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Motivation

Same reasons as yesterday.

Fault-tolerance.

Reliability.

Multi-tenancy.

Response time.
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Motivation(2)

Business constraints.

Competition between services.

Resource provisioning.

Compensation rates.



Active Object Workshop

Modelling Distributed Applications

What Java is not suited for ?

Algebraic Data Types.

Pattern Matching.

Using threads to model execution of very small functions.
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What is added ?

Separate message invocation and delivery from execution.

Use lambda expressions.

Allow programmers to follow a design pattern when
developing distributed applications.
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New Java Backend
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Levels of Scheduling

Application level

Embedded Systems
Real-Time Systems
Batch Systems

Task level

Thread level

Method level
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Designing Schedulers

Deadlines

Overall completion time

Task priorities

Load balancing

Resource usage

Task dependencies
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ABS Scheduling Levels

Within a COG (await f?)

Between COGs (f.get)

What is a Thread and what is ”less” than a Thread ?
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Translating Cooperative Scheduling

Each call/invocation is a message delivered in the
corresponding object’s queue.

All objects in the same COG compete for one Thread.

A ”Sweeper” Thread decides which task should be created
and be available for execution.

A thread pool executes available tasks based on a work
stealing mechanism.
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Translating Cooperative Scheduling (2)
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Prime Number Generation

Straight forward master-slave problem with some ”amazing” issues
for the old Java backend.

Traversal of a data structure significantly affects performance.

Objects are created for every ADT.
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Open questions

Execution abstraction in Java.

Foreign Language Interface.

Is it right to modify the generated code?

Is it right to not fully support ABS ?
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