
Introduction to Grid’5000
Chuyuan Li
10/11/2020

What is Grid’5000 and why would you use it?
This is a large-scale and flexible testbed for experiment-driven research.

We mainly interested in its large amount of resources:

- when you want to run a GPU-required machine learning task but you don't
have GPU in your own computer

- when you run a time-consuming calculation and wish not to occupy 90% of
your CPU all the time, etc.

For detailed description, refer to this link

https://www.grid5000.fr/w/Grid5000:Home

Outline
- Get an account of Grid’5000
- Connection with SSH key
- Basic concepts (cluster, node, host, core...)
- File/folder transfer
- Resources visualisation
- Resources reservation and management with OAR
- TBD

Before we start...
- Please check you have an account and can access to frontend

- Open a terminal
- type: ssh login@access.grid5000.fr

- THE site you will frequent:
- https://www.grid5000.fr/w/Getting_Started

mailto:login@access.grid5000.fr
https://www.grid5000.fr/w/Getting_Started

Big picture

Concept map

Concept map

- cluster
- nodes
- host
- core

Link: https://www.grid5000.fr/w/Nancy:Hardware

Hardware in Nancy site

https://www.grid5000.fr/w/Nancy:Hardware

Queues and Usage Policy
- Default queue

- Daytime is dedicated to smaller-scale experiments
- Large-scale jobs must be executed during nights or weekends
- generally, using advance reservations
- Read carefully the rules in case of violation of usage

- Production queue
- Smaller set of resources
- Only in Nancy site
- More suited to long-running, non-interactive jobs

- More information, ref to UsagePolicy

https://www.grid5000.fr/w/Grid5000:UsagePolicy

Queues and Usage Policy
- discover daily allowance with:

`usagepolicycheck -l [--sites site1,sites2]`

- check the jobs that have been counted using:
`usagepolicycheck -v --start '2020-10-20 11:00:24 +0200' --end '2020-11-03 10:00:24 +0100'

First connection

Connecting and moving around
- Basic steps to get in a site:

- open a terminal
- connect to access machine: `outside: ssh login@access.grid5000.fr`
- specify a site: `access: ssh site`
- put in your password
- then we can view machine list in this site

mailto:login@access.grid5000.fr

Connecting and moving around
- Basic steps to get in a site:

- connect to access machine: `outside: ssh login@access.grid5000.fr`

- specify a site: `access: ssh nancy`

mailto:login@access.grid5000.fr

Connecting and moving around
- Basic steps to get in a site:

- specify a site: `access: ssh nancy`

Tip: use SSH ProxyCommand
- In ~/.ssh/config:

- Connect to any Grid5k node in one command
- $ ssh nancy.g5k
- $ ssh lyon.g5k

Transferring files to/from Grid’5000
- no BACKUP in g5k, so make sure your important files are stored somewhere

outside
- In each site, by default 25 GiB storage

- If needed, can demand for more space
- manage account -> homedir quotas -> request quota extension

- ProxyCommand works with everything SSH-based
- scp, sftp, rsync

- Prefer rsync than scp
- Pipelined file transfers
- More efficient on networks with large BDP (bandwidth * latency)

https://api.grid5000.fr/stable/users/

Transferring files to/from Grid’5000
- scp

- Copy file from local to remote:
- scp local_file remote_username@remote_ip:remote_file

- Copy folder from local to remote:
- scp -r local_folder remote_username@remote_ip:remote_folder

- Copy file from local to remote:
- scp remote_username@remote_ip:remote_file local_file

- Copy folder from remote to local:
- scp -r remote_username@remote_ip:remote_folder local_folder

- Example
- `local: $ scp -r /Users/chuyli/g5k_tuto/ cli@nancy.g5k:/home/cli/`
- `local: $ scp cli@nancy.g5k:/home/cli/g5ktuto/show1.sh /Users/chuyli/g5k_tuto/`

Transferring files to/from Grid’5000
- rsync

- Copy folder from local to remote:
- rsync -avzP local_folder remote_username@remote_ip:remote_folder

- Example:
- `local: $ rsync -avzP /Users/chuyli/g5k_tuto cli@nancy.g5k:/home/cli/`
- `local: $ rsync -avzP /Users/chuyli/g5k_tuto/ cli@nancy.g5k:/home/cli/`
- Mind the difference between local_folder and local_folder/

- Much faster than scp for large files, recommend for folder transfer
- Syntaxe more complicated
- To know more, check official link rsync

https://www.samba.org/ftp/rsync/rsync.html

Visualisation &
Reservation

Visualizing Grid’5000 resources
- Several ways to learn about resources and their status

- Monika: reservation state
- Gantt: reservation history and forecast, very useful
- Ganglia: resources usage (load, memory, CPU, network usage in last hour)
- Platform events: show maintenance news
- More info: ref nancy home site

https://intranet.grid5000.fr/oar/Nancy/monika.cgi
https://intranet.grid5000.fr/oar/Nancy/drawgantt-svg-prod/
https://intranet.grid5000.fr/ganglia/?c=Nancy&m=load_one&r=hour&s=by%20name&hc=4&mc=2
https://www.grid5000.fr/status/
https://www.grid5000.fr/w/Nancy:Home

Monika

Gantt

Ganglia

Reserving resources with OAR
- OAR: resources and jobs management system (batch manager) in g5k
- Smallest unit of resource: core (cpu core)

- E.g.: graffiti have 2 CPU with 8 cores/CPU, maximum reserved for 16 tasks
- By default a OAR job reserves a host (=nodes, physical computer with all cpu/cores)

- Reservation syntaxe

Reserving resources with OAR: interactive mode
- Interactive mode

- Use option `-I `
- As soon as a resource is available, directly connected to that resource with an

interactive shell. By default walltime = 1 hour
- If you want to reserve GPU

-
- This means reserve 1 GPU with the associated cores in the queue production
- Nodes with GPU are exclusively in the production queue in Nancy

- Terminate reservation and return to frontend
- exit or CTRL+d

- Need more than 1 node or longer time (walltime):
-

Reserving resources with OAR: passive mode
- Passive mode

- By default, no need to add an option
- Reservation in 2 steps

- First reserve a node and ask it to sleep for a long time
- Allocate a job_ID quickly
- Then use this command to enter the host

- Advantage: no worry about accidentally terminate your task (terminal closed or network
disconnection)

- More parameters:
- -r: reserve a specific time in the future

-
- More options to reserve a resource check `oarsub --help`

Job management
- View your list of jobs with `oarstat`

- Option `-u` see only your jobs: `oarstat -u`
- Option `-j job_id` see the state for this particular job
- Status: W=waiting, L=launching, R=running, F=finish

- Delete a job with `oardel`
-

- Passive mode jobs, stdout and stderr streams are created automatically
- check out stream (or error stream) with `cat` at any time
- `$ cat OAR.2758674.stdout`

Job management
- Specify the properties of host with option `-p`

- exemples :
-
-
- oarsub also accepts SQL

- Extend the duration with `+time`:
-
- Not whenever you want, check rules in Usage Policy

Some examples
- Ask for 1 core and launch a script called ‘my_script.py’
- Ask for 3 GPU in host ‘graffiti-4’ in site Nancy, queue production for 1 hour
- Ask for 20 cores in ‘grvingt’ in production queue and sleep 10 days
- Ask for 1 node in cluster ‘grvingt’ for 20 minutes, and launch script ‘run.sh’
- Check my reservations

- oarsub -l core=1 "my_script.py --in $HOME/data/ --out $HOME/results/"
- oarsub -p "host in ('graffiti-4.nancy.grid5000.fr')" gpu=3,walltime=1 -q production
- oarsub -p "cluster='grvingt'" -l core=20 "sleep 10d" -q production
- oarsub -p "cluster='grvingt'" -l nodes=1,walltime=0:20 "bash run.sh" -q production
- oarstat -u

Customize software
environment

Kadeploy
- `oarsub` gives access to resources configured in default environment
- Re-install the nodes with different software environment

- Different Debian version, another Linux distribution, or even Windows
- Can get root access to install the software stack
- More detail ref this link
- More about Kadeploy and `kadeploy3` commands, refer this link

https://www.grid5000.fr/w/Getting_Started#Deploying_your_nodes_to_get_root_access_and_create_your_own_experimental_environment
http://kadeploy3.gforge.inria.fr/index.html

Towards deep learning

Deep learning
- Creation of a virtual environment for python
- Installation of deep learning software
- Configuration of software (such as cudnn library, config file)
- Running DL software on Grid’5000

- Reservation with oarsub
- monitoring (log files, kill)
- Use several GPU cards

- Tips and tricks, for detailed info follow this link

https://www.grid5000.fr/w/User:Ibada/Tuto_Deep_Learning

Deep learning - virtual env.
- Creation of a virtual environment for python

- Go to Nancy g5k site
- Xx
- Can precise interpreter with `-p` such as `--python=python3.7`
- Activate virtual environment
- Xx
- Otherwise, can do with anaconda

Deep learning - pytorch installation
- Pytorch

- Reserve a cluster with GPU (graffiti, graphique, grimani, etc.)
- In the host, install torch with pip or anaconda
- Load module cuda and cudnn in current shell

- $ module av

- $ module load cuda/11.0.1_gcc-8.3.0

- $ module load cudnn/7.6.5.32-10.1-linux-x64_gcc-8.3.0

- Check if pytorch is correctly installed to work with GPU
- $ python3 -c "import torch; print(torch.cuda.is_available())"

- Similar for Tensorflow

https://pytorch.org/get-started/locally/

Deep learning - nancy site
- Available nodes

- grimani: 6 nodes, each node has 2 Nvidia K40m GPU cards
- graphique: 6 nodes, 2 x Nvidia Titian Black (graphique-1), 2 x Nvidia GTX 980 GPU (other

nodes)
- grele: 14 nodes, each node has 2 Nvidia Geforce 1080 Ti GPU cards
- graffiti: 13 nodes, each node has 4 Nvidia Geforce RTX2080 GPU cards

- Each gpu cluster has 2 GPU cards
- Script can use already the 2 cards
- If want to use multiple GPU cards of one machine in parallel, ref this tuto

https://www.pyimagesearch.com/2017/10/30/how-to-multi-gpu-training-with-keras-python-and-deep-learning/

Deep learning - reservation
- Reserve one GPU

- Interactive mode: `site:~$ oarsub -I -l “nodes=1/gpu=1,walltime=0:20:00” -q production`
- Passive mode:

- Request a task: `site:~$ oarsub -l gpu=1 “sleep 10d” -q production`
- Move into the host: `site:~$ oarsub -C job_id`

- Check GPU usage: `host:~$ nvidia-smi -l 2`

Conclusion

Community
- Report the problems to the community

- users@lists.grid5000.fr

- (if you want) join the technical committee
- Subscribe to devel@lists.grid5000.fr
- Discussions and bugs

mailto:users@lists.grid5000.fr
mailto:devel@lists.grid5000.fr

Wrap up
We have seen

- Connecting to Grid’5000
- Infrastructure map, with some basic concepts
- Visualizing resources
- Transferring files
- Reserving resources with 2 modes
- Job management
- A deep learning framework

Wrap up
We have seen

- Connecting to Grid’5000
- Infrastructure map, with some basic concepts
- Visualizing resources
- Transferring files
- Reserving resources with 2 modes
- Job management
- A deep learning framework

We have used

- ssh
- site, cluster, node, core
- Gantt, Monika...
- scp, rsync
- oarsub
- oarstat, oardel, oarwalltime
- Pytorch installation

Wrap up
- Grid’5000 is a fantastic tool for your research
- Mastering it is challenging
- Be positive, find a problem, ask and share =)
- Questions?

