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Abstract

We present a novel space-time patch-based method for image sequence restoration. We propose an adaptive

statistical estimation framework based on the local analysis of the bias-variance trade-off. At each pixel, the space-

time neighborhood is adapted to improve the performance of the proposed patch-based estimator. The proposed

method is unsupervised and requires no motion estimation. Nevertheless, it can also be combined with motion

estimation to cope with very large displacements due to camera motion. Experiments show that this method is

able to drastically improve the quality of highly corrupted image sequences. Quantitative evaluations on standard

artificially noise-corrupted image sequences demonstrate that our method outperforms other recent competitive

methods. We also report convincing results on real noisy image sequences.
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I. I NTRODUCTION

I MAGE sequence restoration takes a crucial place in several important application domains. Infra-red

imaging, confocal microscopy, ultra-sound and X-ray imaging are known to be noisy modalities.

Restoring old films or videos is also of key importance for cultural heritage preservation. Image sequence

restoration is then widely studied and still an active field of research. The main difficulties arise from

non-stationarities observed in the spatio-temporal signals. Denoising or restoration methods must preserve

space-time discontinuities while minimizing the error between the unknown original noise-free image

sequence and the denoised sequence.

A review of image sequence restoration methods can be found in [1]. These methods, especially designed

for image sequences, take into account temporal correlation between images, and some of them involve a

motion compensation/detection stage [2]–[4]. Other image sequence restoration methods can be exported

from the still image denoising domain (see [5] for a recent review). Thus, wavelet shrinkage [6], [7],

Wiener filtering [8] or PDE-based methods [9] have been extended to process image sequences. However,

other methods like Total Variation minimization [10] cannot be easily extended to space-time domain.

Recently an extension of the non-local mean filter [5] also related to the universal denoising (DUDE)

algorithm [11], has been proposed to process image sequences and relies on the principle that the image

sequence contains repeated patterns [12] by averaging. The detection of repeated patterns can be used to

reduce the noise in images. Such an approach is already popular in texture synthesis [13], inpainting [14],

video completion [15] and has also been explored for image restoration [16]. Nevertheless, searching

similar examples in the whole image sequence is infeasible in practice. Accordingly, a variant of the

non-local mean filter has been recently proposed in [17] and use a pre-classification of the pixels in the

sequence in order to speed up the denoising procedure.

The original method we propose is a space-time patch-based adaptive statistical method for image

sequence restoration. A preliminary version has been described in [18]. It is related to the statistical

framework described for still images [19]–[22] and image sequences [23]. Unlike robust anisotropic

diffusion [24] and non-linear Gaussian filtering [25], our approach supplies scale selection by estimating



the appropriate space-time filtering window at each pixel. Moreover, the proposed method differentiates

the space and time dimensions unlike other methods that consider the image sequence as an isotropic3D

volume [6], [9]. As a matter of fact, a naive approach can introduce motion blur and artifacts if the time

dimension is merged with spatial dimension. In contrast to [20], [23], our approach is not based on a

geometrical partition of the neighborhood in sectors. It uses a fixed neighborhood geometry but involves an

appropriate and more flexible weighted sum of data points in an adaptive neighborhood which is far more

flexible and efficient. The weights are defined by computing a distance between a patch centered at the

considered pixelxi and patches taken in an adapted space-time neighborhood. Additionally, a confidence

level (i.e. , estimate variance) attached to each restored pixel is provided.

The remainder of the paper is organized as follows. Section II describes our general framework for

image sequence restoration. In Section II-B, the adaptive choice of the local space-time neighborhood

is introduced. Section II-C deals with the similarity measure involved in the selection of patches in the

space-time neighborhood, and Section III gives details of the algorithm implementation. In Section IV,

we report an important set of experimental results on artificially noise-corrupted video sequences as well

as on a real noisy IR image sequence. Intensive comparison with other recent methods has been carried

out, demonstrating that our method outperforms them. We also present how our denoising method can be

combined with a motion estimation method if required. Finally, Section V contains concluding remarks.

II. PATCH-BASED SPACE-TIME APPROACH

A. Model description

We consider the following statistical image model:

Yi = u(xi) + ξi, (1)

wherexi ∈ Ω denotes the pixel location in the space-time volumeΩ ⊂ R3. The functionui = u(xi) is the

ideal image to be recovered from observationsYi. The errorsξi are assumed to be independent zero-mean

Gaussian variables with unknown varianceτ 2.

We need minimal assumptions on the structure of the image for recoveringu. In what follows, we assume

that there exists repeated small image patches of the patch centered atxi in the space-time neighborhood

of pixel xi. However, the size and shape of this neighborhood will vary in the image sequence because

of non-stationarities and presence of discontinuities. If we can determine the adequate neighborhood for



Patch ûi,n−1 of size 3× 3 associated to xi (in green).

xj location and corresponding 3× 3 patch.

Space-time neighborhood Wi,n (in blue).

Current pixel located at xi.

Fig. 1. Patch-based space-time framework. To each point of the image sequence is associated an estimated space-time neighborhoodWi,n.
To each pointxj of this neighborhood is associated a3 × 3 patch. Every weightωij is defined as a function of the distance between the
patch centered in pointxi and the patch centered in pointxj ∈ Wi,n.

each pixel, then the regression functionu can be estimated by optimizing a local maximum likelihood

(ML) criterion. The proposed method addresses these two issues as described below.

We design a sequence of increasing nested space-time neighborhoods{Wi,n}n∈[0:N ], centered at each

point xi, i.e., Wi,n ⊂ Wi,n+1, with N denoting the largest neighborhood. Additional details about the

neighborhood design are given in Section II-B. As for initialization, we choose the smallest neighborhood

(the 8 nearest neighbors in the2D space domain) as thepilot (starting) neighborhoodWi,0 at xi. Then,

we compute an initial estimatêui,0 of u(xi) and its associated variancêσ2
i,0 as

ûi,0 =
∑

xj∈Wi,0

ωijYj and σ̂2
i,0 = τ̂ 2

∑
xj∈Wi,0

ω2
ij (2)

whereτ̂ 2 is an empirical estimate of the noise varianceτ 2 as described in Section III. At the initialization

step, the weightsωij are defined as a function of the distance between two spatialp × p image patches

or space-timep × p × q image patches centered atxi and xj respectively. There is no real difference

for the proposed method between spatial only and space-time patch since the spatial only patch can be

considered as a space-time patch with the temporal dimensionq equal to one.

At the first iteration, we consider a larger space-time neighborhoodWi,1 such thatWi,0 ⊂ Wi,1 and

calculate new estimateŝui,1 and σ̂2
i,1 over Wi,1. We continue this way, and at iterationn, we define the



(a) (b)

Fig. 2. (a) Spatio-temporal neighborhood: colors correspond to iterations plotted in (b); (b) confidence intervals: circles represent estimates
ûi,n obtained at each iterationn. The gray rectangles represent the intersection between the current confidence interval and the previous
one. As long as the estimate belongs to this intersection, the estimation process is updated.

estimator as

ûi,n =
∑

xj∈Wi,n

ωijYj and σ̂2
i,n = τ̂ 2

∑
xj∈Wi,n

ω2
ij (3)

where the estimator̂ui,n corresponds to a weighted average of the intensities located in the space-time

neighborhood. We propose to define weightsωij as a function of the distance between two image patches

ûi,n−1 andûj,n−1 estimated at iterationn−1 and centered inxi andxj respectively as shown in Figure 1.

In the two next sub-sections, we specify the sequence of neighborhoods{Wi,n} and we propose a suitable

distance to compare image patches.

B. Space-time neighborhood adaptation

1) Space-time neighborhood geometry:One important contribution of this work is the on-line con-

struction of the space-time neighborhood sequence{Wi,n}n∈[0:N ]. First, we consider a simple hyper-cube

space-time volume as neighborhood shape. Also, we separate the space dimensions and the time dimension.

Consequently, space-time neighborhoods are parametrized by their extent in the space domain and their

extent in the time domain. The use of two distinct extents (one is for the space dimensions and the other

one is for the time dimension) allows us to respect space-time discontinuities and the image sequence is

not considered as an isotropic3D volume. In Fig 2(a), the increasing neighborhood sequence is illustrated.

At each iteration, the spatial extent and the temporal extent are alternatively increased until a stopping rule

is satisfied. Then, the growth of the neighborhood is stopped for this direction (e.g., time) and continues in

the other direction (e.g., space) until the stopping rule is again satisfied. The next paragraph will explicitly

define the considered stopping rule.
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Fig. 3. Illustration of the bias-variance trade-off principle. When the size of the neighborhood increases, the bias of the estimator increases
while taking into account more and more intensity sample, the variance decrease. The parametersα andβ are two unknown constants.

2) Space-time neighborhood selection:A point-wise rule is used to guide the space-time neighborhood

selection process. This rule aims at selecting the optimal neighborhood atxi and is based on the measure

of the closeness of the estimatorûi to the unknown functionui given by the localL2 risk. This local

measure of performance, used to take into account the non-stationarities in the image sequence, can be

decomposed in two terms, that is the squared bias and the variance of the estimate as follows

E [ûi,n − ui]
2 = [bias(ûi,n)]2 + σ̂2

i,n, (4)

whereE[.] denotes the mathematical expectation. In the sequel, we can reasonably assume that the squared

bias is an increasing function of the neighborhood size and the variance is a decreasing function of the

neighborhood size [19]–[21], [26]. Figure 3 illustrates the bias-variance trade-off principle. Then, the

optimal neighborhood will be the one that achieves an optimal compromise between these two terms. A

closed-form optimal solution for the ideal neighborhood is not available for such a non-linear estimator.

However, we can assume that the optimal neighborhoodW ∗
i,n is the one for which the squared bias and

the variance are nearly the same [26]:E
[
u∗i,n − ui

]2 ≈ 2σ2∗
i,n.

A practical rule corresponding to the optimal compromise and based on a pairwise comparison of

successive estimates, can be derived to select the optimal neighborhood [21]. It amounts to define the

largest neighborhood satisfying the point-wise statistical rule [19], [21], [26]

|ûi,n − ûi,n′| < η σ̂i,n′ , ∀n′ < n, (5)

as the optimal neighborhood. This rule can be interpreted as follows. While the successive estimatesûi,n



are sufficiently close to each other, we continue the estimation process. More specifically, the estimation

process is continued, while new estimates belong to the intersection of previously estimated confidence

intervals[ûi,n−ησ̂i,n, ûi,n +ησ̂i,n] (see Fig. 2). Besides, let us point out that we do not need to store all the

previous estimates{ûi,n′}n′≤n but only the current intersection of confidence intervals, the last estimate

and its variance for each pixel. Finally, the factorη can be easily chosen in the range[2, 4] as justified

with statistical arguments in [19]–[21].

C. Similarity measure for patch selection

In contrast to geometry-based approaches [20], [23], we use weights that allow us to select the correct

data points in the neighborhood for averaging. This selection is based on the similarity between a given

spatialp× p or a space-timep× p× q image patch atxi andp× p (or a p× p× q) image patches atxj

belonging to the space-time neighborhoodWi,n. Such patches are able to capture texels and local geometry

in images. TheL2 distance is widely used for similarity measure between image patches. However, in

order to take into account the local variance of the estimator, we introduce the following symmetric

distance between image patchesûi,n−1 and ûj,n−1:

∆ij =
1

2

[
(ûi,n−1 − ûj,n−1)

>V̂ −1
i,n−1(ûi,n−1 − ûj,n−1) + (ûi,n−1 − ûj,n−1)

>V̂ −1
j,n−1(ûi,n−1 − ûj,n−1)

]
(6)

where the two vectorŝui,n−1 and ûj,n−1 denote the spatialp× p (or space-timep× p× q) image patches

respectively centered atxi and xj. The two matricesV̂i,n−1 and V̂j,n−1 are diagonal with the diagonal

elements equal tôσ2
i,n and σ̂2

j,n respectively. We decide that the two vectorsûi,n−1 and ûj,n−1 are similar

with a probability of false alarm1− α, under the hypothesis that they are Gaussian distributed, using a

classicalχ2 test withp2 degrees of freedom. In other words, if∆ij/λ < 1, with λ chosen as a quantile

of a χ2
p2,1−α distribution, we can decide that the two patches are similar. In our experiments, we use a

confidence level of99% and setα to 0.01 .

The distance∆ij is transformed into a similarity measure using the exponential kernel. We compute

the similarity measure for all the points of the neighborhood and normalize it to obtain the following

expression for the weights:

ωij =
e−

∆ij
2λ∑

xj∈Wi,n

e−
∆ij
2λ

. (7)

If the distance∆ij between two patches is large then the weightωij associated to pixelxj is small and the



pixel will not participate in the estimation at pointxi. Consequently, this weighting provides an efficient

and flexible way to retain the appropriate pixels contributing to the estimation ofui in the adaptive space-

time neighborhood while effectively preserving space-time discontinuities. Let us note that the process is

entirely data-driven and does not require any particular geometry adapted to image contents as proposed

in [23].

D. Motion compensation

The motion of the image sequence can be taken into account in order to apply the proposed method

along the direction of the motion. However, dense motion estimation is known to be a difficult task

in noisy contexts [12]. Then, we propose to robustly estimate a global parametric motion model only,

which is able to capture the dominant image motion due to the camera movement. This is achieved

using the multi-resolution robust method described in [27]. A similar exploitation of a parametric motion

compensation was proposed in [8] and associated with a3D Wiener filtering technique.

Once the dominant motion has been estimated, the filtering along the motion direction can be considered

in three ways. A naive one would be to warp all the frames in the referential of the first frame. Because

of the accumulation of errors and because of interpolations, it turns out that such a scheme does not

improve the performance of the denoising process. The second way is to compensate the motion into

the space-time neighborhood by warping the frames into the referential of the current frame, but it also

involves interpolations. Then, we propose to avoid interpolation by adapting the shape of the space-time

neighborhood according to the estimated dominant motion. This is achieved by translating the patch at

point xj = (xj, yj, tj) with displacement given by the estimated parametric motion model at the center

(xi, yi, tj) of the neighborhoodWi,n. Moreover, when usingp×p×q space-time image patches, the motion

have also to be compensated into the patch. Experiments show that this third way is able to improve the

performance of the proposed method.

III. A LGORITHM IMPLEMENTATION

At the initialization, the noise varianceτ 2 has first to be estimated. It can be robustly estimated by

calculating pseudo-residualsεi as described in [28]. We consider four spatial neighbors and two spatial

ones, and pseudo-residuals are compactly represented byεi = (8Yi −∆Yi) /
√

42 where∆Yi is the discrete

Laplacian ofYi at xi (See Eq. (1)) and the constant
√

42 is introduced to ensure thatE[ε2
i ] = τ 2. Given
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Fig. 4. Performance of our denoising method for several noise levels and for several patch sizes including a no-patch version (pixel-wise).
The PSNR is used to measure the overall performance of the filtering and the test sequence is Akyio (176 × 144 × 300). This sequence
mainly exhibits low motion. Experiments show that the introduction of patches improves thePSNR of at least2dB. We can also point out
that the results for patches7× 7 and9× 9 are similar.

the residualsεi, the noise varianceτ 2 can then be robustly estimated as:

τ = 1.4826 medi (| εi −medj |εj| |) (8)

Let us recall that parameterλ is set to the0.99 quantile of theχ2
p2,0.99 distribution with a size of

patch p chosen within{3, 5, 7, 9}. The last parameterη is set to2
√

2 to ensure a good accuracy of

the estimation [19], [21], [26]. During the estimation, spatial and temporal extents of the space-time

neighborhoods are alternatively increased (see Section II-B).

Furthermore, the algorithm can be easily parallelized. Indeed, the estimation steps use only local

information and thus we have distributed the computation load over eight CPUs dividing the computation

time by eight. Finally, another possibility to speed up the algorithm is to use a dyadic scheme when

increasing the extent of the neighborhood. The proposed method is very simple to implement and does

not require the fine adjustment of parametersλ andη which control the estimation process.

IV. EXPERIMENTAL RESULTS

In this section, a large set of experiments are reported to validate our patch-based space-time adaptive

estimation method. We first consider real image sequences with artificially added Gaussian white noise.

Using this usual protocol, we compare our method to other recent methods for denoising image sequences.



Sequence name Size PSNR (a) (b) (c) (d) (e)
Akiyo 176× 144× 300 22 – – – 33.86 34.31
Salesman 176× 144× 449 28 34.4 32.5 – – 35.13

24 31.1 – – 32.60
Garden 352× 240× 115 28 – 28.2 – – 31.33
Miss America 176× 144× 108 28 – 35.3 – – 39.39
Miss America 128× 128× 128 7 – – 26.36 – 26.69

12 – – 28.16 – 29.63
17 – – 30.46 – 32.05
22 – – 32.66 – 34.20

Suzie 176× 144× 150 28 34.8 – – – 37.07
24 32.0 – – – 35.11

Trevor 176× 144× 90 28 33.9 34.1 – – 36.68
24 31.3 – – – 34.79

Foreman 176× 144× 300 28 33.9 – – – 34.94
24 31.1 – – – 32.90

TABLE I

PSNRRESULTS FOR EIGHT TEST SEQUENCES AND FIVE DENOISING METHODS. (A) JOIN KALMAN AND WIENER DENOISING WITH

MOTION COMPENSATION USING DENSE MOTION FIELD[2], (B) ADAPTIVE K-NN SPACE-TIME FILTER [4],(C)WAVELET-BASED METHOD

FOR IMAGE SEQUENCE DENOISING: TIWP3D [6], (D) 3D NON-PARAMETRIC REGRESSION APPROACH[23], (E) THE PROPOSED

ADAPTIVE METHOD WITH 7× 7 PATCHES AND6 ITERATIONS WITHOUT MOTION COMPENSATION. NUMERICAL RESULTS FOR THE

OTHER METHODS ARE TAKEN FROM THE RELATED PUBLICATIONS. THE SYMBOL – MEANS THAT RESULTS WERE NOT PROVIDED BY THE

AUTHORS FOR THE CORRESPONDING TEST SEQUENCE.

For an objective performance evaluation, we consider the global measure given by the Peak-Signal-to-

Noise-Ratio defined asPSNR = 20 log10(255/mse) (mse denotes the mean squared error between

the original noise-free image sequence and the denoised image sequence). The visual quality of the

image sequence is also taken into account. We then discuss the usefulness of motion compensation and

we comment the respective performance of2D spatial patches and3D space-time patches. Finally, the

proposed method is applied to a real noisy Infra-Red image sequence.

a) Performance assessment:We first report experiments to evaluate the influence of the noise level

and the spatial patch size on the overall method performance. Figure 4 plotsPSNR values obtained for

eight noise levels and five patch sizes. First, we can note that the patch-based method performance is

smoothly affected with the increase of the noise level. The improvement gained by introducing patches (to

be compared to no-patch version) is clearly demonstrated. As it could be expected, it is useless to consider

too large patches. When the size of the patch increases, thePSNR increases too, however, results for

sizes7× 7 and9× 9 are quite similar while the computation time is proportional to the number of pixels

in the patch.



Fig. 5. Sequence “Flower garden”. (a) one image of the original sequence, (b) the same image of the noisy sequence with an additive
Gaussian white noise of standard deviationτ = 30 ( PSNR = 18.58dB ) and (c) the corresponding image of the denoised sequence,
PSNR = 23.59dB. (d), (e) and (f) represent correspondingXT slices in the space-time domain. The camera motion appear as lines in the
XT slices.

The well known sequence “Flower garden” is shown on Fig. 5 to illustrate the visual quality of the

denoised image sequence in very noisy conditions. In order to give insights into the spatio-temporal

behavior of the denoising method, we have displayedXT slices of the image sequence. The reported

results demonstrate that our method can cope with the presence of motion while preserving temporal

discontinuities and reaches aPSNR of 23.59 using7× 7 patches and6 iterations. By applying our own

implementation of thenon-local meanalgorithm [12] on the “Flower garden” sequence using a7 × 7

patch in a21× 21× 3 neighborhood and choosing a bandwidth equal toh = 12× τ 2, we get aPSNR

equal to21.14dB only.

b) Comparison with other recent methods:We have compared our method with four other recent

methods: a combination of a spatial Wiener filter with a motion-compensated temporal Kalman filter [2],

a space-time non linear adaptive K-NN filter [4], a 3D wavelet-based method [6] and a 3D point-

wise adaptive estimate using different neighborhood geometries [23]. For these experiments, the motion-

compensation stage is not applied.

Eight test sequences corrupted with noise of different levels are used. For a fair evaluation, we have

considered the results supplied by the authors themselves in the referenced papers. Therefore, we cannot

provide thePSNR measures for all the test sequences and Table I contains all the available results. Our

method clearly outperforms all the other methods since it supplies the bestPSNR results for all the

tested sequences, sometimes with a quite significative improvement (up to4dB). Let us also stress that

the implementation of our method is straightforward and our method involves no parameter tuning.



(a) (b) PSNR = 22dB (c) PSNR = 31.53dB

(d) PSNR = 31.47dB (e) PSNR = 32.50dB (f) PSNR = 32.40dB

Fig. 6. Sequence “Avenger”. (a)384× 288× 12 original sequence (b) noisy sequence with an additive Gaussian white noise of standard
deviationτ = 20, denoised sequence with the proposed method using : (c)5 × 5 patches and no motion compensation stage (5 min), (d)
3×3×3 patches and no motion compensation stage (6 min), (e)5×5 patches with the motion compensation stage using a quadratic motion
model (9 min), (d) 3× 3× 3 patches with the motion compensation stage using a quadratic motion model (20 min). The computation time
is indicated for a Linux PC with8× 3Ghz CPU.

c) Motion compensation:In this section, we aim at evaluating the impact of a motion compensation

stage on the performance of our method. We have applied this version to the “Avenger” sequence which

contains two moving cars tracked by the camera mounted in an helicopter. Fig. 6(a) and (b) respectively

contain one image of the original image sequence and of the noisy image sequence with an additive

Gaussian white noise of standard deviationτ = 20. Fig. 6(c) displays the result of the version of our

method without motion-compensated while Fig. 6(e) shows the improvement supplied by the motion-

compensation stage. ThePSNR difference between the two image sequence is about1dB and the visual

quality is also improved. We can then conclude that, when the global motion the image sequence is well

described by a 2D parametric model, the proposed motion compensation scheme improves the quality of

the denoising process. A quadratic motion model was used. Let us add that the motion of the two cars is

not handled by the dominant motion model. However, since our method involves a data-driven adaptation

scheme, the neighborhoods for the pixels belonging to these two cars essentially reduce to 2D spatial

ones.



Fig. 7. Infra-red sequence. (a) one image of the original sequence, (b) the corresponding image of the denoised sequence with thenon-local
filter applied with a patch of size5 × 5 and the bandwidth equal to four times the noise standard deviation, (c) denoised image with the
proposed motion compensated filter, (b1) Cropped region of (b), (c1) Cropped region of (c).

d) Space-time patches:Fig. 6(d) shows one image of the “Avenger” sequence denoised using the

proposed method with space-time3×3×3 patches. It can be compared to the result obtained with spatial

5× 5 patches and shown in Fig. 6(c). In the two cases, the number of intensity values used to compute

the similarity measure (see Eq. 7) is approximatively the same. ThePSNR difference is negligible.

Nevertheless, the use of space-time patches increases the temporal stability of the reconstructed structures

along the image sequence which is an important point for the visual quality.

e) Experiment on a real image sequence:Fig. 7 reports an experiment on a real infra-red sequence

which is naturally noisy. It is taken from a plane approaching an harbor with boats and a moving vehicle

on the pier. The noise standard deviation is estimated to7.3. The contrast of some structures on the ground

is very low and the sequence is shaking due to the plane vibrations. We use once again a quadratic motion

model to estimate the dominant motion. Let us recall that this model is exact in the case of a rigid motion

and a planar scene. The proposed method (Fig. 7c.) can be favorably compared to our own implementation

of thenon-local meansalgorithm (Fig. 7b.) [12]. The details of the images like the small vehicle are better

restored while the noise has been well removed. Finally, temporal discontinuities of the sequence due to

the vibrations are also preserved.

V. CONCLUSION

We have described a novel and efficient unsupervised method for denoising image sequences. The

proposed method is based upon an adaptive estimation statistical framework. It can specify, in a simple

data-driven way, the most appropriate space-time neighborhood and associate weights to select the data

points involved in the intensity estimation process at each pixel. Moreover, it involves a patch-based

approach extended to the space-time domain. All the parameters of the algorithm are well calibrated and



our method does not require any fine parameter tuning. Quite satisfactory results have been obtained on

several image sequences. Furthermore, it was experimentally demonstrated that our method outperforms

other recent methods. The visual quality improvement of the denoised image sequences is noticeable since

noise is well smoothed out while spatial and temporal discontinuities are well preserved. Finally, some

improvements are proposed to incorporate a motion-compensation stage improving the performance of

the proposed method.
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