
Concurrent access to shared mutable objects in

Encore and its GC related implications
2015-09-28

Tobias Wrigstad && Albert Yang

Outline
● Encore Programming Model
● Sharing mutable objects
● How Object GC works in Encore
● Example of Object GC failure
● How Object GC in other actor-based systems work
● Shared Object
● Summary

Encore Programming Model

messagesmailbox

Point: (x,y)

local heap

actor a

method1

method2

method3

returns Future

returns Future

returns Future

object

● Active objects (actor)
○ own thread of control
○ async interface
○ local heap
○ mailbox

● Passive objects (object)
○ like plain old Java object
○ sync interface
○ reside in local heap of actors

Sharing mutable objects
● Using active objects

○ high latency if many actors scheduled in front
○ memory overhead; each object carries a local heap
○ serial access even for non-overlapping operations

● Using passive objects
○ Data Race

i. mutates objects after sending
ii. mutates objects after receiving

○ Breaks parallel GC
i. parallel GC on local heap of each actor
ii. PonyRT deals with sharing immutable objects
iii. but sharing mutable objects would lead to dangling pointers

solvable using lock, STM, type
system...

GC in Encore
● Actor GC [Clebsch, Drossopoulou ‘13]

○ detect unreachable actors and collect them

● Object GC [Clebsch et_al. ‘15]
○ based on ownership and reference counting
○ local GC on the heap to each actor
○ sync using message passing

heap

actor a

heap

actor c

heap

actor b

actor c could GC independently, while actor a and b syncs using message passing

https://dl.acm.org/citation.cfm?id=2509557
http://www.doc.ic.ac.uk/~scd/icooolps15_GC.pdf
http://www.doc.ic.ac.uk/~scd/icooolps15_GC.pdf
http://www.doc.ic.ac.uk/~scd/icooolps15_GC.pdf

Object GC (1)

obj

a

class A {
 b = new B -- another actor
 obj = new Obj
 b.method(obj)
}

class B {
 def method(o : Obj) {
 print “recv”
 }
}

actor a creates obj in its local heap

Object GC (2)

obj

a

class A {
 b = new B -- another actor
 obj = new Obj
 b.method(obj)
}

class B {
 def method(o : Obj) {
 print “recv”
 }
}

local: { obj: 1 }

Reference counting (RC)

actor a creates an entry in local set before sending it out

Object GC (3)

obj

a

class A {
 b = new B -- another actor
 obj = new Obj
 b.method(obj)
}

class B {
 def method(o : Obj) {
 print “recv”
 }
}

local: { obj: 1 }

b

foreign: { obj: 1 }

ownership

actor b receives obj and creates an entry in foreign set, for it doesn’t belong to the current actor

Object GC (4)

obj

a

class A {
 b = new B -- another actor
 obj = new Obj
 b.method(obj)
}

class B {
 def method(o : Obj) {
 print “recv”
 }
}

local: { obj: 1 }

b

mailbox: { obj: 1 }

relinquish

During GC in b, obj is found unreachable and reports to the owner, a

Object GC (5)

obj

a

class A {
 b = new B -- another actor
 obj = new Obj -- object in local heap
 b.method(obj)
}

class B {
 def method(o : Obj) {
 print “recv”
 }
}

local: { obj: 0 }

b

RC reaches zero, eligible for collecting

In the next GC cycle, obj would be collected

Example of extending objects after receiving (1)

actor a actor b

obj1

1

class A {
 def method(o : Obj) {
 o.setNext(new Obj)
 o
 }
}

class B {
 a = new A
 obj = new Obj
 obj = get a.method(obj)
 obj.getNext()
}

actor b creates obj1 and shares with actor a

foreign: {obj1: 1} local: {obj1: 1}

Example of extending objects after receiving (2)

actor a actor b

obj1

1

2

class A {
 def method(o : Obj) {
 o.setNext(new Obj)
 o
 }
}

class B {
 a = new A
 obj = new Obj
 obj = get a.method(obj)
 obj.getNext()
}

obj2

actor a extents obj1 with obj2 after receiving

foreign: {obj1: 1} local: {obj1: 1}

Example of extending objects after receiving (3)

actor a actor b

obj1

1

2

class A {
 def method(o : Obj) {
 o.setNext(new Obj)
 o
 }
}

class B {
 a = new A
 obj = new Obj
 obj = get a.method(obj)
 obj.getNext()
}

obj2

GC in actor a would collect obj2, because it’s not captured in the local set

foreign: {obj1: 1} local: {obj1: 1}

dangling pointer

Example of extending objects after receiving (4)

actor a actor b

obj1

1

2

class A {
 def method(o : Obj) {
 o.setNext(new Obj)
 o
 }
}

class B {
 a = new A
 obj = new Obj
 obj = get a.method(obj)
 obj.getNext()
}

obj2

The correct state to keep obj2 from being collected

foreign: {obj1: 1} local: {obj1: 1}

local: {obj2: 1} foreign: {obj2: 1}

missing

How Object GC in other actor-based systems work
● Scala (Akka)
● Erlang

Scala (Akka)

global heap

actor a

actor c

actor b

zoom in

messages

internal state

“local heap”

mailbox

actor

● Actors are mapped into global heap
● GC is performed on global heap
● No parallel GC on per-actor level

Erlang (1)

 copy on msg send receive

actor a actor b

Erlang (2)

actor a actor b

● Two independent copies
● Parallel GC without interference

Comparison on Object GC
● Scala (Akka)

○ global GC can’t take advantage of the isolation of actors

● Erlang
○ local GC, but sharing large objects is expensive

● Encore
○ local GC, sharing is cheap, but has GC issues in concurrent access to shared passive

objects...

Proposed Solution: Shared Object
Isolated container, supporting a limited form of sharing and contention

● Support concurrent access to its encapsulated passive objects
● Support for parallel method execution

Important GC points

● No global sharing of mutable state, i.e., still parallel GC
● Only place where GC is contended is inside the heaps of shared objects

Active -- Shared -- Passive

active object

async interface

thread of control

shared object

async interface

no thread of control

passive object

sync interface

no thread of control

Example of Shared Object (1)

actor a actor b

shared object

actor a and b have access to a shared object, that has two disjoint fields, x and y

x y

Example of Shared Object (2)

actor a actor b

shared object

two actors could extend mutable state on shared object’s heap, synchronously and concurrently

x’

x

y’

y

Implementation Space
● Actor

○ Shared Object has the same interface as actor
○ high latency due to async operations

● Semi-actor
○ the caller actor acquires the Shared Object if it's not acquired already
○ the caller actor do operations synchronously
○ the caller actor insert the operations to Shared Object's mailbox it's already acquired
○ (Similar to Queue Delegation locking.)

● STM
○ Wrap each operation inside a transaction
○ get parallelism when operations don’t overlap

 ...

Summary
● GC trade-offs: local vs global heap, copy vs pass-by-ref
● Sharing mutable passive objects could cause GC issues in local + pass-by-ref
● Shared Objects (SO) enables shared states in its heap
● Actors could collaborate on data structures in parallel via SO
● Large implementation space: actor, QD locking, STM…

