
Active Object Workshop

A Design Pattern for Modelling Distributed
Applications

Vlad Serbanescu

Centrum Wiskunde

vlad.serbanescu@cwi..nl

September 29, 2015



Active Object Workshop

Overview

1 Modelling Distributed Applications

2 Scheduling Distributed Applications

3 Case Study



Active Object Workshop

Modelling Distributed Applications

Motivation

Same reasons as yesterday.

Fault-tolerance.

Reliability.

Multi-tenancy.

Response time.



Active Object Workshop

Modelling Distributed Applications

Motivation(2)

Business constraints.

Competition between services.

Resource provisioning.

Compensation rates.



Active Object Workshop

Modelling Distributed Applications

What Java is not suited for ?

Algebraic Data Types.

Pattern Matching.

Using threads to model execution of very small functions.



Active Object Workshop

Modelling Distributed Applications

What is added ?

Separate message invocation and delivery from execution.

Use lambda expressions.

Allow programmers to follow a design pattern when
developing distributed applications.



Active Object Workshop

Modelling Distributed Applications

New Java Backend



Active Object Workshop

Scheduling Distributed Applications

Levels of Scheduling

Application level

Embedded Systems
Real-Time Systems
Batch Systems

Task level

Thread level

Method level



Active Object Workshop

Scheduling Distributed Applications

Designing Schedulers

Deadlines

Overall completion time

Task priorities

Load balancing

Resource usage

Task dependencies



Active Object Workshop

Scheduling Distributed Applications

ABS Scheduling Levels

Within a COG (await f?)

Between COGs (f.get)

What is a Thread and what is ”less” than a Thread ?



Active Object Workshop

Scheduling Distributed Applications

Translating Cooperative Scheduling

Each call/invocation is a message delivered in the
corresponding object’s queue.

All objects in the same COG compete for one Thread.

A ”Sweeper” Thread decides which task should be created
and be available for execution.

A thread pool executes available tasks based on a work
stealing mechanism.



Active Object Workshop

Scheduling Distributed Applications

Translating Cooperative Scheduling (2)



Active Object Workshop

Case Study

Prime Number Generation

Straight forward master-slave problem with some ”amazing” issues
for the old Java backend.

Traversal of a data structure significantly affects performance.

Objects are created for every ADT.



Active Object Workshop

Case Study

Open questions

Execution abstraction in Java.

Foreign Language Interface.

Is it right to modify the generated code?

Is it right to not fully support ABS ?



Active Object Workshop

Case Study

References

https://github.com/CrispOSS/prime-sieves

https://github.com/CrispOSS/jabsc

https://github.com/CrispOSS/prime-sieves
https://github.com/CrispOSS/jabsc

	Modelling Distributed Applications
	Scheduling Distributed Applications
	Case Study

