Introduction to Grid'5000

Chuyuan Li 10/11/2020

What is Grid'5000 and why would you use it?

This is a large-scale and flexible testbed for experiment-driven research.

We mainly interested in its large amount of resources:

- when you want to run a GPU-required machine learning task but you don't have GPU in your own computer
- when you run a time-consuming calculation and wish not to occupy 90% of your CPU all the time, *etc*.

For detailed description, refer to this link

Outline

- Get an account of Grid'5000
- Connection with SSH key
- Basic concepts (cluster, node, host, core...)
- File/folder transfer
- Resources visualisation
- Resources reservation and management with OAR
- TBD

Before we start...

- Please check you have an account and can access to frontend
 - Open a terminal
 - type: ssh login@access.grid5000.fr
- THE site you will frequent:
 - https://www.grid5000.fr/w/Getting_Started

Big picture

Hardware in Nancy site

13 clusters, 374 nodes, 7784 cores, 323.3 TFLOPS

Cluster +	Access + Condition	Date of arrival ◆	Nodes \$	CPU ÷	Cores +	Memory +	Storage +	Network +	Accelerators +
graffiti	production queue	2019-06-07	13	2 x Intel Xeon Silver 4110	8 cores/CPU	128 GiB	479 GB SSD	10 Gbps	4 x Nvidia RTX 2080 Ti
graoully	production queue	2016-01-04	16	2 x Intel Xeon E5-2630 v3	8 cores/CPU	128 GiB	1 x 600 GB HDD + 1 x 600 GB HDD	10 Gbps + 56 Gbps InfiniBand	
graphique	production queue	2015-05-12	6	2 x Intel Xeon E5-2620 v3	6 cores/CPU	64 GiB	299 GB HDD	10 Gbps + 56 Gbps InfiniBand	1: 2 x Nvidia Titan Black [2-6]: 2 x Nvidia GTX 980
graphite		2013-12-05	4	2 x Intel Xeon E5-2650	8 cores/CPU	256 GiB	1 x 300 GB SSD + 1 x 300 GB SSD	10 Gbps + 56 Gbps InfiniBand	Intel Xeon Phi 7120P
grappe	production queue	2020-08-20	16	2 x Intel Xeon Gold 5218R	20 cores/CPU	96 GiB	480 GB SSD + 8.0 TB HDD*	25 Gbps	
grcinq	production queue	2013-04-09	47	2 x Intel Xeon E5-2650	8 cores/CPU	64 GiB	1.0 TB HDD	1 Gbps + 56 Gbps InfiniBand	
grele	production queue	2017-06-26	14	2 x Intel Xeon E5-2650 v4	12 cores/CPU	128 GiB	1 x 299 GB HDD + 1 x 299 GB HDD	10 Gbps + 100 Gbps Omni-Path	2 x Nvidia GTX 1080 Ti
grimani	production queue	2016-08-30	6	2 x Intel Xeon E5-2603 v3	6 cores/CPU	64 GiB	1.0 TB HDD	10 Gbps + 100 Gbps Omni-Path	2 x Nvidia Tesla K40M
grimoire		2016-01-22	8	2 x Intel Xeon E5-2630 v3	8 cores/CPU	128 GiB	600 GB HDD + 4 x 600 GB HDD* + 200 GB SSD*	4 x 10 Gbps + 56 Gbps InfiniBand	
grisou		2016-01-04	51	2 x Intel Xeon E5-2630 v3	8 cores/CPU	128 GiB	1 x 600 GB HDD + 1 x 600 GB HDD	[1-48]: 1 Gbps + 4 x 10 Gbps 49: 4 x 10 Gbps [50-51]: 4 x 10 Gbps + 56 Gbps InfiniBand	
gros		2019-09-04	124	Intel Xeon Gold 5220	18 cores/CPU	96 GiB	480 GB SSD + 960 GB SSD*	2 x 25 Gbps	
grue	production queue	2019-11-25	5	2 x AMD EPYC 7351	16 cores/CPU	128 GiB	479 GB SSD	10 Gbps	4 x Nvidia Tesla T4
grvingt	production queue	2018-04-11	64	2 x Intel Xeon Gold 6130	16 cores/CPU	192 GiB	1.0 TB HDD	10 Gbps + 100 Gbps Omni-Path	

Link: https://www.grid5000.fr/w/Nancy:Hardware

Queues and Usage Policy

- Default queue
 - Daytime is dedicated to smaller-scale experiments
 - Large-scale jobs must be executed during nights or weekends
 - generally, using advance reservations
 - Read carefully the rules in case of violation of usage
- Production queue
 - Smaller set of resources
 - Only in Nancy site
 - More suited to long-running, non-interactive jobs
- More information, ref to UsagePolicy

Queues and Usage Policy

- discover daily allowance with:

`usagepolicycheck -l [--sites site1,sites2]`

- check the jobs that have been counted using:

`usagepolicycheck -v --start '2020-10-20 11:00:24 +0200' --end '2020-11-03 10:00:24 +0100'

First connection

Connecting and moving around

- Basic steps to get in a site:
 - open a terminal
 - connect to access machine: `outside: ssh login@access.grid5000.fr`
 - specify a site: `access: ssh site`
 - put in your password
 - then we can view machine list in this site

Connecting and moving around

- Basic steps to get in a site:
 - connect to access machine: `outside: ssh login@access.grid5000.fr`

- specify a site: `access: ssh nancy`

Connecting and moving around

- Basic steps to get in a site:
 - specify a site: `access: ssh nancy`

[cli@access-north:~\$ ssh nancy [cli@nancy's nassword:	
Linux fnancy 4.19.0-12-amd64 #1 SMP Debian 4.19.152-1 (2020-10-18) x86_64 Grid'5000 - Nancy - fnancy.nancy.grid5000.fr	
This site has 13 clusters (see: https://www.grid5000.fr/w/Nancy:Hardware)	
Available in queue default - graphite (2013): 4 nodes (2 CPUs Intel Xeon E5-2650, 8 cores/CPU, 256GB RAM, 2x279GB SSD, 1 x 10Gb Ethernet, 1 x 56Gb InfiniBand) - grimoire (2016): 8 nodes (2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 128GB RAM, 5x558GB HDD, 186GB SSD, 4 x 10Gb Ethernet, 1 x 56Gb InfiniBand) - grisou (2016): 51 nodes (2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 128GB RAM, 2x558GB HDD, 4 x 10Gb Ethernet, 1 x 16b Ethernet) - grisou (2016): 51 nodes (2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 128GB RAM, 2x558GB HDD, 4 x 10Gb Ethernet, 1 x 16b Ethernet) - gros (2019): 124 nodes (1 CPU Intel Xeon Gold 5220, 18 cores/CPU, 96GB RAM, 447GB SSD, 894GB SSD, 2 x 25Gb Ethernet)	
Available in queue production - grcinq (2013): 47 nodes (2 CPUs Intel Xeon E5-2650, 8 cores/CPU, 64GB RAM, 931GB HDD, 1 x 1Gb Ethernet, 1 x 56Gb InfiniBand) - graphique (2015): 6 nodes (2 CPUs Intel Xeon E5-2620 v3, 6 cores/CPU, 64GB RAM, 278GB HDD, 1 x 10Gb Ethernet, 1 x 56Gb InfiniBand) - graphique (2016): 16 nodes (2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 128GB RAM, 2x558GB HDD, 1 x 10Gb Ethernet, 1 x 56Gb InfiniBand) - grimani (2016): 16 nodes (2 CPUs Intel Xeon E5-2630 v3, 6 cores/CPU, 128GB RAM, 2x558GB HDD, 1 x 10Gb Ethernet, 1 x 56Gb InfiniBand) - grimani (2016): 6 nodes (2 CPUs Intel Xeon E5-2630 v3, 6 cores/CPU, 128GB RAM, 2x588GB HDD, 1 x 10Gb Ethernet, 1 x 100Gb Omni-Path) - grele (2017): 14 nodes (2 CPUs Intel Xeon E5-2650 v4, 12 cores/CPU, 128GB RAM, 2x278GB HDD, 1 x 10Gb Ethernet, 1 x 100Gb Omni-Path) - gruingt (2018): 64 nodes (2 CPUs Intel Xeon Gold 6130, 16 cores/CPU, 192GB RAM, 931GB HDD, 1 x 10Gb Ethernet, 1 x 100Gb Omni-Path) - graffiti (2019): 13 nodes (2 CPUs Intel Xeon Silver 4110, 8 cores/CPU, 192GB RAM, 446GB SSD, 1 x 10Gb Ethernet) - grue (2019): 5 nodes (2 CPUs AMD EPYC 7351, 16 cores/CPU, 128GB RAM, 447GB SSD, 7452GB HDD, 1 x 25Gb Ethernet) - grappe (2020): 16 nodes (2 CPUs Intel Xeon Gold 5218R, 20 cores/CPU, 96GB RAM, 447GB SSD, 7452GB HDD, 1 x 25Gb Ethernet)	
<pre>** Useful links: - account management (password change): https://api.grid5000.fr/ui/account - homepage: https://www.grid5000.fr/mediawiki/index.php/Category:Portal:User - charter : https://www.grid5000.fr/mediawiki/index.php/Grid5000:UserCharter - support : https://www.grid5000.fr/mediawiki/index.php/Support</pre>	
** Others sites: \$ ssh {grenoble,lille,luxembourg,lyon,nantes,rennes,sophia} Last login: Mon Nov 9 20:29:44 2020 from 192.168.66.33	

Tip: use SSH ProxyCommand

- In ~/.ssh/config:

```
Host g5k
User USERNAME
Hostname access.grid5000.fr
ForwardAgent no
Host *.g5k
User USERNAME
ProxyCommand ssh g5k -W "$(basename %h .g5k):%p"
ForwardAgent no
```

- Connect to any Grid5k node in one command
 - \$ ssh nancy.g5k
 - \$ssh lyon.g5k

Transferring files to/from Grid'5000

- no BACKUP in g5k, so make sure your important files are stored somewhere outside
- In each site, by default 25 GiB storage
 - If needed, can demand for more space
 - <u>manage account</u> -> homedir quotas -> request quota extension
- ProxyCommand works with everything SSH-based
 - scp, sftp, rsync
- Prefer rsync than scp
 - Pipelined file transfers
 - More efficient on networks with large BDP (bandwidth * latency)

Transferring files to/from Grid'5000

- scp

- Copy file from local to remote:
 - scp local_file remote_username@remote_ip:remote_file
- Copy folder from local to remote:
 - scp -r local_folder remote_username@remote_ip:remote_folder
- Copy file from local to remote:
 - scp remote_username@remote_ip:remote_file local_file
- Copy folder from remote to local:
 - scp -r remote_username@remote_ip:remote_folder local_folder
- Example
 - `local: \$ scp -r /Users/chuyli/g5k_tuto/ cli@nancy.g5k:/home/cli/`
 - `local: \$ scp cli@nancy.g5k:/home/cli/g5ktuto/show1.sh /Users/chuyli/g5k_tuto/`

Transferring files to/from Grid'5000

- rsync
 - Copy folder from local to remote:
 - rsync -avzP local_folder remote_username@remote_ip:remote_folder
 - Example:
 - `local: \$ rsync -avzP /Users/chuyli/g5k_tuto cli@nancy.g5k:/home/cli/`
 - `local: \$ rsync -avzP /Users/chuyli/g5k_tuto/ cli@nancy.g5k:/home/cli/`
 - Mind the difference between *local_folder* and *local_folder/*
 - Much faster than scp for large files, recommend for folder transfer
 - Syntaxe more complicated
 - To know more, check official link <u>rsync</u>

Transfer of 120 files (total : 2.1 MB) with SCP and Rsync Bandwidth and Latency controlled using network emulator

Visualisation & Reservation

Visualizing Grid'5000 resources

- Several ways to learn about resources and their status
 - Monika: reservation state
 - <u>Gantt</u>: reservation history and forecast, very useful
 - <u>Ganglia</u>: resources usage (load, memory, CPU, network usage in last hour)
 - Platform events: show maintenance news
 - More info: ref nancy home site

Monika

Grid5000 Nancy nodes

default summary			
	Free	Busy	Total
network_address	3	183	187
resource_id	48	3176	3240

Reservations:

graphite-1	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800	2758800
graphite-2	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770	2758770
graphite-3	Free															
graphite-4	Absent															
grimoire-1	<u>2751135</u>															
grimoire-2	<u>2751135</u>															
grimoire-3	2751135	<u>2751135</u>	<u>2751135</u>	2751135	<u>2751135</u>	<u>2751135</u>	2751135	<u>2751135</u>	2751135	<u>2751135</u>	<u>2751135</u>	<u>2751135</u>	2751135	<u>2751135</u>	<u>2751135</u>	<u>2751135</u>

Ganglia

Overview of Nancy @ 2020-10-18 23:50

Reserving resources with OAR

- OAR: resources and jobs management system (batch manager) in g5k
- Smallest unit of resource: core (cpu core)
 - E.g.: graffiti have 2 CPU with 8 cores/CPU, maximum reserved for 16 tasks
 - By default a OAR job reserves a **host** (=*nodes*, physical computer with all cpu/cores)
- Reservation syntaxe

5>	fnancy	:	oarsub -I
o res	erve three	ho	sts (three nodes), in interactive mode, do:
5	fnancy	:	oarsub -l host=3 -I
r equ	ivalently:		
5	fnancy	:	oarsub -l nodes=3 -I
io res	fnancy erve only o	: one	core in interactive mode, run:

Reserving resources with OAR: interactive mode

- Interactive mode

-

- Use option $-\mathcal{I}$
 - As soon as a resource is available, directly connected to that resource with an interactive shell. By default *walltime* = 1 hour
- If you want to reserve GPU
 - fnancy : oarsub -l gpu=1 -I -q production
 - This means reserve 1 GPU with the associated cores in the queue production
 - Nodes with GPU are **exclusively** in the production queue in Nancy
- Terminate reservation and return to frontend
 - exit or CTRL+d
- Need more than 1 node or longer time (walltime):

fnancy : oarsub -I -l nodes=2,walltime=0:30

Reserving resources with OAR: passive mode

- Passive mode
 - By default, no need to add an option
 - Reservation in 2 steps
 - First reserve a node and ask it to sleep for a long time
 - Allocate a job_ID quickly
 - Then use this command to enter the host **G** fnancy : oarsub -C job_id
 - Advantage: no worry about accidentally terminate your task (terminal closed or network disconnection)

fnancy : oarsub "sleep 10d"

- More parameters:
 - -r: reserve a specific time in the future

```
fnancy : oarsub -l nodes=3,walltime=3 -r '2020-12-23 16:30:00'
```

- More options to reserve a resource check `oarsub --help`

Job management

- View your list of jobs with `oarstat`
 - Option `-u` see only your jobs: `oarstat -u`
 - Option `-j job_id` see the state for this particular job
 - Status: W=waiting, L=launching, R=running, F=finish

Job id	Name	User	Submission	Date	S	Queue
					-	
2758674		cli	2020-10-18	19:17:56	R	production
2759002		cli	2020-10-19	09:38:00	R	production
2759104		cli	2020-10-19	10:28:41	R	default
2759109		cli	2020-10-19	10:30:43	R	default

- Delete a job with `oardel`
 - fnancy : oardel 12345
- Passive mode jobs, stdout and stderr streams are created automatically
 - check out stream (or error stream) with `cat` at any time
 - `\$ cat OAR.2758674.stdout`

Job management

- Specify the properties of host with option `-p`
 - exemples :
 - 🖬 fluxembourg : oarsub -p "cluster='granduc'" -l nodes=5,walltime=2 -I
 - flyon : oarsub -p "wattmeter='YES' and gpu_count > 0" -l nodes=2,walltime=2 -I
 - oarsub also accepts SQL
- Extend the duration with `+time`:
 - _ fnancy : oarwalltime 12345 +1:30
 - Not whenever you want, check rules in Usage Policy

Some examples

- Ask for 1 core and launch a script called 'my_script.py'
- Ask for 3 GPU in host 'graffiti-4' in site Nancy, queue production for 1 hour
- Ask for 20 cores in 'grvingt' in production queue and sleep 10 days
- Ask for 1 node in cluster 'grvingt' for 20 minutes, and launch script 'run.sh'
- Check my reservations
- oarsub -/ core=1 "my_script.py --in \$HOME/data/ --out \$HOME/results/"
- oarsub -p "host in ('graffiti-4.nancy.grid5000.fr')" gpu=3,walltime=1 -q production
- oarsub -p "cluster='grvingt" l core=20 "sleep 10d" -q production
- oarsub -p "cluster='grvingt'" -*l* nodes=1,walltime=0:20 "bash run.sh" -q production
- oarstat -u

Customize software environment

Kadeploy

- `oarsub` gives access to resources configured in default environment
- Re-install the nodes with different software environment
 - Different Debian version, another Linux distribution, or even Windows
 - Can get root access to install the software stack
 - More detail ref this link
 - More about Kadeploy and `kadeploy3` commands, refer this link

Towards deep learning

Deep learning

- Creation of a virtual environment for python
- Installation of deep learning software
- Configuration of software (such as cudnn library, config file)
- Running DL software on Grid'5000
 - Reservation with oarsub
 - monitoring (log files, kill)
 - Use several GPU cards
- Tips and tricks, for detailed info follow this link

Deep learning - virtual env.

- Creation of a virtual environment for python
 - Go to Nancy g5k site
 - 🖬 inside : virtualenv /home/ login /venv
 - Can precise interpreter with `-p` such as `--python=python3.7`
 - Activate virtual environment
 - 🖬 inside : source /home/ login /venv/bin/activate
 - Otherwise, can do with anaconda

Deep learning - pytorch installation

- Pytorch
 - Reserve a cluster with GPU (graffiti, graphique, grimani, etc.)
 - In the host, install torch with pip or anaconda
 - Load module cuda and cudnn in current shell
 - \$ module av
 - \$ module load cuda/11.0.1_gcc-8.3.0
 - \$ module load cudnn/7.6.5.32-10.1-linux-x64_gcc-8.3.0
 - Check if pytorch is correctly installed to work with GPU
 - \$ python3 -c "import torch; print(torch.cuda.is_available())"

- Similar for Tensorflow

Deep learning - nancy site

- Available nodes
 - grimani: 6 nodes, each node has 2 Nvidia K40m GPU cards
 - graphique: 6 nodes, 2 x Nvidia Titian Black (graphique-1), 2 x Nvidia GTX 980 GPU (other nodes)
 - grele: 14 nodes, each node has 2 Nvidia Geforce 1080 Ti GPU cards
 - graffiti: 13 nodes, each node has 4 Nvidia Geforce RTX2080 GPU cards

- Each gpu cluster has 2 GPU cards
 - Script can use already the 2 cards
 - If want to use multiple GPU cards of one machine in parallel, ref this tuto

Deep learning - reservation

- Reserve one GPU
 - Interactive mode: 🖬 inside : oarsub -q production -l "nodes=1/gpu=1,walltime=0:20:00" -I
 - Passive mode:
 - 🖬 inside : oarsub -q production -l "nodes=1/gpu=1,walltime=0:20:00" <path to a bash script>
 - Move into the host: `site:~\$ oarsub -C job_id`
 - Check GPU usage: `host:~\$ nvidia-smi -I 2`

+	NVI	DIA-SMI	450.5	1.05	Dri	ver	Version:	450.51.	05	CUDA Ve	rsio	n: 11.0
	GPU Fan	Name Temp	Perf	Persi Pwr:U	stenc sage/	e-M Cap	Bus-Id	D Memory-	isp.A Usage	Volat GPU-U	ile til	Uncorr. ECC Compute M. MIG M.
	0 N/A	Tesla 22C	K40m P8	21W	0f / 23	f 5W	0000000 0M	0:03:00. iB / 114	0 Off 41MiB		0%	0 Default N/A
Ì										·		
	Proc GPL	cesses: J GI ID	CI ID		PID	Ту	pe Proc	ess name				GPU Memory Usage
i	No	runnin	g proc	esses	found							

Conclusion

Community

- Report the problems to the community
 - users@lists.grid5000.fr
- (if you want) join the technical committee
 - Subscribe to devel@lists.grid5000.fr
 - Discussions and bugs

Wrap up

We have seen

- Connecting to Grid'5000
- Infrastructure map, with some basic concepts
- Visualizing resources
- Transferring files
- Reserving resources with 2 modes
- Job management
- A deep learning framework

Wrap up

We have seen

- Connecting to Grid'5000
- Infrastructure map, with some basic concepts
- Visualizing resources
- Transferring files
- Reserving resources with 2 modes
- Job management
- A deep learning framework

We have used

- ssh
- site, cluster, node, core
- Gantt, Monika...
- scp, rsync
- oarsub
- oarstat, oardel, oarwalltime
- Pytorch installation

Wrap up

- Grid'5000 is a fantastic tool for your research
- Mastering it is challenging
- Be positive, find a problem, ask and share =)
- Questions?