
From Modeling to Deployment of
Active Objects - A ProActive

backend for ABS

 Ludovic Henrio, Justine Rochas

With the contribution of: Fabrice Huet, Zsolt Istvàn

Active Object Workshop, Sep 2015 1

Agenda

I.  Active Object Programming models

II.  Multi-active Objects: Principles

III. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V.  Conclusion and Future Works

2

ASP/ProActive
•  No race condition: each object manipulated by a single thread
•  Active and Passive objects
•  Asynchronous method calls ; request queue
•  With implicit transparent futures

foo

β α

result=beta.foo(b)

Request
invocation

Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag (2005) 3

ASP/ProActive
•  No race condition: each object manipulated by a single thread
•  Active and Passive objects
•  Asynchronous method calls ; request queue
•  With implicit transparent futures

result=beta.foo(b)

foo

β

beta.foo(b) result

f

α
Request

invocation

4

ASP/ProActive
•  No race condition: each object manipulated by a single thread
•  Active and Passive objects
•  Asynchronous method calls ; request queue
•  With implicit transparent futures

Result.getval()

foo

β

….. Result.getval()

f

α
Wait-by-
necessity

WBN!!
5

ASP/ProActive
•  No race condition: each object manipulated by a single thread
•  Active and Passive objects
•  Asynchronous method calls ; request queue
•  With implicit transparent futures

Result.getval()

foo

β

beta.foo(b) Result.getval()

f

α …

6

ASP/ProActive
•  No race condition: each object manipulated by a single thread
•  Active and Passive objects
•  Asynchronous method calls ; request queue
•  With implicit transparent futures

Result.getval()

foo

β

beta.foo(b) Result.getval()

α

f

A beta = newActive (“A”, …);
V result = beta.foo(b);
…..
result.getval(); Future

sending

Result.getval()

7

ABS

-  COGs (set of objects)
-  Each object is active

(can be invoked remotely)
-  Cooperative scheduling
-  Explicit syntax for asynchronous

call and future access

COG

COG

obj

obj

obj

obj

obj

obj

foo(A a) {
 Fut<V> vFut = a!bar(p);
 await vFut?;
 V v = vFut.get;
}

A a = new cog A();
B b = new cog B();
b!foo(a);b!foo(a);

foo(A a) {
 Fut<V> vFut = a!bar(p);
 await vFut?;
 V v = vFut.get;
}

8

ABS versus ProActive

Creol, ABS, JCobox
•  Explicit asynchronous calls

•  Explicit futures

ASP/ProActive
•  Transparent asynchonous calls

•  Transparent first class futures

object.method() // synchronous
object!method() // asynchronous

Fut<T> future = object!method();
T t = future.get; // blocks

object.method() // synchronous
 or asynchronous

T future = object.method();

Single-threaded Cooperative Multi-threaded

Local Concurrency

-  ASP/ProActive -  Creol
-  JCoBox
-  ABS

-  Multi-active Objects:
MultiASP/new ProActive

9

Agenda

I.  Active Object Programming models

II.  Multi-active Objects: Principles

III. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V.  Conclusion and Future Works

10

Multi-active objects

•  A programming model that mixes local parallelism and
distribution with high-level programming constructs

•  Execute several requests in parallel but in a controlled
manner (compatibility notion)

add() {
…
… }

monitor()
{…
… }

add() {
…
}

Provided add, add and monitor are compatible

Note: monitor is compatible with join
11

Scheduling Requests

•  An « optimal » request policy that « maximizes
parallelism »:
➜ Schedule a new request as soon as possible (when it

is compatible with all the served ones)
➜ Serve it in parallel with the others
➜ Serves

●  Either the first request
●  Or the second if it is compatible with the first one

(and the served ones)
●  Or the third one …

compatible

12

Declarative concurrency by annotating methods

Groups
(Collection of related
methods)
	

Rules
(Compatibility relationships
between groups)
	

Memberships
(To which group each
method belongs)

13

Hypotheses and programming methodology
•  We trust the programmer: annotations supposed correct

static analysis or dynamic checks should be applied in the
future

•  Without annotations, a multi-active object runs like an active
object

•  If more parallelism is required:
1.  Add annotations for non-conflicting methods
2.  Declare dynamic compatibility (depending on runtime

values, eg request parameters)
3.  Protect some memory access (e.g. by locks) and add

new annotations

Easy to
program

Difficult to
program

14

Agenda

I.  Active Object Programming models

II.  Multi-active Objects: Principles

III. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V.  Conclusion and Future Works

15

Thread Limitation per Multi-active Object

@DefineThreadConfig(threadPoolSize=1, hardLimit=true)
public class MyObject {

 …
}

•  Too many threads harm:
-  memory consumption,
-  too much concurrency wrt number of cores

16

a b

x = b.m1()
x.doSmth()

y = a.m2()
y.doSmt() ? ?

 WBN!!

Multi-active Object Scheduling - Workflow

17

Apply threading
policies

Execute
request

Apply
compatibilities

Apply
priorities

Receive request

Priority Specification Mechanism

G1

@Group(name="G1", selfCompatible=true)
 …

@PriorityOrder({
 @Set(groupNames = {"G1"}),
 @Set(groupNames = {"G2"}),
 @Set(groupNames = {"G5","G4"})
}),
@PriorityOrder({
 @Set(groupNames = {"G3"}),
 @Set(groupNames = {"G2"})
})
public class MyObject {

 …
}

G2

G3

G4 G5

High priority

Low priority

18

Thread Limitation per Group

@Group(name=" routing ", minThreads=2, maxThreads=5)
public class MyObject {

 …
}

max

Thread pool

min Threads never used
by other groups

Threads never used
by the routing group

routing

19

Summary of the MAO programming model

Key notions
•  Groups of requests
•  Compatibility

-  possibly decided
dynamically

-  between groups
-  between requests from

the same group

Key features
•  Global thread limit

(soft or hard)
•  Upper and lower

bounds per group
•  Priorities among

compatible requests

20

Agenda

I.  Active Object Programming models

II.  Multi-active Objects: Principles

III. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V.  Conclusion and Future Works

21

Motivation

ProActive – Multi-active Objects

ABS – Abstract Behavioral Spec. Language

Development and deployment of
distributed applications ✔

Modeling of distributed applications ✔
Verification tools ✔
Java Translator ✔

No support for distribution ✗

OBJECTIVE
Provide distributed
deployment to ABS

using ProActive

From ABS to ProActive: Challenges

23

ABS MultiASP/ProActive

Active object model Object group Non uniform

Asynchronous
method calls

and futures model

Explicit Transparent

Threading model Cooperative Multi-threaded

Towards translation of ABS in ProActive

•  Select active objects
-  ABS object group (COG) = ProActive active object
-  Entry point to the local memory space

•  Hierarchical indexing of objects

①  Global index via the network
Object URL @COG1 @COG2 … …

Object cog1 cog2 … …

Object ID ID3 ID4 … …

Object ref o3 o4 … …

②  Local index via shared memory

24

Object ID ID1 ID2 … …

Object ref o1 o2 … …

Translation of a new cog statement

Server server = new Server() (1)
COG cog = newActive(COG.class, {}, node2) (2)
cog.registerObject(server) (3)

node1

node2

mainCog server remote
server

cog

Server server = new cog Server()
ABS code:

Translation in ProActive:

(1)

(2) (2)

(3)

cog (proxy)

25

runs

local reference remote reference object active object

From ABS to ProActive: Challenges

26

ABS MultiASP/ProActive

Active object model Object group Non uniform

Asynchronous
method calls

and futures model

Explicit Transparent

Threading model Cooperative Multi-threaded

node1

node2

Translation of an Asynchronous Method Call

server.getCog().execute("start", {}, server.getID())

mainCog server
 remote server

cog

server!start()
ABS code:

Translation in ProActive:

cog (proxy)

COG

Object ID
Object ref

Objects registry

getCog

start execute

execute

27 local reference remote reference object active object

runs

node1

node2

Asynchronous Method Call with Parameters

server.getCog().execute("start", {param1, param2}, server1.getID())

server remote server

server!start(param1, param2)
ABS code:

Translation in ProActive:

cog (proxy)

param1

param2

copy of
param1

copy of
param2 mainCog

 proxies

execute

execute

getCog

cog

28

runs

local reference remote reference object active object

mainCog

From ABS to ProActive: Challenges

29

ABS MultiASP/ProActive

Active object model Object group Non uniform

Asynchronous
method calls

and futures model

Explicit Transparent

Threading model Cooperative Multi-threaded

Translation of an await statement

@DefineGroups({
 @Group(name="scheduling", selfCompatible=true)
})
@DefineThreadConfig(threadPoolSize=1, hardLimit=false)
public class COG {
 @MemberOf("scheduling")
 public ABSType execute(…) {
 }
}

PAFuture.getFutureValue(readyFut)

ABS code:

Translation in ProActive:

(1)
(2)

(2)

Fut<Bool> readyFut = server!start()
await readyFut?

(1)
(2)

30

Translation of a get statement

this.getCOG().switchHardLimit(true);
Boolean ready = PAFuture.getFutureValue(readyFut);
this.getCOG().switchHardLimit(false);

Fut<Bool> readyFut = server!run()
Bool ready = readyFut.get

ABS code:

Translation in ProActive

(1)
(2)

(2)

31

@DefineThreadConfig(threadPoolSize=1, hardLimit=false)
public class COG {

 …
}

Direct Modifications for Distribution

•  Serialization
-  Most classes implement now "Serializable"
-  Optimization: "transient" fields

•  Deployment
-  Node specification added in the ABS language

Server server = new cog "slaves" Server();

32

ABS code:

Experimental evaluation: DNA matching algorithm

33

Degree of parallelism

The ProActive backend: A Fully Working Tool

•  Automated compilation & deployment of ABS programs

•  Significant speedup from local programs

•  Overhead < 10% from a native ProActive application

34

Formalization: Correctness of translation

•  Operational semantics of MultiASP/ProActive
•  Translational semantics: ABS è MultiASP/ProActive

•  Proven:
-  Translation simulates any ABS execution
-  Translation corresponds to a possible ABS execution

•  Restrictions:
-  FIFO request service
-  Causally ordered communications

35

✔

•  Multi-active objects implemented on top of ProActive
-  A programming model for local concurrent and global distributed objects

•  Many case studies & benchmarks
-  NAS, Content Addressable Network, GCM components, ProActive

backend for ABS

•  Visual post-mortem debugger of Multi-active Object app.
•  Formal proofs (based on semantics)

-  « maximal parallelism »
-  Correctness of ABS translation

•  Next steps:
-  Prove stronger properties, ongoing formalisation in Isabelle/HOL
-  Find deadlocks using behavioural types (ongoing PhD)
-  Design a recovery protocol for MAO

Conclusion

36

Questions?

Related publications:

1.  Multi-threaded Active Objects. Ludovic Henrio, Fabrice

Huet, and Zsolt István - In COORDINATION 2013.
2.  Declarative Scheduling for Active Objects paper.

Ludovic Henrio and Justine Rochas - SAC 2014.
3.  Justine Rochas, Ludovic Henrio. A ProActive Backend

for ABS: from Modelling to Deployment. Inria Research
Report 2014.

37

