
• Earthquake Early Warning System

• Setup the benchmark ideal environment and the placing found by the
algorithm to run the experiments.
• Automatically convert algorithm output to config files.
• Metrics to measure: throughput and latency

• Run the experiments on Grid’5000 using a management tool like EnOSlib

• Analyze, discuss and write the paper with the results.

