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Abstract. A novel adaptive and exemplar-based approach is proposed for image restoration (denois-

ing) and representation. The method is based on a pointwise selection of similar image patches of

fixed size in the variable neighborhood of each pixel. The main idea is to associate with each pixel

the weighted sum of data points within an adaptive neighborhood. We use small image patches (e.g.

7 × 7 or 9 × 9 patches) to compute these weights since they are able to capture local geometric

patterns and texels seen in images. In this paper, we mainly focus on the problem of adaptive

neighborhood selection in a manner that balances the accuracy of approximation and the stochastic

error, at each spatial position. The proposed pointwise estimator is then iterative and automatically

adapts to the degree of underlying smoothness with minimal a priori assumptions on the function to

be recovered. The method is applied to artificially corrupted real images and the performance is very

close, and in some cases even surpasses, to that of the already published denoising methods. The

proposed algorithm is demonstrated on real images corrupted by non-Gaussian noise and is used for

applications in bio-imaging.

KEYWORDS: exemplar-based methods, estimation, bias-variance trade-off, restoration, denoising,

nonlinear filtering, detection, energy minimization, bio-imaging.

1. Introduction

Traditionally, the problem of image recovering is to reduce undesirable distortions and

noise while preserving important features such as homogeneous regions, discontinuities,
edges and textures. This can be accomplished by taking into account local geometries and

statistics during the filtering process. Popular image restoration algorithms are therefore

nonlinear to reduce the amount of smoothing near abrupt changes:

− Most of the more efficient regularization methods are based on discrete [34, 7] or con-
tinuous [64, 72] energy functional minimization since they are designed to explicitly

account for the image geometry, involving the adjustment of global weights that bal-
ance the contribution of prior smoothness terms and a fidelity term to data. Related

partial differential equations (PDE) and variational methods, including anisotropic

diffusion [67, 87, 9] and total variation (TV) minimization [72, 17], have shown im-
pressive results to tackle the problem of edge-preserving smoothing [67, 16, 87, 84]

and image decomposition into geometric, textured and noise components [60, 66, 1].

− For reasons of performance in computer vision, other smoothing algorithms aggregate
information according to a spatial criterion and a brightness criterion. The neighbor-
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hood filters [53, 40, 76], including the so-called bilateral filtering [83, 5], use this

generic principle, involving the local weighted averaging of input data over a spatial
neighborhood.

In most cases, the global amount of smoothing being performed is controlled by a relatively

small number of parameters. Nevertheless, when local characteristics of the data differ
significantly across the domain, setting these control parameters is probably not satisfying.

Some efforts have been initiated in this direction to determine local scales of significant

image features and detect non-stationarities in images for better spatial adaptation and
regularization [58, 9, 20, 38, 48].

But, what makes image restoration a difficult task, is that natural images often contain

many irrelevant objects. This type of “noise” is sometimes referred to as “clutter”. To de-
velop better image enhancement algorithms that can deal with structured noise, we need

non-parametric models to capture all the regularities and geometries seen in local patterns.
In contrast to the usual neighborhood filters and PDEs-based filters [17], a line of work

consists then in modeling non-local interactions from training data or a library of natural

images. The idea is to improve the traditional Markov random field (MRF) models by
learning potential functions over extended neighborhoods as initiated in [93]. In [71], the

authors also proposed to use a library of examples in the training step. In the meanwhile,

it has been experimentally confirmed that non-parametric patch-based approaches are
very effective 2D texture synthesis [27], image inpainting [22], image reconstruction and

super-resolution [32] or image-based rendering [31]. Similarities between image patches
have been also used in the early 90’s for texture segmentation [35, 47]. More recently,

the redundancy property observed in many images has been successfully exploited by

Buades, Coll and Morel [14, 15] and Awate and Whitaker [3] for image denoising, and is
a key ingredient at the origin of fractal denoising methods [36]. Also, this idea was early

and independently suggested for Gaussian noise reduction in [24] and for impulse noise

removal in [86, 92].
In our non-parametric estimation framework, we will also assume that small image

patches selected in the variable neighborhood of a pixel capture the essential information
required for local restoration. Unlike most existing exemplar-based MRF methods that use

training sets for learning and denoising [32, 71], the proposed restoration approach is

unsupervised and based on the key idea of iteratively increasing a window at each pixel
and adaptively weighting the input data. As in [14, 15], the data points with a similar

patch to the reference patch will have larger weights in the average. However, unlike

Buades et al. [14, 15], we address the central problem of choosing the smoothing window
(neighborhood) which can be different at each pixel to cope with spatial inhomogeneities

across the image domain. Our main contribution is then to use a change-point detection
procedure, initiated by Lepskii for 1D signals [55]. The Lespkii’s principle, also rooted in

the ideas of wavelet representation [25, 26, 45], is a procedure which aims at minimizing

the pointwise L2 risk of the estimator. The local optimization amounts to balancing the
accuracy of approximation and the stochastic error, at each spatial position. This pointwise

adaptive estimation approach has been described in its general form and in great details

in [55, 56], and the interested readers should of course have a look at these milestone
papers. Throughout this paper, we will show how our approach based on this idea of

pointwise adaptive estimation improves the results obtained using the Non-Local means

filter [14, 15]. Other related works to our approach are neighborhood filters [40, 83, 5, 89,



3

63], information-theoretic adaptive filtering [3] and statistical regularization schemes [77,

69, 46], enhanced via incorporating either a variable window scheme or exemplar-based
weights.

The remainder of the paper is organized as follows. Related studies are presented in

Section 2. In Section 3, we introduce the image modeling and some notations. In Section
4, we formulate the problem of the selection of the “best” possible window and present

the adaptive estimation procedure. We describe a practical algorithm with well calibrated

parameters for image denoising. In Section 5, technical arguments for this iterative proce-
dure are presented: given a window size, we perform a one-step of a fixed-point iteration

to solve the optimality conditions of an energy functional involving non-local interaction
terms. In Section 6, theoretical and statistical properties of the pointwise adaptive es-

timator are briefly presented. In Section 7, we demonstrate the ability of the method to

restore corrupted images with artificial additive white Gaussian noise (WGN). We compare
our results to the published results and show our approach compares favorably to very

competitive methods, included the recent wavelet-based methods [26, 81, 70, 68, 54],

when applied to a commonly-used image dataset [70]. Also, the method is applied to
denoise real images with artifacts and corrupted by non-Gaussian noise, and fluorescence

microscopy images in bio-imaging.

2. Neighborhood filters and related methods

In this section, the relationships between the proposed technique and other image restora-

tion methods are discussed. We focus on iterative and non-iterative neighborhood filters

introduced in statistical and variational frameworks. This includes nonlinear Gaussian
filters, M-estimators from robust statistics, nonlinear diffusion and some related energy

minimization methods since they share some common points with the proposed method
(see also [14] for a recent survey).

First, it is well known that fixed-window methods yield good results when all the pixels

in the window come from the same population as the central pixel. However, difficulties
arise when the square (or circular) window overlaps a discontinuity. Filtering with a win-

dow (or spatial kernel) that is symmetric around the central pixel results in averaging

information from different regions in the vicinity of edges. In such a case, a possible strat-
egy is to substitute the border pixel with a pixel inside the object. Nitzberg & Shiota [65]

(see also [30]) proposed an offset term that displaces spatial kernel centers away from the
presumed edge location, thus enhancing the contrast between adjacent regions without

blurring their boundaries. Intuitively, the displacement direction is calculated from the

dominant local gradient direction or, more robustly, given by the structure tensor [88, 84].
Sensitivity to noise is then reduced, but the user-defined setting of a global scale of features

to be preserved, is required [88]. An other class of nonlinear filters aims at estimating a

connected component of “homogeneous” pixels, that can be of arbitrary shape, containing
the point of interest [91, 11]. One primarily and typical filter based on this principle, is

the sigma filter [53] and continuous versions are the Lee’s [53], Saint-Marc’s [73] and
Susan [76] filters. More recently, Buades et al. proposed the so-called Non-Local means
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filter [14, 15] of the following form

û(xi) =

∑
xj∈Ω Lg(Yi −Yj) Kh(xi − xj) Yj∑

xj∈Ω Lg(Yi −Yj)Kh(xi − xj)
(1)

where Kh(·) = (1/h)K(·/h) and Lg(·) = (1/g)L(·/g) are rescaled versions of non-negative
kernel functions, Yj denotes a vector of pixel values taken in the neighborhood of a point

xi belonging to the image domain Ω. The similarity between two points xi and xj is

measured by the Euclidean distance ‖Yi − Yj‖2 between two vectorized image patches.
We can control the spatial support of the filter by varying h and the level of blurring by

varying g. Both parameters are set manually according to the image contents and the

signal-to-noise ratio. In [14, 15], it has been clearly demonstrated that the NL-means filter

for denoising improves the state-of-the-art (see also [51]).

The NL-means filter may be regarded as a generalization of previous neighborhood

filters. Indeed, if the size of the patch is reduced to one pixel and Lg(·) and Kh(·) are

Gaussian kernels, the NL-means filter is then equivalent to bilateral filtering [83]. In the

meanwhile, other connections between bilateral filtering and better understood methods
have been investigated. First, emphasizing the importance of extended neighborhoods,

Barash & Comaniciu [6] have showed that bilateral filtering represents a weighted av-

eraging algorithm which turns out to be a special implementation of nonlinear diffusion
[67, 87], controlled by a global scale parameter. Elad [28] established further how the

bilateral filter is algorithmically related to anisotropic diffusion [67] and robust estima-
tion [8] in terms of minimizing functionals. The bilateral filter can also be viewed as an

Euclidean approximation of the Beltrami flow and originates from image manifold area

minimization [79, 80]. Barash & Comaniciu showed that kernel density estimation applied
into the joint spatial-range domain yields a powerful processing paradigm - the mean-

shift procedure [21] - also related to bilateral filtering but having additional flexibility

[6]. The link between iterative mean-shift algorithm, local mode filtering, clustering, local
M-estimators, nonlinear diffusion, regularization approaches were already analyzed in

[18, 89, 85, 28, 63, 6]. Also, all these methods have been casted into a unified framework
for functional minimization combining nonlocal data and nonlocal smoothness terms in

[63]. In particular, Mrazek et al. emphasized the large amount of structural similarities

between the iterated bilateral filter and the local M-smoother [19]. It is confirmed that
local M-smoothing uses the initial image in the averaging procedure and searches for the

minimum of a local criterion whereas iterated bilateral filtering uses the evolving image

and has to stop after a certain number of iterations in order to avoid a flat image. To
complete the state of the art related to neighborhood filters, we mention the digital Total

Variation (TV) filter [17], inspired by the ROF (Rudin-Osher-Fatemi) minimizing process
which simultaneously computes a piecewise smooth solution and estimates the image

discontinuities [72]. The ROF method essentially penalizes image derivatives and is one

of the most successful tool for image restoration. We will also compare our results to those
obtained with this famous method [72] in Section 7.

Finally, all previous neighborhood filters [72, 17, 83, 14] have a relatively small number

of smoothing parameters that control the global amount of smoothing being performed.
In implementing these filters, the first question to be asked is how should the smoothing

parameters be chosen ? A number of authors have turned to various statistical tools such
as bandwidth selection, to be exploited for global parameter selection in the diffusion
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process [18, 89, 85, 28, 63, 6, 38, 37]. However, it is also theoretically confirmed that

automatically determining a bandwidth for spherical kernels is a difficult problem [40],
and the bandwidths involved in bilateral filtering are usually chosen to give a good visual

impression and are heuristically chosen [83, 5]. Furthermore, when local characteristics

of the data differ significantly across the domain, selecting optimal and global smoothing
parameters is probably not satisfying. There is seldom a single scale that is appropriate

for a complete image. These difficulties motivated the development of more adaptive

methods to cope with inhomogeneities in images. First, Aurich et al. proposed to use a
chain of nonlinear filters for which the bandwidths vary at each iteration according to

specific and deterministic rules to balance edge detection and noise removal [2]. In [42],
the local amount of Gaussian smoothing is computed in terms of variance in a space-scale

framework, through the minimal description length criterion (MDL). The local variance is

actually useful for localization of significant image features as explained in [9, 38, 42]. An
alternative way to select the local scale is to maximize a measure of edge strength over

scale space [58] but the resulting scale computed from image derivatives, is sensitive to

signal-to-noise ratio. More recently, the TV flow has been suggested since it includes a
non-explicit scale parameter useful for detecting the scale of image features [12].

In this paper, we will also focus on this problem which is an open research issue, and
propose a stable scheme to select the “best” possible neighborhood for local restoration

and smoothing as in [69]. In addition, we propose to use image patches to take into

account complex spatial interactions in images. Our adaptive smoothing works in the joint
spatial-range domain as the Non-Local means filter [15]. However, it has a more powerful

adaptation to the local structure of the data since the neighborhood sizes and the control

parameters are estimated from local image statistics as presented in the remainder of the
paper.

3. Image redundancy and basic idea

In order to describe our estimation method, let us first introduce some useful notations.
Consider the following image model

Yi = utrue(xi) + εi, i = 1, . . . , |Ω| (2)

where xi ∈ R
d, d ≥ 2, represents the spatial coordinates of the discrete image domain Ω

of |Ω| pixels, and Yi ∈ R+ is the observed intensity at location xi. We suppose the errors εi

to be iid (independent identically distributed) Gaussian zero-mean random variables with

unknown variance σ2. Our aim is then to recover utrue : R
d → R+ from noisy observations

Yi. In what follows, we will restrict to functions having a minimal regularity: for 0 <
C0 < ∞ and 0 < C1 < ∞, we assume that supxi∈Ω |utrue(xi)| < C0, and ∀xi,xj ∈ Ω,

|utrue(xj) − utrue(xi)| ≤ C1|xj − xi| (utrue is Lipschitz continuous).
In order to recover utrue from noisy observations, we need additional prior assumptions

on the structure of the image. In particular, we will assume that the unknown image

utrue(xi) can be approximated by the weighted average of input data over a variable
neighborhood ∆i around that pixel xi. The points xj ∈ ∆i with a similar patch uj to

the reference image patch ui will have larger weights in the average as in [14, 15]. This
amounts to supposing that there exists some stationarity in the neighborhood of a point
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xi which can help to recover u(xi). In what follows, ui at xi will denote indifferently a

fixed size square window of
√

p×√
p pixels or a vector of p elements where the pixels are

concatenated along a fixed lexicographic ordering. As with all exemplar-based techniques,

the size p of image patches must be specified in advance according to how stochastic the

user believes the image to be [27, 22]. Note that our ambition is not to learn generic image
priors from a database of image patches as proposed in [93, 32, 44, 71]. We only focus

on image patches as non-local image features able to capture local geometries, and adapt

non-parametric regression techniques for image restoration.
An important question we address in this paper is how to determine the size and shape

of the variable neighborhood ∆i at each pixel, from image data. The selected neighbor-
hood must be different at each pixel to take into account the inhomogeneous regularity of

the image. For the sake of parsimony and computational efficiency, we assume that the set

J of admissible neighborhoods is finite and will be arbitrarily chosen as a geometric grid
of nested square windows

J = {∆i,n : |∆i,n| = (2n+1)×(2n+1), n=1, . . . , N},

where |∆i,n| = #{xj ∈ ∆i,n} is the cardinality of ∆i,,n and N is the number of elements
of J . For technical reasons, we will require the following conditions: ∆i,n is centered

at xi and ∆i,n ⊂ ∆i,n+1. In the next sections, we will precise the adaptive estimation

procedure and describe a local window selector which achieves two objectives: spatial
adaptivity and computational efficiency. We will introduce the notion of local L2 risk as an

objective criterion to guide the optimal selection of the smoothing window for constructing

the “best” possible estimator. This optimization will be mainly accomplished by starting,
at each pixel, with a small window ∆i,0 and a pilot estimator ûi,0, and increasing ∆i,n

with n. The “performance” of the estimator ûi,n is then improved at each iteration of
the procedure while the estimation window is not too large, according to the so-called

“bias-variance trade-off” explained in Section 5.2.

The proposed approach requires no training step and may be then considered as unsu-

pervised. This makes the method very attractive for computer vision applications.

4. Adaptive estimation procedure

The proposed procedure is iterative and works as follows [69, 48].
At the initialization, we choose a local window ∆i,0 containing only the point of esti-

mation xi. A first estimate ûi,0 (and its variance v2(ûi,0)) is then

ûi,0 = Yi and v2(ûi,0) = σ̂2 (3)

where an estimated variance σ̂2 has been plugged in place of σ2 since the variance of errors

is supposed to be unknown. At the next iteration, a larger window ∆i,1 with ∆i,0 ⊂ ∆i,1

centered at xi is considered. Every point xj ∈ ∆i,1 gets a weight1 πi∼j,1 defined by compar-

ing pairs of previous estimated patches ûi,0 = (û
(1)
i,0 , · · · , û(p)

i,0 )T and ûj,0 = (û
(1)
j,0 , · · · , û(p)

j,0 )T ,
obtained at the first iteration. As usual, the points xj with a similar patch ûj,0 to the

reference patch ûi,0 will have weights close to 1 and 0 otherwise. Then, we recalculate

1 The subscript i ∼ j means “xj ∈ ∆i,· and the index j runs through the neighborhood of xi”.
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ûi,n−1

ûj,n−1

∆ i,N

π i~j,n

Figure 1. Description of the exemplar-based restoration approach at a pixel xi. The largest window

∆i,N (17 × 17 pixels when N = 4) and the patch ûj,n−1 at xj ∈ ∆i,n to be compared to the

reference patch ûi,n−1, have been selected and zoomed. The square boxes in dashed lines indicate

the intermediate windows ∆i,n tested at the previous iterations n ≤ N .

the estimate ûi,1 as the weighted average of data points lying in the neighborhood ∆i,1. We

continue this way, increasing with n the window ∆i,n while n ≤ N where N denotes the
maximal number of iterations of the algorithm and the cardinality of J .

For each n ∈ {1, · · · , N}, the iterative estimator and its variance are defined as

ûi,n =
∑

xj∈∆i,n

πi∼j,n Yj , and v2(ûi,n) = σ̂2
∑

xj∈∆i,n

(πi∼j,n)
2

(4)

where the weights πi∼j,n are continuous and assumed deterministic variables that satisfy

the usual conditions 0 ≤ πi∼j,n ≤ 1 and
∑

xj∈∆i,n
πi∼j,n = 1. Here, we suggest to compute

the weights from pairs of previous restored patches ûi,n−1 and ûj,n−1 obtained at iteration
n − 1 as

πi∼j,n =
Gλα

(dist(ûi,n−1, ûj,n−1))∑

xk∈∆i,n

Gλα
(dist(ûi,n−1, ûk,n−1))

(5)

where Gs(·) denotes an exponential function, i.e. Gs(z) = exp(−z/2s). Due to the fast
decay of the exponential kernel, large distances between estimated patches lead to nearly
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zero weights, and λα acts a scale parameter. Besides, the use of weights enables to relax

the structural assumption that the neighborhood is roughly modeled by a square window,
and is an alternative strategy to a more natural geometric strategy which consists in esti-

mating the anisotropy and direction of a rectangular or elliptic window (e.g. see [90]). In

equation (5), the weights πi∼j,n do not directly depend on input data, but are calculated
from neighboring restored patches to improve robustness to noise. This contrasts with the

traditional local M-estimators [19] and the Non-Local means filter [14] (see (1)).

To complete the description, the estimator (4) requires to define an appropriate dis-
tance to compare patches, and an objective criterion to determine the “best” window

adapted for each pixel. These problems are addressed in the next sections.

4.1. Adaptive weights In order to compute ûi,n+1 at the next iteration, we need an
objective distance to measure the similarity between two patches ûi,n and ûj,n. In [27,

22, 14, 15], several authors showed that the Euclidean distance is a reliable measure to

compare image patches. To take into account the estimator variance, we have rather used
the following normalized and symmetrized distance to compare two restored patches

dist(ûi,n, ûj,n) = (ûi,n − ûj,n)
T

V̂
−1
ij,n (ûi,n − ûj,n) (6)

where V̂
−1
ij,n = 1

2 diag
[
v−2(û

(`)
i,n) + v−2(û

(`)
j,n)

]
is a p×p diagonal matrix where v2(û

(`)
·,n), ` =

1, · · · , p, is the local variance of û
(`)
·,n (see (4)), and the index ` is used to denote a spatial

position in an image patch û·,n = (û
(1)
·,n , · · · , û(`)

·,n, · · · , û(p)
·,n)T . Accordingly, the hypothesis

ûi,n and ûj,n are similar, is accepted if the distance is small, i.e. dist(ûi,n, ûj,n) ≤ λα.

Since ûi,n and ûj,n are Gaussian vectors from (4), it follows that ûi,n − ûj,n is Gaussian

distributed: ûi,n − ûj,n ∼ N (0, V̂ij,n). Hence, the parameter λα ∈ R+ will be chosen as

a quantile of a χ2
p,1−α distribution with p degrees of freedom. This parameter controls the

probability of “type I error” defined as

P (dist(ûi,n, ûj,n) ≤ λα) = 1− α, (7)

that is the probability of incorrectly rejecting the hypothesis ûi,n and ûj,n are similar.

All these tests (|∆i,n| tests) have to be performed at a very high significance level, our

experience suggesting to use a 1−α = 0.99-quantile. If dist(ûi,n, ûj,n) exceeds this critical
threshold λα, then we have a significant difference between ûi,n and ûj,n and we reject

the hypothesis that ûi,n and ûj,n are coming from the same texture “class”.

4.2. Adaptive windows In the iterative procedure, n coincides with the iteration and
we will use n̂(xi) to designate the index of the estimated window at xi chosen among all

the non-rejected windows ∆i,n, such as

n̂(xi) = sup {n = 1, · · · , N : |ûi,n − ûi,n′ | ≤ % v(ûi,n′) for all n′ < n} (8)

where % is a positive constant and v(ûi,n′) is the standard deviation of ûi,n′ . This rule

means that we select the largest window such that the estimators ûi,n and ûi,n′ are not too
different, in some sense, for all n′ < n. Intuitively, incorporating more input data points in

the computation of the weighted average as the window increases, tends to reduce noise in
the resulting image. However, the window needs to be not too large since the remote data
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Algorithm Exemplar-based image restoration algorithm

Let {p, λα, N} be the parameters.

Initialization: ûi,0 = Yi and v2(ûi,0) = σ̂2 for each xi ∈ Ω where

σ̂ = 1.4826 med(| r − med|r| |)

where r = {r1, r2, . . . , r|Ω|} is the set of local residuals of the entire image defined as

ri = (2Yi1,i2 − (Yi1+1,i2 + Yi1,i2+1))/
√

6.

and Yi1,i2 is the observation Yi at point xi (see [33, 48]).

Repeat

− for each xi ∈ Ω

• compute

πi∼j,n =
Gλα

(dist(ûi,n−1, ûj,n−1))∑

xk∈∆i,n−1

Gλα
(dist(ûi,n−1, ûk,n−1))

ûi,n =
∑

xj∈∆i,n

πi∼j,n Yj , and v2(ûi,n) = σ̂2
∑

xj∈∆i,n

(πi∼j,n)
2
.

• test the window using

n̂(xi) = sup {n = 1, · · · , N : |ûi,n − ûi,n′ | ≤ % v(ûi,n′) for all n′ < n} .

If this rule is violated at iteration n, we do not accept ûi,n and keep the estimate

ûi,n−1 as the final estimate at xi, i.e. û(xi) = ûi,n−1 and n̂(xi) = n − 1. This

estimate is unchanged at the next iterations and xi is “frozen”.

− increment n

while n ≤ N .

Figure 2. Exemplar-based image restoration algorithm.

points are likely less significant and can originate from other spatial contexts; this results
in reducing the accuracy of the estimation, i.e. the local bias of the estimator increases.

For each pixel, the detection of this transition enables to determine the critical size of the

window. In the next section, we will show that, rejecting ûi,n in favor of ûi,n′ , n′ < n, as
the procedure prescribes, would result in a reduction of the local bias more substantial

than the increasing of the local variance of the estimator. Out of all the windows which
have not been thus rejected, the one corresponding to the smallest variance is used in the

construction of the final estimator û(xi) := û
i,̂n(xi)

.
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Note that the rule (8) relies on the assumption that the variance decreases mono-

tonically as the window increases as explained in Section 5. Accordingly, an additional
test to validate the current window, should be introduced in the algorithm to ensure

v(ûi,n+1) ≤ v(ûi,n). Nevertheless, the denoising results are not altered if this test is not

introduced in the iterative procedure, and may be considered as optional in the algorithm.

4.3. Algorithm We describe a practical algorithm (see Fig. 1 and Fig. 2), with a minimal
number of calibrated parameters, based on the previous construction of the adaptive win-

dow and the corresponding estimator. The key ingredient of the procedure is an increasing
sequence of nested square windows, centered at xi, of size |∆i,n| = (2n + 1) × (2n + 1)
pixels with n = 1, . . . , N . At the initialization, we naturally choose |∆i,0| = 1 and set

the fixed size of
√

p × √
p patches and the parameter λα involved in the image patch

comparison. In addition, the estimation procedure relies on the preliminary estimation of

the noise variance σ̂2 robustly estimated from input data (In Fig. 2, the constant 1/
√

6
is used to ensure E[r2

i ] = σ̂2 in homogeneous regions). We manually set the number N
(typically N = 4) of iterations to bound the numerical complexity which is of the order

p × N × |∆·,N | × |Ω| if an image contains |Ω| pixels. As expected, increasing N allows for

additional variance reduction in homogeneous regions.
In our experimental results reported in Section 7, we demonstrate that the use of vari-

able and overlapping windows contributes to the restoration performance with no block
effect in natural images.

5. Minimization problem and optimality conditions

Throughout this section, we shall see the rational behind the pointwise statistical rule (8)

for choosing the optimal estimation window, and motivate the iterative algorithm that
updates the estimator when the window increases at each iteration.

We show that the “best” possible estimator û(xi) := û
i,̂n(xi)

, computed from the whole

path of values {ûi,n}, is solution of the following original minimization problem




û = arg minu



J(u, Y ) =

∑

xi∈Ω

∑

xj∈∆i,n

φs

(
‖ui − ũj‖2

Ṽij

)


 ,

n̂(xi) = arg minn E
[
|ûi,n − utrue(xi)|2

]
,

(9)

where n and n̂(xi) are respectively the index of the current window ∆i,n and the index of

the estimated window ∆
i,̂n(xi)

at pixel xi. In the first equation in (9), φs : R
+ → R is a

non-convex function of the form φs(z) = 1 − e−z/2s, and we define

‖ui − ũj‖2

Ṽij

= (ui − ũj)
T

Ṽ
−1
ij (ui − ũj) (10)

with ui = (u
(1)
i , · · · , u(c)

i , · · · , u(p)
i )T and ũj = (u

(1)
j , · · · , Yj , · · · , u(p)

j )T where the super-

script (c) is used to denote the central pixel in the reference patch ui, and Ṽij is a p × p
diagonal covariance matrix (see Section 4.1). In the definition of ũj , Yj is substituted to

u
(c)
j and, accordingly, the minimization of J(u, Y ) does not lead to a constant image.
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The functional J(u, Y ) is a non-local energy functional similar to those already studied

in [63] since ∆i,n can be large, but is enhanced here by introducing image patches in
the definition. Intuitively, minimizing J(u, Y ) amounts to estimating an image for which

neighboring patches are similar and, at the same time, the estimated value at the central

position in the reference patch ui must be as close as possible to the input data Yj observed
at the central positions in the neighboring patches {uj}, included in the reference patch

ui. The non-local and complex interactions in spatially varying neighborhoods are thus

taken into account in this image modeling.
In the second equation in (9), the index n̂(xi) of the estimated window at position xi

minimizes the local L2 risk involving the true and unknown function utrue(xi).

5.1. Non-local energy minimization. According to the variation calculus method (see
also [52, 39]), we have

J(u + δu, Y ) − J(u, Y ) =
∑

xi∈Ω

∑

xj∈∆i,n

[
φs

(
‖(ui + δui) − (ũj + δũj)‖2

Ṽij

)
− φs

(
‖ui − ũj‖2

Ṽij

)]

with the abbreviations δui = (δu
(1)
i , · · · , δu(c)

i , · · · , δu(p)
i )T and δũj = (δu

(1)
j , · · · , 0, · · · , δu(p)

j )T .

A straightforward calculation shows that the first variation of J(u, Y ) is given by (high-
order terms are neglected)

J(u + δu, Y ) − J(u, Y ) ≈ 2
∑

xi∈Ω

∑

xj∈∆i,n

(δui − δũj)
T
Ṽ

−1
ij (ui − ũj)φ

′
s

(
‖ui − ũj‖2

Ṽij

)
.

Since we are only interested in the local variation at point xi, we set δuj = 0, ∀j 6= i. Now,
let us assume that if xj ∈ ∆i,n then xi ∈ ∆j,n and vice-versa (i.e. xj and xi are mutually

neighbors), even this does not always hold true. It follows that

J(u1, · · · , ui + δui, · · · , u|Ω|, Y ) − J(u1, · · · , ui, · · · , u|Ω|, Y )

δui
≈

2[
Ṽij

]
i

∑

xj∈∆i,n

(ui − Yj) φ′
s

(
‖ui − ũj‖2

Ṽij

)
.

where
[
Ṽij

]
i

denotes the element of the p×p diagonal matrix Ṽij at point xi (see Section

4.1). If u is a stationary point of J(u, Y ), then we have

J(u1, · · · , ui + δui, · · · , u|Ω|, Y ) − J(u1, · · · , ui, · · · , u|Ω|, Y )

δui
= 0, ∀i ∈ {1, · · · , |Ω|}.

This can be transformed into fixed-point form as

ui =

∑

xj∈∆i,n

φ′
s

(
‖ui − ũj‖2

Ṽij

)
Yj

∑

xj∈∆i,n

φ′
s

(
‖ui − ũj‖2

Ṽij

) . (11)



12

If we impose φs(z) = 1 − e−z/2s and perform a one-step of a fixed-point iteration, we get

ui,new =

∑

xj∈∆i,n

Gs

(
‖ui,old − ũj,old‖2

Ṽij,old

)
Yj

∑

xj∈∆i,n

Gs

(
‖ui,old − ũj,old‖2

Ṽij,old

) . (12)

since φ′
s(z) = Gs(z)/2s. We use this equation to build up an iterative method to minimize

J(u, Y ). As usual, we could iterate the updating steps to minimize J(u, Y ) given ∆i,n, and
then increase the window size. To speed-up the iterative procedure, a single fixed-point

iteration is performed, which does not, surprisingly, alter the results in our experiments.
Accordingly, the index n of the window size and the iteration will be the same and we

substitute n to the subscript “new ” (and n−1 to “old”) in the previous equation. Moreover,

if we use the following approximation ‖ui,old − ũj,old‖2

Ṽij,old

≈ dist(ui,old,uj,old) which holds

for p large (e.g p ≥ 25) and set the scale parameter s to λα, the iterative estimator then
reads as

ûi,n =

∑

xj∈∆i,n

Gλα
(dist(ûi,n−1, ûj,n−1)) Yj

∑

xj∈∆i,n

Gλα
(dist(ûi,n−1, ûj,n−1))

. (13)

and corresponds to the solution already given in Section 4.

In [49], we proved that this estimator fulfills the extremum principle and the average

gray level invariance.

5.2. An oracle window for smoothing. In this section, we demonstrate that minimizing

E
[
|ûi,n − utrue(xi)|2

]
in (9) is equivalent to satisfying the pointwise statistical rule (8).

First, image smoothing from noisy data can be regarded as a 2D statistical kernel re-
gression problem and the bandwidths are locally adapted to local image features [20, 75].

In [75], the authors determine local bandwidths using Parzen windows to mimic local

density for image segmentation. This is a variant of the plug-in idea usually used in the
statistics literature, which is fast and easy to compute. However the plug-in approach is

problematic since it is known to be highly sensitive to noise in images and to the choice
of a global initial bandwidth. In [82], the authors propose to control bootstrap processes

using the covariance of the transformation estimate for retinal image registration. In [37],

the local neighborhoods are adapted to the local smoothness of the image; a limitation of
this approach is the use of a global bandwidth.

In this section, we adopt the adaptive estimation framework [55, 56, 57] to address the

problem of automatic selection of the window adapted for each pixel. It is well understood
that the local smoothness varies significantly from point to point in the image and usual

global risks cannot wholly reflect the performance of estimators at a point. Then, a classical
way to measure the performance of the estimator ûi,n to its target value utrue(xi) is to

choose the local L2 risk, which is explicitly decomposed into the sum of the squared bias

b2(ûi,n) and the variance v2(ûi,n):

E[|ûi,n − utrue(xi)|2] = b2(ûi,n) + v2(ûi,n). (14)
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Our goal is to minimize this local L2 risk with respect to the size of the window ∆i,n, and

for each pixel in the image. The closed-form solution that minimizes the L2 risk represents
the “best” possible estimator (also called “oracle” estimator) which unfortunately cannot

be used in practice. Actually, this optimal solution explicitly depends on the smoothness

of the “true” function utrue(xi) which is unknown, and so, of less practical interest (see
[74, 43, 46, 78]). A natural way to bring some further understanding of the situation

is then to individually analyze the behavior of the bias and variance terms when ∆i,n

increases or decreases with n as follows:

− The bias term b(ûi,n) = E [ûi,n − utrue(xi)] is nonrandom and characterizes the ac-

curacy of approximation of the function utrue at xi by the smoothing window. As it
explicitly depends on the unknown function utrue(xi), it is usually not very useful by

itself. Nevertheless, approximations to the bias can be derived if we assume utrue is
Lipschitz continuous, that is |utrue(xj) − utrue(xi)| ≤ C1|xj − xi|, 0 < C1 < ∞. If we

use the geometric inequality |xj − xi| ≤
√

2
2 |∆i,n|1/2 for 2D images, it follows that

|b(ûi,n)| =

∣∣∣∣∣∣

∑

xj∈∆i,n

πi∼j,n [E[Yj ] − utrue(xi)]

∣∣∣∣∣∣
≤

∑

xj∈∆i,n

πi∼j,n |utrue(xj) − utrue(xi)|

≤ C1

∑

xj∈∆i,n

πi∼j,n |xj − xi|

≤ C1|∆i,n|1/2

√
2

and so b2(ûi,n) is of the order O(|∆i,n|). Thus the squared bias is small when |∆i,n| is

small and typically increases when ∆i,n increases. In other words, incorporating data

points from irrelevant image contexts tends to decrease the accuracy of the estimator.

− The behavior of the variance term is just opposite. The errors are independent and

the stochastic term v2(ûi,n) can be computed on the basis of observations. Since 0 ≤
πi∼j,n ≤ 1 and

∑
xj∈∆i,n

πi∼j,n = 1 and are assumed to be deterministic variables, it

follows that

σ2

|∆i,n|
≤ v2(ûi,n) ≤ σ2.

In addition, we can reasonably assume that there exits a constant 0 ≤ γ2(xi) ≤ 1 such

that v2(ûi,n) ≈ σ2|∆i,n|−γ2(xi). Accordingly, as ∆i,n increases, more data is used to

construct the estimate ûi,n, and so v2(ûi,n) decreases.

In short, the bias and standard deviation are then assumed to be monotonous functions

with opposite behavior. To ensure this monotonicity, we decide to reject the current win-
dow ∆i,n at point xi if v2(ûi,n) > v2(ûi,n−1) at iteration n, and to continue the estimation

process with a larger window. Image gradient points are especially affected by this strategy.
In order to approximately minimize the local L2 risk of the estimator with respect to

|∆i,n|, a natural idea is to minimize an upper bound of the form

E[|ûi,n − utrue(xi)|2] ≤ C2
1

2
|∆i,n| +

σ2

|∆i,n|γ2(xi)
.
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This equation summarizes the well-known bias-variance trade-off and the size of the

expected window can be easily calculated as

|∆oracle(xi)| =

[
2σ2γ2(xi)

C2
1

] 1
γ2(xi)+1

.

This solution cannot be used in practice since C1 and γ2(xi) are unknown, but it can be

shown, for the solution ∆oracle(xi), that (see [46, 78])

|b(uoracle(xi))|
v(uoracle(xi))

≤ γ(xi)

where uoracle(xi) represents the estimated value if we would know ∆oracle(xi). Hence, a good
choice of the window is then the largest window ∆i,n such that |b(ûi,n)| is not larger than

γ(xi)v(ûi,n), for some real value γ(xi) ∈ R+, i.e.

noracle(xi) = sup{n = 1, · · ·N : |b(ûi,n)| ≤ γ(xi)v(ûi,n)}.

Since noracle(xi) is based on the full knowledge of the bias (and then on the unknown
function utrue), uoracle(xi) is called the “oracle” estimate2 since it represents a value we can-

not expect to attain. In practice, the bias is not observable and the bias-variance trade-off

cannot be obtained by sweeping the measured bias b(ûi,n) and variance v(ûi,n) indexed by
the smoothing window ∆i,n at point xi. Therefore, we need more precise characterizations

to derive a selection procedure. We propose then the following standard decomposition of

the estimator ûi,n [57]

ûi,n = utrue(xi) + b(ûi,n) + w(xi) (15)

where w(xi) ∼ N (0, E[(w(xi))
2]), E[ûi,n] = utrue(xi) + b(ûi,n) and E[(w(xi))

2] = E[|ûi,n −
utrue(xi) − b(ûi,n)|2] := v2(ûi,n). Therefore, the following inequality

|ûi,n − utrue(xi)| ≤ |b(ûi,n)| + κ v(ûi,n) (16)

holds with a high probability and 0 < κ < ∞. Finally, since |b(ûi,n)| ≤ γ(xi)v(ûi,n), we

modify correspondingly the definition of the “oracle” window as

sup{n = 1, · · ·N : |ûi,n − utrue(xi)| ≤ (γ(xi) + κ) v(ûi,n)}. (17)

The crucial point is that this inequality depends no longer on b(ûi,n), but is yet related
to the unknown function utrue(xi). Nevertheless, in the next section, we shall see that a

data-driven window selector based on this definition can actually be derived.

5.3. A data-driven local window selector. In the pointwise estimation approach, we

strongly suppose v2(ûi,n) decreases as n increases and the ordering relation ûi,n′ 4 ûi,n

that implies v2(ûi,n) ≤ v2(ûi,n′), can be introduced. If this assumption is not fulfilled for

the original set J , i.e. there is ∆i,n′ ⊂ ∆i,n with the property v(ûi,n′) > v(ûi,n), then

we simply exclude the window ∆i,n′ from J at point xi. The collection of estimators
{ûi,1, . . . , û(xi)} is then naturally ordered in the direction of increasing |∆i,n| where û(xi)

2 ∆oracle(xi) denotes the “oracle” window.
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can be thought as the best possible estimator. Accordingly, we propose a selection proce-

dure based on pairwise comparisons of an essentially one-dimensional family of competing
estimators ûi,n as described below.

Actually, the random variables (ûi,n − ûi,n′) are Gaussian random variables with ex-

pectations equal to the bias differences b(ûi,n) − b(ûi,n′) and variances v2(ûi,n − ûi,n′) ≤
v2(ûi,n′) (see the proof in Appendix A.1.). From (16) and (17), it follows that

|ûi,n′ − ûi,n| ≤ |b(ûi,n′) − b(ûi,n) + κ v(ûi,n − ûi,n′)| (18)

≤ |b(ûi,n′)| + |b(ûi,n)| + κv(ûi,n′ )

≤ γ(xi)v(ûi,n′ ) + γ(xi)v(ûi,n) + κυ̂i,n′

≤ (2γ(xi) + κ)v(ûi,n′ )

≤ (2 sup
xi∈Ωγ(xi) + κ)v(ûi,n′ ).

Now if a threshold % := (2 supxi∈Ω γ(xi) + κ) is properly chosen, none of the variables
|ûi,n′ − ûi,n| will exceed the value %v(ûi,n′), n′ < n, with a high probability. Among all

the candidates satisfying |ûi,n′ − ûi,n| ≤ %v(ûi,n′), one naturally choose the one with the
smallest variance. The exact choice of the threshold % then becomes a balancing act based

on large deviation calculations: % should be large enough to guarantee a sufficiently high

probability and, at the same time, small enough to provide a good control of ûi,n − û(xi).
Following the above discussion, a window selector is then based on the rule [56, 59, 45,

57, 41]:

n̂(xi) = sup {n = 1, · · · , N : |ûi,n − ûi,n′ | ≤ % v(ûi,n′) for all n′ < n} . (19)

From this definition, it seems that the pixels are treated in an independent fashion, but we

recall that spatial correlations are indirectly introduced in (4). Now, setting the threshold
% remains an open issue in practice as already mentioned in [46] and in a recent reliability

study in signal processing applications [78]. In the next section, we shall see how the

threshold % can be estimated from local image statistics.

5.4. Estimation of % Clearly, the choice of the parameter % plays an important role in
the adaptation and must be carefully chosen. In order to calibrate this threshold, we need

to evaluate the probability of the event {n̂(xi) = n} at xi and prove the proposition:

PROPOSITION 1. The event {n̂(xi) = n} occurs at xi with a probability

P(n̂(xi) = n) ≤
n∑

n′=1

2 exp

(
−%2

2

)
.

Proof: see Appendix A.2.

From PROPOSITION 1, it follows

1 − P(n̂(xi) ≥ N) =

N−1∑

n=1

P(n̂(xi) = n) ≤
N−1∑

n=1

n∑

n′=1

2 exp

(
−%2

2

)
≤ N(N−1) exp

(
−%2

2

)
.
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Hence, if we fix the probability P(n̂(xi) ≥ N), an upper bound can be calculated as

% ≤
√

2 log
N(N − 1)

1 − P(n̂(xi) ≥ N)
. (20)

Finally, to estimate P(n̂(xi) ≥ N), we point out that most images are piecewise smooth
and then contain a small number of pixels with significant discontinuities. Therefore, the

probability P(n̂(xi) ≥ N) is high at xi ∈ Ω. The threshold % can be then adapted to image

contents using the following approximation

P(n̂(xi) ≥ N) ≈ P(|ri| ≤ σ̂) =
#{xi : |ri| ≤ σ̂}

|Ω| , (21)

i.e. by using the empirical distribution of pseudo-residuals {ri} and σ̂2 defined in Fig. 2. In

the ideal situation, the estimation windows should very large for pixels belonging to homo-
geneous (or flat) regions in the image (i.e. n̂(xi) ≥ N) and small for pixels corresponding

to edges. Accordingly, the proportion of pixels with small pseudo-residual magnitudes

compared to the noise level gives an approximation of the probability P(n̂(xi) ≥ N). This
simple measurement encodes the intuition that these pixels are likely to belong to homo-

geneous regions. In what follows, we adopt the upper bound (20) (and the approximation
(21)) to derive a data-driven estimation of % in our experiments (see Section 7).

6. Theoretical accuracy of the pointwise adaptive estimation

The window ∆oracle(xi) exactly balances the bias and variance terms, i.e. |b(uoracle(xi))| =
γ(xi)v(uoracle(xi)) and the corresponding “oracle” risk is then of the form

E[|uoracle(xi) − utrue(xi)|2] = (1 + γ2(xi)) v2(uoracle(xi)). (22)

For adaptive estimation at a point xi, one must pay a price for adaptation. The extra

factor is a function of κ and γ(xi), and under fair assumptions, the following proposition
can be proved:

PROPOSITION 2. If and only if noracle(xi) ≤ n̂(xi), there exists an adaptive estimate û(xi)

with the inaccuracy of order

[
(2γ(xi)+κ)√

1+γ2(xi)
+ 1

]2

times the “oracle” risk, i.e.

E[|û(xi) − utrue(xi)|2]1(noracle(xi) ≤ n̂(xi)) ≤
[

(2γ(xi) + κ)√
1 + γ2(xi)

+ 1

]2

E[|uoracle(xi) − utrue(xi)|2].

Proof: see Appendix A.3.

It is clear that the “oracle” risk is unattainable in general but, iif noracle(xi) ≤ n̂(xi), our

estimator has a risk proportional to the desired risk. To complete this analysis, it remains
to evaluate P(n̂(xi) < noracle(xi)) and to prove that we nearly never under-estimate the

window, i.e.
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PROPOSITION 3. The event {n̂(xi) < noracle(xi)} occurs at xi with a low probability

P(n̂(xi) < noracle(xi)) ≤ noracle(xi)(noracle(xi) − 1) exp

(
−%2

2

)
.

Proof: see Appendix A.4.

The probability of the event {n̂(xi)<noracle(xi)} is small, provided that the value noracle(xi)
(noracle(xi) − 1) exp(−%2/2) is sufficiently small. Accordingly, if 2.5 ≤ % ≤ 3 (as shown in

our experiments) and if we choose N = 4, the probability of the event {n̂(xi) < noracle(xi)}
occurs with a low probability. i.e. P(n̂(xi) < noracle(xi)) < 0.133.

7. Experimental results

The proposed methodology is used for image denoising in various contexts as presented
in this section. Our results were measured by the peak signal-to-noise ratio (PSNR) in

decibels (db) defined as

PSNR = 10 log10

2552

MSE
, MSE =

∑
xi∈Ω(uo(xi) − û(xi))

2

|Ω|

where u0 is the noise-free original image.

In our experiments, the noise variance σ̂2 and the threshold % are automatically esti-
mated from image data (see Fig. 2 and Section 5.4). We have used 9 × 9 image patches

(p = 81) and set N = 4. In all the experiments, we shall see % ≤ 3, which implies the

adaptive estimate û(xi) is with the inaccuracy of order 9 times the “oracle” risk if γ(xi) ≤ 1
(see PROPOSITION 2.). The choice of the critical values λα is also important. Large values

improve stability of the model under homogeneity, while too small critical values lead to a
large “false alarm” probability. In our experiments, this “false alarm” probability should not

exceed the given level α set to 0.01 yielding to λ0.01 = χ2
81,0.99 = 113.5. The processing of a

256×256 image required typically 67s (p = 92) on a PC (2.6 Ghz, Pentium IV) and less than
1s with a fast (block-based and spatial sub-sampling) implementation of the algorithm (C-

C++ language). In both cases, the results are visually similar and the PSNR values are very

close, even higher with a block-based implementation but with no spatial sub-sampling. In
table I, we give the performance of the algorithm when applied to a commonly-used set of

images available at
�����������	��
���	���������	�	��������� ∼ � ������������
����! ��������"�!�!�#�!$��&%'�����!��� and de-

scribed in [70]. In this experiment, the images are corrupted by additive white-Gaussian

noise (WGN) (PSNR = 22.13 db, σ = 20). We tested the block-based implementation

in two cases: The top row in Table I presents the results for N = 3 and no spatial sub-
sampling ; The bottom row in Table I presents the results for N = 5 and a sub-sampling by

a factor of 5. The results of the method using the algorithm (Fig. 2) are presented in Tables

II-IV (N = 4). In any cases, our method outperforms most of competitive image denoising
methods as shown in the next Section.

7.1. Denoising of artificially noisy images and comparison to the state-of-the-art. The
potential of the estimation method is mainly illustrated with the 512 × 512 Lena image
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Table I. Computation times and PSNR values obtained with an optimized block-based implementation

of the algorithm applied to images corrupted by additive white-Gaussian noise (PSNR = 22.13 db,

σ = 20). top row: N = 3 and sub-sampling by a factor of 5 ; bottom row: N = 5 and no sub-sampling.

Lena Barbara Boat House Pepper

512 × 512 512 × 512 512 × 512 256 × 256 256 × 256

1.99s / 32.42db 1.90s / 30.17db 2.02s / 30.18db 0.53s / 32.39db 0.48s / 30.70db

481.0s /32.82db 428.6s /30.86db 444.7s /30.31db 119.8s / 33.38db 100.9s / 30.79db

corrupted by an additive white-Gaussian noise (WGN) (Fig. 3a, PSNR = 22.13 db, σ = 20).
In this experiment, we found P(|ri| ≤ σ̂) = 0.829 from image data and computed % = 2.91
from (20). In Fig. 3b, the noise is reduced in a natural manner and significant geometric

features, fine textures, and original contrasts are visually well recovered with no undesir-
able artifacts (PSNR = 32.64 db). The noise component is shown in Fig. 3c (magnified ×2)

and has been estimated by calculating the difference between the noisy image (Fig. 3a)

and the recovered image (Fig. 3b). The estimated noise component contains few geometric
structures and is similar to a simulated white Gaussian noise. To better appreciate the

accuracy of the restoration process, the variance of the pointwise estimator is shown in
Fig. 3d where dark values correspond to high-confidence estimates. As expected, pixels

with a low level of confidence are located in the neighborhood of image discontinuities.

Figure 3e shows the probability of a patch û(xi) occurring in ∆
i,̂n(xi)

, i.e

P

(
û(xi) occurring in ∆

i,̂n(xi)

)
:=

#{xj ∈ ∆
i,̂n(xi)

: dist(û(xi), û(xj)) ≤ λα}
|∆

i,̂n(xi)
| .

Dark values correspond low probabilities of occurrence and, it is confirmed that repetitive

patterns in the neighborhood of image discontinuities are mainly located along image level
lines. Figure 3f shows the locations of the most “exceptional” patches by thresholding a

continuous form of the probability map P(û(xi) occurring in∆
i,̂n(xi)

). The “rare” elements

essentially correspond here to local distinctive features for which the intensity abruptly
changes in the image, to various curvature maxima or not repeated patterns in a local

neighborhood. Besides, we have compared the performance of our method to several

competitive methods: Total Variation (TV) minimizing process [72], bilateral filtering [83],
anisotropic diffusion (AD) using a diffusivity function of the type (1 + |∇u|2/g2)−1 [67]

and Wiener filtering (WF) (Matlab function ( ���������!) ). Figures 4a-d shows the results of the
four tested methods. We stopped anisotropic diffusion after 150 iterations in order to avoid

a over-smoothed image but a decorrelation criterion could be used to stop the diffusion

process [62]. The TV minimizing method [72] completely eliminates small textures but
also blurs edges when the Lagrange multiplier is set to 0.01. If we set the balance Lagrange

multiplier to 0.05, the image is denoised but smooth parts are not completely recovered.

Accordingly, the global control parameters of these algorithms were tuned (we have to try
several values) to both eliminate noise and simultaneously to get the best PSNR value,

and to give a good visual impression (Fig. 4). Additionally, this noisy image has been
restored using pointwise adaptive estimation methods [48, 69] which are not patch-based.
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Table II. Performance of denoising algorithms when applied to test noisy (WGN) images.

Image Lena Barbara Boat House Peppers

σ/PSNR 20 / 22.13 20 / 22.18 20 / 22.17 20 / 22.11 20 / 22.19

Our method 32.64 30.37 30.12 32.90 30.59

(9 × 9 patch)

Buades et al. [14] 31.09 29.38 28.60 31.54 29.05

Ghazel et al. [36] 28.50 25.64 26.34 - -

Kervrann [48] 30.54 26.50 28.01 30.70 28.23

Pizurica et al. [68] 32.20 29.53 29.93 - 30.30

Polzehl et al. [69] 29.74 26.05 27.74 30.31 28.40

Portilla et al. [70] 32.66 30.32 30.38 32.39 30.31

Roth et al. [71] 31.92 28.32 29.85 32.17 30.58

Rudin et al. [72] 30.48 27.07 29.02 31.03 28.51

Starck et al. [81] 31.95 - - - -

Tomasi et al. [83] 30.26 27.02 28.41 30.01 28.88

Wiener filering 28.51 26.99 27.97 28.74 28.10

Figures 4e-f provides a visual comparison of image denoising with these two algorithms:

the AWS algorithm [69] tends to oversmooth the image and to generate some artificial
planar segments in homogeneous regions (Fig. 4f), whereas a variant of this approach [48]

yields a similar result (Fig. 4e) to the image regularized with the TV method [72] (see Fig.

4a). In Fig. 4g-l, the corresponding recovered noise components are shown and most of
them contain undesirable geometric structures. Moreover, our approach is also compared

to the Non-Local means algorithm [14, 15] using 7 × 7 image patches and a fixed search
window of 21 × 21 pixels: the visual impression and the numerical results are improved

using our algorithm (see Figs. 5-6). Our approach is also compared to another and recent

patch-based approach applied to image denoising [71], that exploits ideas from sparse
image coding and training images for learning Markov random field image priors. The

PSNR values are reported in table II for the test images; In most cases, our unsupervised

and simple method produces the best PSNR values. Finally, we reported the best PSNR
results obtained using these methods in table II. Both visually and in terms of PSNR, our

method outperforms any of the tested methods.
Moreover, we have also examined some complementary aspects of our approach using

the artificially corrupted Barbara image (WGN, σ = 20). In this experiment, we found

P(|ri| ≤ σ̂) = 0.806 using (21) and derived % = 2.871 from (20) and the results are shown
in Fig. 7 (zooming view). Finally, we varied the patch size and Fig. 8 shows that taking

too small image patches can generate some visually undesirable flat zones during the

restoration process. Note, that taking one point every two pixels (in both two directions)
in a

√
p × √

p patch (k = p/4) can be applied to produce natural regularized images and

reduce the time computing. Table ?? reports the PSNR values obtained by varying the
patch size and the sub-sampling (factor 2) for different test images. Note the PSNR values
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(a) noisy 512 × 512 (WGN) image (σ = 20) (b) denoised image

(c) noise component (×2) (d) variance of the estimator

(e) P

(
û(xi) occurring in ∆

i,̂n(xi)

)
(f) the most 271 “rare” patches

Figure 3. Denoising of the noisy (WGN) Lena 512 × 512 image (σ = 20).
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(a) TV [72] (PSNR = 30.48) (b) BF [83] (PSNR = 30.26) (c) AD [67] (PSNR = 28.83)

(d) WF (PSNR = 28.51) (e) RAWA [48] (PSNR = 30.52) (f) AWS [69] (PSNR = 29.74)

(g) TV [72] (PSNR = 30.48) (h) BF [83] (PSNR = 30.26) (i) AD [67] (PSNR = 28.83)

(j) WF (PSNR = 28.51) (k) RAWA [48] (PSNR = 30.52) (l) AWS [69] (PSNR = 29.74)

Figure 4. Comparison with restoration methods applied to the noisy (WGN) Lena image (σ = 20):

(a) Total Variation (TV) minimizing process [72], (b) bilateral filtering (BF) [83], (c) anisotropic

diffusion (AD) [67], (d) Wiener filtering (WF), (e) robust adaptive window approach (RAWA) [48],

(f) adaptive weights smoothing (AWS) [69], (g)-(l) estimated noise components for each method.
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(a) Non-Local means denoising method [14] (PSNR=31.09)

(b) our exemplar-based denoising method (PSNR=32.64)

(c) wavelet-based denoising method [68] (PSNR=32.20)

Figure 5. Comparisons with the Non-Local means algorithm [14] and a wavelet-based denoising

method [68] when applied to the noisy (WGN) Lena image (σ = 20).
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(a) our denoising method (b) NL-means denoising [14] (c) BLS-GSM denoising [70]

(PSNR=32.64) (PSNR=31.09) (PSNR=32.66)

Figure 6. Comparisons with the Non-Local means filter [14] and a wavelet-based denoising method

[70] when applied to the noisy (WGN) Lena image (σ = 20).

(a) noisy image (b) denoised image (c) noise component

Figure 7. Results with patch sizes of 9 × 9 pixels when the algorithm is applied to the noisy (WGN)

Barbara 512 × 512 image (σ = 20).

(a) 3 × 3 patch (b) 5 × 5 patch (c) 9 × 9 patch

(PSNR = 28.97) (PSNR = 29.97) (PSNR = 30.37)

Figure 8. Results with different patch sizes of
√

p ×√
p pixels when the algorithm is applied to the

noisy (WGN) Barbara 512 × 512 image (σ = 20).
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Table III. PSNR values when our exemplar-based restoration method (N = 4, α = 0.01) with different

patch size and sub-sampling (factor 2) is applied to noisy (WGN) images (σ = 20).

# points /
√

p ×
√

p patch λp,0.99 Lena Barbara Boat House Peppers

512 × 512 512 × 512 512 × 512 256 × 256 256 × 256

9 points / 3 × 3 21.67 32.13 28.97 29.86 32.69 30.86

25 points / 5 × 5 44.31 32.52 29.97 30.15 33.05 30.98

49 points / 7 × 7 74.92 32.63 30.27 30.17 33.03 30.80

81 points / 9 × 9 113.5 32.64 30.37 30.12 32.90 30.59

25 points / 9 × 9 44.31 32.27 29.84 29.64 32.46 30.26

36 points / 11 × 11 58.62 32.26 29.84 29.51 32.57 29.52

are close for every patch sizes and the optimal patch size depends on the image contents;
a 9 × 9 patch seems appropriate in most cases and a smaller patch can be considered for

processing piecewise smooth images.

To demonstrate the spatial adaptation, we present in Fig. 9, a real image corrupted
by WGN (σ = 20) and denoised by our method (Fig. 9 - left). The spatial distribution

of window sizes is shown in Fig. 9 (right) for a largest set of window sizes. For this
experiment, the threshold % is set to a very low value for demonstration. Clearly, the largest

windows are located in the smoother parts in the image.

Finally, the robustness to noise is illustrated on the 512×512 mandrill image by varying
σ from 5 to 50 (Fig. 10).

We have also compared our method to the best available published results when very

competitive methods [71, 70, 68] were applied to the same image dataset [70]. These
results were taken from the corresponding publications. We point out that, visually and

quantitatively, our very simple and unsupervised algorithm method favorably compares to
any of these denoising algorithms, including the more sophisticated wavelet-based denois-

ing methods (see Fig. 5c-6c). Note that our method yields an improved PSNR for a wide

range of variance as compared to existing methods. If the PSNR gains are marginal for
some images, the visual difference can be significant as shown Fig. 5 where less artifacts

are visible using our method. To complete the experiments, Table IV shows the PSNR values

using our exemplar-based restoration method when applied to this set of test images for a
wide range of noise variances as in [70, 71].

During the reviewing period of this manuscript, other patch-based methods for denois-
ing have been published. The best results (in terms of PSNR) have been recently obtained

by filtering in 3D transform domain and combining sliding-window transform processing

with block-matching [23]. More recently, Elad et et al. [29] and Mairal et al. [61] have
proposed to estimate simultaneously the patch dictionary and the image by using the

so-called K-SVD algorithm. The results are very close to those obtained by Dabov et al.

[23] and slightly higher than our results (e.g. see Table I). Finally, Azzabou et al. have
considered a variational approach [4] inspired by the method presented in this paper; they

have introduced an alternative energy functional and obtained comparable experimental
results on the same image dataset. More recently, Brox and Cremers have proposed an
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Table IV. Performance of our exemplar-based restoration method (p = 92,

N = 4, α = 0.01) when applied to test noisy (WGN) images.

σ/PSNR Lena Barbara Boat House Peppers

512 × 512 512 × 512 512 × 512 256 × 256 256 × 256

5 / 34.15 37.91 37.12 36.14 37.62 37.34

10 / 28.13 35.18 33.79 33.09 35.26 34.07

15 / 24.61 33.70 31.80 31.44 34.08 32.13

20 / 22.11 32.64 30.37 30.12 32.90 30.59

25 / 2017 31.73 29.24 29.20 32.22 29.73

50 / 14.15 28.38 24.09 25.93 28.67 25.29

75 / 10.63 25.51 22.10 23.69 25.49 22.31

100 / 8.13 23.32 20.64 21.78 23.08 20.51

iterated non-local means algorithm and functionals which share some common properties

with the proposed method, for texture restoration [13] (see also [39]).

3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17

Figure 9. Denoising of a 512 × 512 image (WGN, σ = 20). left: denoised image (PSNR=28.17);

right: spatial distribution of window sizes.

7.2. Denoising of real noisy images with artifacts. In the second part of experiments, the

effects of the exemplar-based restoration is approach are illustrated on corrupted images
with assumed additive non-Gaussian noise. The set of parameters is unchanged for pro-

cessing all these test images: p = 92, N = 4, α = 0.01. In most cases, a good compromise
between the amount of smoothing and preservation of edges and textures is automatically
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(a) (σ = 5, PSNR = 34.15) (c) (σ = 20, PSNR = 22.09) (e) (σ = 50, PSNR = 14.05)

(b) PSNR = 34.22 (d) PSNR = 23.34 (f) PSNR = 20.04

Figure 10. Results on a the noisy 512 × 512 mandrill image artificially corrupted with different

signal-to-ratio levels (WGN) (top: noisy images, bottom: denoised images).

reached. In that case, the noise variance σ̂2 is automatically estimated from image data.

For illustration , Fig. 11 shows the four intermediate results obtained at each iteration of
the algorithm (N = 4). The estimated noise component corresponding to the difference

between the denoised image (Fig. 11e) and the noisy image (Fig. 11a) is shown in Fig. 11f.

Note that edges and geometric structures are well preserved and scan effects are mostly
removed. In Fig. 12, we demonstrate that the algorithm is able to remove JPEG artifacts

and block effects due to the DCT compression. Finally, we have extended the method to
restore color images and an example of an old painting is shown in Fig. 13. The image has

been smoothed and cracks are visually partially removed.

Additional examples that demonstrate the performance of the method can be also found
in [49, 50].

7.3. Image denoising in bio-imaging. We have also tested the algorithm on 2D and 3D

confocal fluorescence microscopy images. Some of the current applications in biological
studies are in neuron research. The 271× 238 confocal image depicts neural cells (Fig. 14

(top)). The image, denoised using the set of parameters used in the previous experiments,

contains larger homogeneous areas than the original 2D image and can be more easily
segmented. Finally, the same denoising process has been applied to a 360 × 372 image

showing nuclei in a embryo specimen (Fig. 14 (bottom)). In both cases, spatially-varying
noise is reduced and structure is preserved in the restored images.
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(a) original image (b) iteration #1 (c) iteration #2

(d) iteration #3 (e) iteration #4 (f) noise component

Figure 11. Results obtained at each iteration of the algorithm (N = 4) when applied to a real

286 × 305 image with artifacts (courtesy of D. Tschumperlé - *�+#+-,/.10#032#2#25476#8"9;:�<�4193=�>;?#<-@#93=A47B#8�0
∼ C#+�>#<D*#E-F�,�036#8"9;:�<;>3+�G-8"@-+�?;G&= ).

8. Conclusion

We have described a novel feature-preserving adaptive restoration algorithm where local

image patches and variable window sizes are jointly used. The proposed smoothing scheme

provides an alternative method to anisotropic diffusion, bilateral filtering and NL-means fil-

tering [14, 15]. Our straightforward and unsupervised method yields a significant improve-

ment in image denoising, and achieves performances almost always superior to the best
wavelet-based denoising algorithms. We believe this method represents an important step

forward for the use of neighborhood design that captures spatial dependencies in images.

Unlike previous most exemplar-based methods that use learning algorithms, our method is
unsupervised and fully automatic since control parameter are easily calibrated with statisti-

cal arguments. Experimental results demonstrate its potential for a large variety of images,

included in bio-imaging (we refer the readers to [49] and to the following web page���	�������	� (	(�( �H�#�I�����J�LK��!���'���"���	��M����#%I�!����N!�-%I �����N���O����P�;�����!����Q&%�������N!�"�� ����	�;���J�R�	�"%IS to have

more visual elements). More recently, the method has been extended to spatio-temporal
data and used for video denoising [10].
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JPEG compressed images restored images

Figure 12. Restoration of real images with artifacts (JPEG compression) (courtesy of D. Tschumperlé

- *�+#+-,A.R0#032#2;2A476#8"9-:�<�4193=�>#?#<-@#9&=/47B#8�0 ∼ C#+�>"<H*;E-F�,�0-6#8#9#:�<#>3+�G;8#@;+�?#G&= ).

Figure 13. Patch-based restoration (crack removal) and smoothing of a 391 × 384 color image

(*�+#+-,/.10#0-8"9�>&+�G-8"9�?D=#,�@�?H="+54L>;G&E"8�<-9#B�G-8;6"954T=�9;+�0 ).
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noisy image denoised image noise component (×2)

Figure 14. Results on 2D images: top: neural cells; bottom: nuclei in a embryology specimen.
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Appendix

A.1. Proof of the inequality: v2(ûi,n − ûi,n′) ≤ v2(ûi,n′), ∀ n′ < n.

We have ûi,n−ûi,n′ ∼ N (0, v2(ûi,n−ûi,n′)) since both biases are negligible (E [ûi,n − ûi,n′ ] ≈
0) and then v2(ûi,n − ûi,n′)) = E

[
|ûi,n − ûi,n′ |2

]
. We recall that Yi = utrue(xi) + εi and

ûi,n =
∑

xj∈∆i,n

πi∼j,n Yj and ûi,n′ =
∑

xj∈∆i,n′

πi∼j,n′ Yj .

Since ∆i,n′ ⊂ ∆i,n, we write

v2(ûi,n − ûi,n′))

= E





 ∑

xj∈∆i,n

πi∼j,n εj + utrue(xi)
∑

xj∈∆i,n

πi∼j,n −
∑

xj∈∆i,n′

πi∼j,n′ εj − utrue(xi)
∑

xj∈∆i,n′

πi∼j,n′




2



= E





 ∑

xj∈∆i,n

πi∼j,n εj −
∑

xj∈∆i,n′

πi∼j,n′ εj





 ∑

xj∈∆i,n

πi∼j,n εj −
∑

xj∈∆i,n′

πi∼j,n′ εj







= σ2
∑

xj∈∆i,n

(πi∼j,n)2 + σ2
∑

xj∈∆i,n′

(πi∼j,n′)2 − 2 E


 ∑

xj∈∆i,n

πi∼j,n εj

∑

xj∈∆i,n′

πi∼j,n′ εj




= σ2
∑

xj∈∆i,n

(πi∼j,n)2 + σ2
∑

xj∈∆i,n′

(πi∼j,n′)2 − 2σ2
∑

xj∈∆i,n′

πi∼j,n′πi∼j,n
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= v2(ûi,n) + v2(ûi,n′) − 2σ2
∑

xj∈∆i,n′

πi∼j,n′πi∼j,n .

In addition, as πi∼j,n′ := 0 when xj /∈ ∆i,n′ , it follows that

∑

xj∈∆i,n′

πi∼j,n′πi∼j,n ≥
∑

xj∈∆i,n

πi∼j,n′πi∼j,n .

By definition, πi∼j,n′ ≥ πi∼j,n for xj ∈ (∆i,n ∩ ∆i,n′), hence

σ2
∑

xj∈∆i,n

πi∼j,n′πi∼j,n ≥ σ2
∑

xj∈∆i,n

(πi∼j,n)2 = v2(ûi,n).

Finally, we obtain the inequality:

v2(ûi,n − ûi,n′)) ≤ v2(ûi,n′) + v2(ûi,n) − 2v2(ûi,n) ≤ v2(ûi,n′) − v2(ûi,n) ≤ v2(ûi,n′).

�

A.2. Proof of Proposition 1. If X =
ûi,n − ûi,n′

v(ûi,n′)
is N (0, 1), then

E exp(%X) = exp

(
%2

2

)
.

From this inequality and the exponential Chebychev’s inequality stated as follows:

P(X > a) ≤ E[g(X)]

g(a)

where g : R → R is a positive monotonous increasing function and a ∈ R, we have

P((ûi,n − ûi,n′) > %v(ûi,n′)) ≤
E exp

(
%(ûi,n−ûi,n′ )

v(ûi,n′ )

)

exp %2
.

by taking g(x) = exp(%x) and a = %. Hence

P((ûi,n − ûi,n′) > %v(ûi,n′)) ≤ exp

(
−%2

2

)

and the following result comes from the symmetry of the normal distribution.

P(|ûi,n − ûi,n′ | > %v(ûi,n′)) ≤ 2 exp

(
−%2

2

)
.

To prove Proposition 1., we note also that

{n̂(xi) = n} = {∃n′ ∈ {1, . . . , n − 1} : |ûi,n − ûi,n′ | > %v(ûi,n′)}
⊆

⋃

n′<n

{|ûi,n − ûi,n′ | > %v(ûi,n′)} .
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Using this definition, we get

P(n̂(xi) = n) ≤
∑

n′<n

P(|ûi,n − ûi,n′ | > %v(ûi,n′)) ≤
∑

n′<n

2 exp

(
−%2

2

)

�

A.3. Proof of Proposition 2. Let the condition of the theorem be satisfied, that is

noracle(xi) ≤ n̂(xi), then, from the inequality (18), we have

|uoracle(xi) − û(xi)| ≤ (2γ(xi) + κ) v(uoracle(xi)).

By taking the expectation of this expression and using (22), we obtain:

E[|uoracle(xi) − û(xi)|2]1/21(noracle(xi) ≤ n̂(xi)) ≤ (2γ(xi) + κ) v(uoracle(xi))

≤ 2γ(xi) + κ√
1 + γ2(xi)

E[|uoracle(xi) − utrue(xi)|2]1/2.

Finally, by applying the triangular inequality, we get

E[|û(xi) − utrue(xi)|2]1/21(noracle(xi) ≤ n̂(xi)) ≤ E[|û(xi) − uoracle(xi)|2]1/21(noracle(xi) ≤ n̂(xi))

+ E[|uoracle(xi) − utrue(xi)|2]1/2

≤ 2γ(xi) + κ√
1 + γ2(xi)

E[|uoracle(xi) − utrue(xi)|2]1/2

+ E[|uoracle(xi) − utrue(xi)|2]1/2

≤
[

2γ(xi) + κ√
1 + γ2(xi)

+ 1

]
E[|uoracle(xi) − utrue(xi)|2]1/2

�

A.4. Proof of Proposition 3. We have

{n̂(xi) < noracle(xi)} ⊆
⋃

n<noracle(xi)

⋃

n′<n

{|ûi,n − ûi,n′ | > %v(ûi,n′)} .

and the probability of the event {n̂(xi) < noracle(xi)} occurs can bounded

P(n̂(xi) < noracle(xi)) ≤
noracle(xi)−1∑

n=1

n∑

n′=1

P(|uoracle(xi) − ûi,n| > %v(ûi,n)).

In Appendix A.2, we proved P(|ûi,n − ûi,n′ | > %v(ûi,n′)) ≤ 2 exp
(
−%2/2

)
. Hence, we have

P(n̂(xi) < noracle(xi)) ≤
noracle(xi)−1∑

n=1

n∑

n′=1

2 exp

(
−%2

2

)

= noracle(xi)(noracle(xi) − 1) exp

(
−%2

2

)
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