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Abstract—We present a non-parametric regression quence denoising, patch-based approach, Poisson noise,
method for denoising 3D image sequences acquired viavariance stabilization, adaptive estimation, energy mini
fluorescence microscopy. The proposed method exploitsmization.
the redundancy of the 3D+time information to improve
the signal-to-noise ratio of images corrupted by Poisson-

Gaussian noise. A variance stabilization transform is first . INTRODUCTION

applied to the image-data to remove the dependence be- . . . . .
tween the mean and variance of intensity values. This pre- LUORESCENCE video-microscopy is an investiga-

processing requires the knowledge of parameters related tion tool used in biology for dynamics analysis at
to the acquisition system, also estimated in our approach. sub-cellular levels. Combined with fluorescent tags such
In a second step, we propose an original statistical patch- as genetically engineered fluorescent chimeric proteins
based framework for noise reduction and preservation of (e.g. Green Fluorescence Protein GFP), both confocal
space-time discontinuities. In our study, discontinuitis are microscopy and wide-field microscopy allow 3D live
related to small moving spots with high velocity observed protein imaging. Mainly used to analyze isolated cells,
in fluorescence video-microscopy. The idea is to minimize ¢ ntqca) microscopy can also be usedvivo if com-

an objective non-local energy functional involving spatie bined with endomicroscopy. Unfortunately, when cell

temporal image patches. The minimizer has a simple form =~ "~ .
and is defined as the weighted average of input data viability needs to be preserved and photo-bleaching

taken in spatially-varying neighborhoods. The size of each avoided, light exposure time must be limited, resulting
neighborhood is optimized to improve the performance of in low signal-to-noise ratios.
the pointwise estimator. The performance of the algorithm ~ While improving the signal-to-noise ratio, denoising
(which requires no motion estimation) is then evaluated on may allow us to reduce exposure time and therefore to
both synthetig and_regl image sequences using qualitative open new opportunities in live cell imaging. Moreover,
and quantitative criteria. frame rates can be increased without increasing radiation
Index Terms—Video-microscopy, fluorescence, image se-dose, which could be relevant to capture fast events at
sub-cellular levels. Finally, if the point spread function
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Gaussian noise. Several approaches have been introduseje for denoising with the non-local means filter, is
to deal with such signal-dependent noise. In [3], thentractable in practice in 2D, and unrealistic for video
authors proposed a maximum penalized likelihood esequences. As a consequence, a variant of this filter has
timator for Poisson noise removal in very low courntbeen recently proposed in [31] in which the authors
situations. The problem is more challenging for Poissonse a pre-classification of the pixels of the sequence
Gaussian noise and another line of work consists im order to speed up the denoising procedure. Another
stabilizing the noise variance using ad-hoc transformimiprovement introduced in [32] consists in collecting
The more common transform is the so-called Anscombamilar patches to build 3D arrays. A unitary transform
transform [4] designed for Poisson noise. This transforamd a hard-thresholding are then applied to remove noise.
was further generalized to Poisson-Gaussian noise [B],the meanwhile, a general modeling framework based
with satisfying results if the number of counts is largen signal theory and machine learning has been proposed
enough and more recently for "clipped" (under- anby Elad etal. forimage and video sequence analysis. The
over-exposure) raw-data [6]. In the case of very loauthors assume that the image is sparsely represented
count situations € 1 photons in average), the moreover an over-complete dictionary of atoms that are either
sophisticated Fisz transform allows one to better stalfixed (e.g. DCT) or learned from exemplar patches [33],
lize Poisson noise [7], [8]. Finally, local estimation 0f34]. The approximation problem is then equivalent to
image-dependent noise statistics (assumed to be locdltlg minimization (using a K-SVD algorithm) of an
Gaussian) has also been investigated, especially in #rergy functional involving a data term and a penalty
case of adaptive Wiener filtering [9]-[11]. term that encodes sparsity [35]. This method is able to
Denoising temporal sequences is even more coproduce impressive image denoising results, including
plex since there are currently no satisfactory methods image sequences, but requires intensive minimization
for processing fluorescence video-microscopy 3D inprocedures and the adjustment of several parameters.
age sequences contaminated by Poisson-Gaussian noisénlike the previous patch-based approaches [27], [31],
Most of them only restore each frame separately witf34], [36], we present in this paper a space-time patch-
out using the temporal redundancy of image seribased adaptive statistical method for 3D+time video-
[12], [13]. When temporal coherence is exploited, ithicroscopy image sequence restoration. As already men-
is usually recommended to consider a motion estimiened, patch-based methods have been proposed for
tion/compensation stage as proposed for video denoisthgnoising image sequences, but, to our knowledge, only
[14]-[17] and, for instance, for low-dose fluoroscopwnisotropic diffusion and wavelet shrinkage have been
image sequence filtering [11]. This is especially trugpplied to 2D+time fluorescence video-microscopy [23],
for real-time imaging applications. Thus, Kuznetsov ¢24]. The main features of the proposed method have
al. recently proposed to use a temporal Kalman-Bu@jready been presented in a discrete setting at the IEEE-
filter to improve the quality of video-microscopy im-ISBI'O8 conference [37]. In our approach, we propose
ages [18]. The main difficulty in video-microscopy idirst a variance stabilization step to be applied to the
to estimate the motion of small and similar objectdata in order to obtain independence between the mean
moving with high velocity in the image sequence. Tand the variance. Second, we consider spatio-temporal
overcome this problem, sophisticated methods (see [hpighborhoods to restore series of 3D images as already
but designed for still images have been adapted to videpsoposed for 2D image sequences in [36]. Our method
Wavelet shrinkage [19], [20], Wiener filtering [21] oris based on the minimization of an energy functional
PDE-based methods [22] are typical examples of suathile exploiting image patches. The minimizer of this
methods. Some of them have been successfully adapge@rgy functional established in a continuous setting has
to video-microscopy [23], [24]. Recently, an extension & simple form and corresponds to a weighted average of
the non-local means filter [1] also related to the universiatensity values taken in spatially (and temporally) vary-
denoising (DUDE) algorithm [25] and the entropy-baseidg neighborhoods. The neighborhood size is adapted
UINTA filter [26], has been proposed to process imagm-line to improve the performance (in the sense of the
sequences. It assumes that an image sequence conthinsisk) of the pointwise estimator. No learning step
repeated patterns [27]. Noise can then be reduced doywavelet decomposition is required. Also, no motion
averaging data associated to the more similar patchesstimation is involved as originally described in [36].
the image sequence. Finally, patch-based approachesranally, the designed algorithm comprises only a few
now very popular in texture synthesis [28], inpaintingarameters which are easily calibrated.
[29] and video completion [30]. The remainder of this paper is organized as follows.
Nevertheless, searching similar examples in the whdle Section/ II, we introduce the denoising problem in



fluorescence video-microscopy. In Section lllI, we first IIl. PROPOSED METHOD
present the generalized Anscombe transform and defil Noise variance stabilization
n original roach t timate it rameters an r-

an original approach to estimate its parameters and co 1) Definition: The Anscombe transform is the more
rect the induced bias. Then, we introduce the space-time

ommonly used transform for stabilizing the variance of
patch-based estimator. In Section IV, we demonstr

0|sson noise [4]. Murtargh edl. considered a more
the performance of the algorithm (controlled by a small

eneral Anscombe transform (GAT) for Poisson and
number of parameters) on both synthetic and real vid

aussian noise [39]. Using the notation introduced in
microscopy images and image sequences.

(1), the GAT can be expressed as:

2 3
Il. PROBLEM STATEMENT Taa(Z;) = g()\/gOZi + ggg + 02 —gom. (2)

In this section, we present a general framework fdfote that variance stabilization and skewness correction
image sequence analysis in wide-field or confocal miwe incompatible.
croscopy. Our study is limited to the restoration of 2) Parameter estimation:in contrast to the usual
artifacts due to random noise. We do not considearameter-free Anscombe transform, the GAT requires
the issue of correcting the signal distortions due tbe setting (or the estimation) of a small set of param-
diffraction (e.g. deconvolution problem) but we will lateleters, go, o and m, related to the acquisition system.
show the compatibility of the proposed method with b [40], the authors proposed a bias-variance trade-off
deconvolution post-processing step. criterion to determine the parameters of their multi-scale

Acquired images correspond to stacks I6f to 60 variance stabilization transform. However, they do not

slices with an axial resolution (depth) lower than therovide the method to estimate the parameigyso2
lateral one. Anisotropy in 3D microscopy can be an iss@d m. Nevertheless, Starck el. proposed in [41] an

for 3D wavelet methods, especially for processing stacierative algorithm to estimate the gagp and the dark
with a limited number of slices due to boundary effectgurrent parameters from images.

The processed images depict tagged proteins appearintjistead, we propose an approach based on a linear
as bright particles of siz& to 10 pixels and moving regression in the 2D-spa¢g[Z;], Var[Z;]). This method
with speeds ranging frorh to 10 pixels per frame. The has been previously sketched in [42] and we provide here
small amount of light collected by sensors and therma#lditional details and some improvements. A similar
agitation in electronic components induce a Poisso@Pproach has been since described in [24], [43]. From
Gaussian noise. Accordingly, we assume the foIIowir@, we have

affine stochastic model: { E[Z] =gofi+m
AR P 3)
Zi— goNi + e, ) Var(Z;] = g50; + oZ.
which yields
where Z; 2 Z(z;) is the observation at space-time lo- Var(Zi] = goE[Zi] + o2 — gom (4)
1] — K2 £ .

cationz; € R, i € {1,...,n} andd the dimension of
the space-time domain. The gain of the overall electroric follows that a linear regression in the 2D-space
system is denotegy. The numberV; of collected photo- (E[Z;], Var[Z;]) prowdes an estimation of the two pa-
electrons at pixelr; is a random variable assumed teametersyy andepc = o2 — gom. Accordingly, (2) can

follow a Poisson distribution of parametéf = 6(x ;) be written as

with density:p(N;) = ONT Finally, the dark current T 2 \/ 3 4
) Z) = =\lgoZi + = : 5
is treated as a Gaussian white noise of mBén] = Ga(Z:) 90 goZi+ g% +epe ®)

and variance Vag;| = oZ. In our model, the two random In order to get uncorrelated estimates of the local mean
varAabIesN ande; are mdependent Finally, we denoteng of the local variance, it is crucial to partition the
fi = f(xi) = gob(xi) +m. space-time volume into non-overlapping blocks. Instead
In this paper, we consider the problem of estimatfpg of defining in advance the size of these blocks, we
at each pixele; from noisy dataZ;. A root-unroot strat- propose to divide the image using a quadtree/octree
egy [38] is considered to deal with the Poisson-Gaussisegmentation procedure. Each region is recursively di-
noise context while a patch-based functional yields atded into four/eight smaller regions if the variance of
estimator of the intensity value whose parameters ahee dataZ; in the current region is not explained by
estimated in an iterative fashion. the variance of the noise. The variance in a region




containing|R| pixels is given by:Sz(R) = > _,cr(Zi —
|Tl%\zj€R Z;)?/(|R| — 1). The variance of the noise is

defined byS. (R) = Sicp(rs — iy jenrs)?/ (1Rl = 1)
where the pseudo-residualsare defined by (see [44]):
1

A/ ©)
Here AZ; denotes the Laplacian operator involv-
ing [ = 2d + 1 surrounding pixels and is de-
fined for a d-dimensional space asAZ;, = 1Z; —
Z?zl(Z(mj + Sj) + Z(Qj‘j — Sj)) with s; a vector

whosejth coordinate isl and the othef. Furthermore,
a Fisher test is used to compare the two Varianceﬁgj. 1. Partition of the image domain using a quadtree segmentation
min(Sz(R), Se(R))/ max(Sz(R), Se(R)) S T, |r—1- based on the comparison of the local variance of the image and the
The threSh0|dTaF7\R|—1 corresponds to the p-quantile Ipcal variance of the nois_e. 'I_'he image corresponds to the exposure
of F-distribution with|R| — 1 degrees of freedom. This!me of 500ms as shown in Fig. 8.

procedure results in a partition of the image into regions

with homogeneous variance. Figure 1 shows an example

of such an image partition. Finally, estimates of pairs dfages and nowadays used in microscopy [47]. Finally,

local mean and variance can be then robustly estimatbgs approach provides a fully automatic quantification

within these regions. The mean can be estimated usingfadhe image quality.

robust M-estimator (using a Leclerc influence function) 4) un-biased inverse GATAfter variance stabiliza-
[45] while an estimate of the variance of the noise is prgpn, one can apply an algorithm designed for Gaussian
vided by the “Least Trimmed Square” robust estimat@{pise to the transformed datl;}icp,y and get an
[46]. estimateu of the underlying function: defined on the
Given empirical estimates of the mean and the Vaﬂ'nage domaif) c R?, with d the space-time dimension.
ance, a robust linear regression provides the valuesgf|ocation z; € Q we haveY; = u(z;) + & with &
parametersgy and epc. The Generalized Anscombey Gaussian centered white noise of variariceThen
Transform is then applied to the input da{d;}ic;1,) inverting the Generalized Anscombe Transform yields to
to produce new input datdy; = Tga(Zi)}ic;1,n) With  an estimatef = TGA~1(@) of the functionf. However,
Gaussian statistics. Finally, in order to be able to genergtgs procedure would introduce an additive bias. When
images with the same noise signature defined by thg number of counts is high and when the number of
triplet (go, o=, m), one has to estimate first the paramesamples is large enough, the bias tends t& Figure 2
ters of the dark current. andm. In most images, thesejjjystrates this effect on the estimation of the count of a
two parameters can be deduced from the variance gvgisson distributed random variatfleThe bias exhibits
the intensity values corresponding to the darker regioRs.pehavior that can be heuristically approximated by
3) Image quality assessmenEvaluating the image (1 — exp(—1.36))/4 where the coefficient.3 has been
quality, is an important step in video-microscopy as #stimated from the simulation shown in Fig. 2. Sirce
will allow to measure the errors involved in the quantifi'rs unknown, an interative procedure is used to estimate

cation steps [47]. Itis worth noticing that the Generalize@le bias correction operata¥,; defined as:
Anscombe transform provides a way to evaluate the

image quality of acquired images. Once stabilized, the 1 N
noise variance is expected to be homogeneous in the Car(f)(z;) = 1 (1 - 6_1'3“:”"”0”“)(“))
whole image domain and equal o Hence, we can
define the following Poisson Peak Signal to Noise Ratio: R
where f(z;) is the value obtained by directly inverting

PPSNRZ) = 201log;, <max {TgaZ;} — min {TGAZz'}> the Anscombe transform at point. Finally, the unbi-

! ! ased estimate is given bf,npiasea = f + Car. This
Instead of the image contrast, this measure could aksperiment contradicts the conclusion drawn in [5]. In
involve the contrast of objects using a background suparticular, the Anscombe transform performs well for
traction method in the same fashion than the sign#&l-> 3 instead off > 30, which is reasonable for our
to-noise S/N ratio introduced in [48] for astronomicahpplication.
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Fig. 2. Analysis of the bias of the Anscombe transform for the mean estim&400 Poisson distributed samples in the rariges]. On

the left, the stabilized variance is displayed for the Anscombe TransfAlingnd the unbiased Anscombe transform (UAT) which are by
definition the same. The middle graph shows the bias of the two estimatoqsutainfrom400 trials. On the right, the variances of the
estimators are displayed.

B. Patch-based space-time estimation where
In this section we first extend the continuous non- Gk llz—yll
local patch-based functional introduced by Kindermah® ¥ %) = Quy) (h(x,m,z))
etal. in [49]. Given its fixed point solution we derive an x & ( Jo G(t) (“(aijé)_;“y(ﬂ:)z)y dt) . (9)

other functional also related to [50]. We finally present a
discretization of the minimizer and a method to estima®khe convergence of the fixed point iteration is not guar-
its parameters. anteed. We can also point out the fact that the minimizer
1) Non-local functional of Kindermann, Osher anf the functional((7) involves overlapping patches which
Jones: Kindermann etal. introduced in [49] a non- is an original feature compared to other patch-based
local patch-based functional for denoising and deblurrirvgriational approaches [50]-[53].
images. This functional is built upon a new norm which 2) Proposed functionalinstead of((7), we propose to
measures the degree of similarities between patches. Maimize the following functional (see also [50]):

propose to extend it as follows: 2
_ fQ B(x,y, z)up(y) dz dy
J(u,up) —/Q ( I Blo.y.2) d=dy u(z) | da

J(u,up) = % Jo(u(z) — ug(x))? dx

u(z4t)—u(y+t _
+az ¢ (fQ G<t)( (Z(x)ﬂ,y(it) 2 dt) K (uzggmy/y) dy dz, where
(7)

. . : , . B(z,y,z) = G(2) ( Hf_yH_ )

whereu is the function to estimate defined on the image Qlay) ™ \hz—zy—2)
domainQ c R? andd the dimension of the space-time  x ¢/ (E [fQ G(t) (““(a;?;?;gfgz))Q dtD . (11)
domain. The functionu represents the initial dati
(i.,e. ug = u + & where¢ is the noise as defined inThis expression relies on the expectation of the distance
Section IlI-A4). The functiony is a R — R differen- between patches instead of the distance itself making it
tiable function (typicallyp(x) = 1—e~*). The proposed less sensitive to noise.
extension lays in the introduction of the locally variable The minimizer of the functional (10) is trivial since
bandwidths defined by the two functioisx 2 — R: the functionu does not appear in the first term. On the
(@ and h. To be able to derive a fixed point iterationpther hand, the calculation of the expectation [in] (11)
one can show that the symmetry of these bandwidthsakes the evaluation d(z,y, z) difficult. However, if
i.e. Q(z,y) = Qy,z) andh(z,y) = h(y, ), is needed. Elug(x)] = u(x) and Vafug(z)] = o2, we can use the

The fixed point equation for minimizing (7) has thdollowing identity (see [1]):
following form:

wo (z4+t)—uo(y+t))?
E [fo G0) "G di] =

u(z+t)—u 24202
(8) Joo G(t) LGl )2 gy (12)

i) = 0@+ Jon Al y, 2July) dzdy
1+ % 0z Az, y, 2) dz dy



Finally, sinceJ is positive, we have: derive the following property for the optimal estimator

u(z) = argmin J(u, up) u; [54] 9 9
. Jae B(z,y, 2)uo(y) dz dy (13) vF VR
= arg min = ,
u Joz B(w,y,2) dz dy where d is the dimension of the space-time domain.
with Expression|(17) does not depend on image regularity.
Following the Lepskii's principle [55], we exploit this
B(z,y,2) = Q%?,)K (h(zuf;?;[z)) property to minimize thel risk R(a;, u(z;)). The idea
/ ’ (u(x+t—;)—u(y+t—z))2+202 is to design a sequence of increasing bandwidihs=
x ¢ (fﬂ G(t) Qlatt—zyti—z) dt)' (14) {hf, ¢ € {0,...,L — 1} : h' < h}. Assuming that

. E . . .
3) Numerical aspects and discretizatioFor the im- the variancey; is a decreasing function @f the number

plementation of the estimator defined by equation (15‘? sa(rjnples ;[]aken |.nto account IS proc};].rlesswely |Ichrears],ed
we consider a discrete setting. We can also initialize i reduce the estimator variance while controlling the

fixed point iteration using the data obtained after variang8timator bias. Formally, the so-called *bias-variance
stabilization and sety = Y. We have thus the following

trade-off” corresponds to the following inequality:

expression for the estimator: RE = sup {|b¢]? < 40!} (18)
(2 (2 — 1)
n teH,
Ui = 2:1 kz:lwiﬂfyj (15) This stepwise procedure provides a reasonnable estimate
]: =

of the bandwidth minimizing the local quadratic risk
wherew;;i, = B(mijxj,zk)/(zyzl Zgzlé(xi,xj,;pk)) within the pre-defined sett. Since the bia®?! is un-
and 4; denotes the fixed point solution at pixe). We known, we consider instead a weaker “oracle” to detect
can also compute the following approximation for théhe optimal bandwidth for smoothing (see [56], [57]):
variance of this estimator: y

0w hi = sup {£/ < £ :|ag—a; > <pvf}  (19)
. thHi
5 =023 S W, (16) | N

j=1k=1 where p is a positive constant (we choose = 8,

These two expressions are almost equivalent to the e §° [5.8])' The design .Of a sequence of increasing
andwidths is now required. However, in the case of

mator (and its variance) introduced in [37]. As a trade- th lationship bet the t |
off between computational efficiency and simplicity, th age sequences, the refationsnip between the tempora
nd spatial dimensions is related to the object size

kernel G is defined as the indicator function on th q ¢ which both unk A dinal
interval [—p/2, p/2]%. In addition, we define the “tonal” and movement, which are both unknown. Accordingly,

: PO PN - the space and time bandwidths should be considered
bandwidth ixi) = (U )/ (Aa0i0;). G ) ) : .
andwidth asq(z;, ¢;) = (0i + 0;)/(Aati0;). Given independently. For this reason, we decide to increase
g\lternatively the size of the support df using two
distinct radii. We note respectively; and h, the spatial

. L . and temporal neighborhoods which can vary from one
of points lying in the support of the kerne}. This point to another. It is worth noting that, unlike [57],

definition of G fulfills the condition of symmetry. Under f sh 5 t K in ad
some assumption, the fixed-point iterations conver@%e sequence ol shape IS not known In advance

relatively fast and few iterations are used in practice. Ince we consider two pargmetd@.and g I our.
4) Space-ime bandwidth selectionWe define experiments, we use a dyadic scale in space and a linear

now the bandwidth h(a:,y) of the kernel K as scale in time to achieve a compromise between accuracy

h(z,y) = min(h(x),h(y)) and consider the estimationanOI computational efficiency.

£ D ¢ h oi fthe i 5) Wiener filter: In [59], a Wiener filter is used
of h; = h(‘“_) or each pointz; of t e_ |magt_—:' _se_qL_Jence.to combine estimates obtained at each iteration while
We would like to select the bandwidth minimizing th

i<k of th q ) defi n [1], the same approach is used to recover details
mean square risk of the proposed estimator defingge, filtering. We have also observed some improvement

~ N ~ 2 P ) : : .
as R(ui, u(w;)) = E[(@ — u(z;))"]. This risk can be using such approach and propose to filter at each iteration
decomposed as the sum of the squared bias and m@successive estimates:

variance. The bias can not be directly estimated because , o i
it depends on the unknown functian However we can (at;)vviener: u; n u; U; U; (20)
use an upper bound for the squared bhasterm and ‘ of - gttt ot + ot

i i i T Y

the shape ofG, the parameten\, is related to anx-
quantile of they? distribution whose number of degree
of freedom is given byig — 1 whereng is the number




and
_¢\\ Wiener ﬁf 65_1
(@) = (21)
v; +v;

Actually, isolated and unaltered pixels in the restore
image can be slightly modified using this filtering, which
enhances image quality.

6) Patch pre-selectionFinally, we propose to extend
the patch pre-selection related to [31], [60] to reduce th
computational load and in the meanwhile improve th

results. Thus, the weights;;; in (15) and [(16) are set
to 0 if @ (b)
(G N ﬁf _ O« ﬁ?)(G N UfG “ Bf) Fig. 3. Volume 0f256 x 256 x 10 voxels extracted from a simulated

(22) image sequence (sligé5 and timet = 25), (a) ground truth (b) noisy
2(G * @f + G * @f) image sequence (logarithmic scale).

>m

and

max (G * 0f, G * %)
min(G + 6f,G*6jjf) > 12, (23) be described by a Gaussian random walk of standard

deviation of3 pixels. A Poisson noise is generated from
wherex denotes the convolution operat6f,remains the this image of flux. Then a gaig, = 0.4 is applied

same kernel than in (7) angi and . are respectively and finally the dark current is simulated with a Gaussian
two thresholds (with some approximations) related to(@ise of meanm = 100 and a standard deviation
quantile of the Normal distribution and to a quantile of_ — 4. All these values have been obtained by statistical
the F-distribution. analysis of photometric properties observed in real image
In the following experiments, Wiener filtering andsequences. The synthetic image sequence is composed of
patch pre-selection were used to speed-up the comgihall spots with intensities df0 gray levels above the

tation time and enhance the image quality. background level, and of large blobs with a maximal
intensity of aboutd00. The slice#5 extracted from a
IV. EXPERIMENTS volume at timet = 25 of the simulated (noise free)

A. Synthetic image sequence ground truth and the corresponding noisy slice are shown

In order to test the proposed method, we have gdigsPectively in Fig. 3(a) and (b).
erated synthetic image sequences representing moving scatter plot of the estimated mean and noise
tagged vesicles. Using this procedure, we aim to analygdfiance is shown in Fig. 4(a). The regression line
the influence of the generalized Anscombe transform & _the first image of the sequence is estimated as
the final result and to demonstrate that the propos¥ar(Z;] = 0.407 E[Z;]—24.44, while the true equation is
space-time adaptive method is competitive when coMar[Z;] = 0.4 E[Z;] —24.0. We can analyze the accuracy
pared to the state-of-the-art methods. of the estimation by considering the next volumes of the

First, we have created a synthetic image sequerggguence. We found that the meangofis 0.408 and
showing moving objects superimposed on a static badke standard deviation 579 - 10~3. For the parameter
ground. The true image sequence is composed(of epc, the mean is—24.31 and the standard deviation
frames of16 bits 3D volumes oP56 x 256 x 10 voxels. is 0.879. Accordingly, we can conclude that, for this
The background is generated using two or three Gauss#imulation, the parameters of the generalized Anscombe
profiles of radius20 pixels at random locations. Thetransform have been satisfyingly estimated. In addition,
background is an essential component of the photometrig. [4(b) shows that the variance of the noise has been
dynamic of images and thus will probably alter thaell stabilized: the noise variance is noiw001. The
stabilization process. Typically, the background may b@dth of the cloud of points is related to the estimation
associated to auto-fluorescence within the cell as welrors of the noise variance. However, the global trend
as the non specific accumulation of fluorescent tags isncorrectly estimated and the noise variance is reliably
organelles. The flux of photo-electrons related to th#abilized.
component ranges frorm0 to 2000 photo-electrons per This simulation shows that our approach is quite
pixel. In addition,256 spots are drawn as 3D Gaussiagffective at stabilizing the noise variance in the case of
functions of radiu2 pixels and of intensit200 photo- a Poisson-Gaussian noise. It is fully automatic and fast.
electrons. The movements of objects are assumedTioe computation time of an unoptimized C++ implemen-



L, norm B. Spatial denoising of real samples using various ex-
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In this section, we consider several spinning disk
acquisitions of the same fixed HelLa cell expressing
GFP tagged Rab6 proteins. For these experiments, the
exposure time varies from0 to 500ms. The acquired
3D stacks have the size @60 x 400 voxels. In this case
temporal information is not used since the cell is fixed.
tation is about250ms for a single256 x 256 x 10 3D Several methods are also applied to these data for com-

frame 256 % 256 x 10 on a 1.8Ghz PC. The parametergarisonB x 3 and3 x 3 x 3 median filters combined with
are estimated for each 3D frames of the sequence Hﬁ proposed GAT, the multi-scale variance _stabilization
smoothed in time using a moving average in order S-VST) approach using &/9 orthogonal filter [61]

take into account the possible variations of the sens?ﬂd the_ parametegy, m andoy estimated as (_jescnb_ed
characteristics. in Section I11-A, the BM3D method [59] combined with

the proposed GAT. Finally, we evaluate our method in
To demonstrate the performance of both the variangg and 3D.

stabilization procedure and the 3D+time denoising pro-

cedure, we consider three experiments. In experiments AResults are shown in Fig. 8. The results corresponding
and B, we assume respectively a Poisson-Gaussian néfsdhe two median filters, performing badly, are not
model and a Gaussian noise model. In experiment C, @isplayed in order to better focus on the other methods.
assume a Poisson-Gaussian noise model but each vollifh&is experiment the BM3D method outperforms the
of the sequence is denoised independently. In these theéleer methods except when the exposure time is very low

experiments, we useiix 5 x 5 patches and the algorithm(@bout30 — 50ms). For this range of exposure time, the
parameters are unchanged. proposed method exploiting additional 3D information

. _is able to provide better results. The MS-VST method

In order to compare the different methods and NOIXfould also potentially produce better results using a
models, we measured th@m Ly and L, norms (see more adapted wavelet basis. For each image, the square
Table(1) between the original sequengeand the re- root of the mean squared error is displayed. A reference

f:or_:_StSIJCtﬁd wgag_e lsgqtlignyfl?The result% arehrepqrtecjlimage is defined as the average of the images displayed
in Table(ll and Fig| 5. Finally, we consider the SI9NA%n the last row corresponding to an exposure time of

_ - . - _ 2
tFo hoise ratio SNR= 101.?1%(,:'/1[];%”];&) f%:[)u ).d 500ms. In order to compare the denoising results with
fom a noisy image wi 0dB we obtained ooy exposure times to this reference image, the

the_following va_llue of SNR:33'O4dB' .31‘06dB and histograms have to be aligned. A linear relationship

32.55dB res_pectlvely for _the denoised image SEQUENCES assumed between the intensity of each image and
corre_sdponglng t(.) expherlmer?ts_A, B an? C'k.A” t.h?he reference image. Once the parameters have been
considered metrics show the interest of tacking IméJstimated using a linear regression, the intensity can be

account Poisson/Gaussian noise modeling and SPairected and the mean squared error computed. This

time information. procedure does not take into account possible motions
Moreover the visualization of the sequence restorégtween frames. However excepted foe= 50ms, the

frame by frame, makes clearly appear a flickering artifaithages were aligned. Moreover, motion compensation
due to the lack of temporal coherence between consawuld imply the interpolation of noisy data and could
utive images. In Fig. [7 we can notice the differencaberefore introduce potential artifacts. The mean squared
between experiments A and B. Flickering artifacts aexror values of all the experiments are summarized in
visible in Fig/ 7(b) corresponding to experiment B whiléig. [9. This experiment allows to make a direct link
in Fig. [7(a) the temporal coherence is reinforced. Waetween the image quality and the exposure time. How-
can also remark that temporal abrupt changes are waler due to the normalization procedure and the possible
preserved. As expected, these experiments visually cometions, the results have to be interpreted carefully
firm that considering the whole image sequence providasd depend as well on the image content. Finally, note
better results than processing each frame of the sequethae exploiting temporal information would increase even
independently. more the quality of the images.

TABLE |
DEFINITIONS OF L, NORMS USED FOR EVALUATION
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Fig. 4. Noise variance stabilization for a synthetic image sequence. Regtirpation of the local meaR[Z;] and noise variance VEZ;]

—

(a) before stabilization and (b) after stabilization. Each dot corresptmd coupleE[Z;], Var[Z;]) estimated non-overlapping blocks. The
dashed line represents the fit of the theoretical mode]2/ar= goE[Z;] + epc. After stabilization, the dependence between the signal
intensity and the noise variance is canceled.

TABLE 1l
INFLUENCE OF THE VARIANCE STABILIZATION TRANSFORM AND OF THEUSE OF TEMPORAL INFORMATION ON THE ERRORTHREE
NORMS ARE USED TO MEASURE THE PERFORMANCE OF THE DENOISING MEOD. THE MEAN AND STANDARD DEVIATION WITH
RESPECT TO TIME ARE REPORTEDTHE COMPUTATION TIMESt. FOR EACH EXPERIMENT IS ALSO GIVEN FOR THE NOISY SEQUENGE
3D+TIME - GAUSSIAN AND POISSON NOISE(A) ; 3D+TIME - GAUSSIAN NOISE(B) ; 3D - POISSON AND GAUSSIAN NOISE(C).

Loo L1 L2
Sequences te
mean std | mean std mean std
Noisy 62.67 4.21 | 439 6-1073 350 12-1073
A 3835 287 | 156 16-107% | 294 28.1072 | 65 min
B 53.10 5.83 | 1.96 17-1072 | 3.78 25-1072 | 55 min
C 37.98 244 | 165 14-107% | 3.01 24-1072 | 28 min
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Fig. 5. Influence of the variance stabilization transform and the adjaesmgoral volumes on the signal-to-noise ratios. (See text)

C. 2D Space-time denoising of a synthetic image dSeient with an exposure time &Gf00ms. Approximately
guence 300 spots were detected and re-drawn on an estimated
background profile. A Gaussian random walk was then
In order to compare the proposed method to anoth@Rpplied to the spot positions. Noise has been generated
2D+time denoising procedure, we have simulated a 2I5ing the same parameters than those estimated on the
image sequence having the same photometric characg$iginal image and the global intensity of the image
istics than the original image used in the previous expdlas been varied by a factdr 3/4 and 1/2. The ob-
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(@) (b) ()

Fig. 6. XY slices#5 at timet = 25 of the denoised synthetic image sequence corresponding to experitne®sand C, respectively in
(a), (b) and (c) (logarithmic scale).

e Sl = =un

(a) 3D+t denoising (b) 3D denoising

Fig. 7. YT slice#5 atz = 250 of the denoised synthetic image sequence corresponding to experitmants C, respectively in (a) and
(b) after histogram equalization. More flickering effects are visible wihenvolumes are independently processed.

% ! ' Origina'l —_ intensity | original [63] proposed method
Median filter 2D 1.00 14.85 3.96 3.11
50 SR Mg»’\\gg %B K 0.75 18.21 4.60 3.66
....... E
0 ; Proposed method 2D 0.50 32.82 14.3 13.8
O N Median filter 3D 1
&) X, ‘ Proposed method 3D -- -e-- - TABLE Il
N g % SQUARE ROOT OF THE MEAN SQUARE ERROR FOR SEVERAL
= i i'ﬂ,,{ """ LN o R INTENSITY LEVELS USING A SIMULATED 2D IMAGE SEQUENCE
X HAVING THE SAME PHOTOMETRIC PROPERTIES THAN THE
20 |- REFERENCE IMAGE INFIG.[8 THE RESULTS OF THE
MULTI-FRAME FASTHAAR WAVELET DENOISING [63] AND OF
10 |- OUR METHOD ARE REPORTED
0
0 100 200 300 400 500

E time (ms) i justi
xpostre fime fms the method proposed in [63]. However, adjusting the

Fig. 9. Square root of the mean squared error is plotted against fr@rameters could potentially improve the first method.
exposure time showing the improvement of the filtering in the case
of a fixed sample (see Fig. 8).

D. Real 3D+time image sequence

In this section, we evaluate the proposed denoising
tained image sequences have been then denoised usieghod on a real 3D+time image sequence composed
the multi-frame fast Haar wavelet denoising approadf 50 volumes of696 x 520 x 6 voxels. The slice#3
proposed in [63] (using frames andl cycle spinning) extracted at time = 20 is displayed in Fig. 11(a). This
and using the proposed method (usiBigk 3 patches sequence has been acquired using a “fast” 4D wide-field
and5 iterations). In both case, the noise parameters angcroscope. The biological sample is a chimeric protein
the same than in the noise generation step. Table d¢bnstruct between GFP and Rab6A (GFP-RAB6A) a
contains the associated mean square errors. On this datamber of the Rab-GTPase proteins reversibly bounded
set, the proposed method performs slightly better thém specific membranes within the living cell. At the
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30ms - raw : 116.22 30ms-2D-msvst : 36.74 30ms-2D-safir : 32.13 30ms-3D-safir : 29.94 30ms-2D-bm3D : 30.27
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50ms - raw : 80.86 50ms-2D-msvst : 32.87 50ms-2D-safir : 30.11 50ms-3D-safir: 29.32 50ms-2D-bm3D : 28.77
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100ms - raw : 40.72 100ms-2D-msyst: 19.25 100ms-2D-safir : 19.73 100ms-3D-safir: 18.12 100ms-2D-bm3D : 16.96
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200ms - raw : 24.06 200ms-2D-msvst : 14.64 200ms-2D-safir : 14.20 200ms-3D-safir: 13.85 200ms-2D-bm3D : 12.60

L1 L1 L1 i L1

300ms - raw : 18.67 300ms-2D-msvst: 13.55 300ms-zD-safir : 12.01 300ms-3D-safir: 12.33 300ms-2D-bm3D : 11.17

i1 o s e i

500ms - raw : 7.03 500ms-2D-msvst : 6.80 500ms-2D-safir : 5.80 500ms-3D-safir: 4.63 500ms-2D-bm3D : 4.47

L1 o i L1 o

Fig. 8. Experiments on a fixed HelLa cell tagged with GFP-Rab6 acquirgpiiming disk microscopy. The first column contains a 2D slice
of the original 3D images taken with exposure times ranging fedms to500ms. The corresponding PPSNR is increasing logarithmically
with the exposure time from25.83dB to 38.41dB. The second and third columns represent the correspondingsaenoesults obtained
respectively with the multi-scale variance stabilization method [62] usingh&sotaopic wavelet basis, the proposed method in 2D and 3D,
and the BM3D method [59] using the proposed variance stabilization. Tihbers indicated correspond to thMSE computed using the
mean of the images obtained fod0ms of exposure time (last row) as a reference image.
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steady state, this protein is associated to the Golgi appa- 350 ! " Original deconvolved —+—
ratus as well as to rapidly moving transport intermediates | Denoised deconvolved ---x---
and is present in the cytosol. Cellular dynamics of 300 "
Rab6A is influenced by at least three distinct phenomena: f f f f
i) lateral diffusion dictated by lipid movement Withiny 250 |\
a continuum of membranes ; ii) continuous exchan%
between cytosolic and membrane bound pools ; iii
directional motion on membrane transport intermediates.
In the sequence, the Rab6A proteins appear as dark spots, .,
when associated to small moving vesicles inside the
living cell. The large dark stable structure corresponds
to the Golgi apparatus while the background of the cell 100 0 20 40 60 80 100
reveals its presence in the cytosol. Exposure time (ms)

The estimation of the parameters of the generalized

Anscombe transform is illustrated in F\ig.\lO. The regreglg. 14. The square root of the mean squared errors is plotted against
— the exposure times in the case of a fixed sample shown in Fig. 12.

sion ”nﬁﬂas been estimated and we fOlM‘EI[Z,-} — The Gold-Meinel deconvolution algorithm is applied respectively to
0.447 E[Z;] — 33.15. As shown in Fig.[ 10(b), once the original and denoised images.
stabilized, the noise variance is01. The results ob-

tained with our denoising method & 5 x 5 patches) _ .
are reported in Fig. 11(b). Again, we can notice that tiffe capable to restore the relevant signal from the noise,

noise has been strongly reduced and that fine details Il 0 Not being able to make the difference between

fluorescent particles are well preserved. The computatiBfiS€ and signal, resulting in artifacts.
time for the whole volume sequence is aba@min In this section, we propose to combine the proposed

using a standard C++ implementation. Experiments §ig10iSing approach with an iterative constrained Gold-
numerous volume sequences confirm the ability of t einel deconvolution method [66] using a fixed biologi-

proposed method to preserve space-time discontinuiti8§|. sample. Although this deco_nvolutlon method does not
represent the state of the art, it shows a good robustness

to the inaccuracy of the point spread function. Moreover,

E. Combining denoising and deconvolution it is widely used and therefore the combination with the
Wide-field deconvolution microscopy has been widelgroposed denoising method is of interest.

used this last twenty years in cell biology [64], [65] !N the same fashion than in Section IV-B, we propose
as a regular tool for monitoring the living cell activityto compare stacks acquired with several exposure times
at high spatial and temporal resolution. Compared £8nging from 10ms to 100ms to a reference image
confocal like microscopy, it has the advantage to H€quired with an exposure time aboms. Figurel 12
faster, because of the wide-field illumination, and mo@ows the maximum intensity projection of the results.
efficient thanks to the absence of pinhole to rejedthe intensity of original image shown in the first row
photons and the highest quantum efficiency of detectof@nges fromd6 — 260 gray levels for the image acquired
Out-of-focus information is used and computationallgt 10ms of exposure time t@24 — 3315 gray levels for
reassigned to its original location, therefore increasifige image acquired 200ms of exposure time. Figure 13
contrast and signal-to-noise ratio. It is known that the tw10ws a zoomed area of an optical section and intensity
main limitations of photonic microscopy are i) spatiaprofiles along a microtubule (polymers of and /-
resolution due to diffraction limit of optics and ii) thetubulin dimers which are one of the components of
number of photons reaching the detector to statisticafije Cytoskeleton). This illustrates that fine details are
form the diffraction limited image. In modern livingpreserved and that the noise level is strongly reduced.
cell microscopy, the number of photons is decreased Fgally, mean squared errors, computed on normalized
much as possible in order to reduce the radiation do§eages and displayed in Fig. 14, confirm that the
on the sample to keep the cell alive and to increase t#@convolution is improved if the denoising is applied
acquisition frame rate. The main limitation resides in tHeeforehand.
limited number of emitted photons reaching the detector
to form an image. In addition, deconvolution algorithm V. CONCLUSION
efficiency is sensitive to the image signal-to-noise ratio In this paper, we have first tackled the issue of mod-
(SNR). The smaller the SNR is the less the algorithneding a 3D+time video-microscopy image sequence. We

200 b N N
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Fig. 10. Noise variance stabilization for the real image sequence shokig.iila. Estimation of the local me&jZ;] and local variance
Var[Z;] (a) before stabilization and (b) after stabilization.

(@) (b)

Fig. 11. Denoising of a wide-field microscopy image sequencgjofolumes of size596 x 520 x 6 voxels. The slice#3 of the original
volume at timet = 20 is displayed in (a) and the corresponding denoised volume is shown iflog@rithmic scale). As a result of
photo-bleaching, the PPSNR decreases along time §020dB to 36.75dB.

have proposed to use the generalized Anscombe trapsrforms other very competitive methods in 2D and
form to stabilize the variance of the Poisson and Gaugb+time. Moreover, experiments on real image se-
sian noise. We have introduced a patch-based functiogaknces show that the space-time discontinuities are
and we have shown that the fixed-point solution yields avell preserved without motion estimation. Finally, we
estimator involving image patches taken in a spatialljtave used the capability of the proposed algorithm to
varying neighborhood. The analysis of the bias-varianedficiently denoise 3D images in order to use it as
of this estimator enables to properly select, for eaehpre-processing step prior to deconvolution. We have
point of the space-time domain, the optimal bandwidilustrated the efficiency of such a combination to restore
within a sequence of increasing bandwidths. Spatial alwlv signal-to-noise ratio images. This opens interesting
temporal dimensions are adequately handled. The ovem@tspectives for monitoring biological samples at high
method involves a limited number of parameters so th@mporal and spatial resolution, without increasing the
we do not have to tune them in practice. radiation dose. To conclude, we point out that the

proposed method is not restricted to video-microscopy,

We have demonstrated that the proposed method out-
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10ms 20ms 50ms 100ms 200ms

original

dec__onvqlutio_n

denoising+deconvolution

Fig. 12. A fixed Hela cell is acquired with five increasing exposure timée. first row contains the maximum intensity projection along
z direction of the200 x 200 x 36 original images. The two last rows correspond respectively to resht@ned with the Gold-Meinel
deconvolution algorithm [66] and the combination with the proposed pasheébdenoising.

denoising +

original deconvolution deconvolution
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Fig. 13. Zoom of a single optical section extracted from data shown in_ Rigcotresponding to the two extreme exposure times. The
columns correspond respectively to the maximum intensity of the raw intageresults obtained with the Gold-Meinel deconvolution

algorithm [66] and its combination with the proposed patch-based denoBlots show intensity profiles along a single microtubule for

each image.
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but could deal with other 2D+time as well as 3D+tim§i6] H.-Y. Cheong, A. Tourapis, J. Llach, and J. Boyce, “Adagtiv
noisy image modalities, provided that an appropriate

noise modeling is adopted. In this respect, this “breaking

sensitivity barrier” approach advantageously completgs)
“breaking resolution barrier” new optics [67].
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