CIrs —iz25—

From Modeling to Deployment of
Active Objects - A ProActive
~.. backend for ABS S

§

L udovic Henrio, Justine Rochas

With the contribution of: Fabrice Huet, Zsolt Istvan

Active Object Workshop, Sep 2015

Agenda

2 > 1. Active Object Programming models <X
Il. Multi-active Objects: Principles
l1l. Scheduling in Multi-active Objects
IV. A ProActive backend for ABS

V. Conclusion and Future Works

ASP/ProActive
No race condition: each object manipulated by a single thread
Active and Passive objects
Asynchronous method calls ; request queue
With implicit transparent futures
ii (.Reque.st }
a/ B / k|n\\/ocatlon

C D

fesult=beta.foo(b) | | |foo

U | | % _ | -

Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag (2005) 3

ASP/ProActive

No race condition: each object manipulated by a single thread
Active and Passive objects
Asynchronous method calls ; request queue
With implicit transparent futures

(X

f Request

/

result

| invocation

1

\

| foo

/

result=beta.foo(b

ASP/ProActive

No race condition: each object manipulated by a single thread
Active and Passive objects

Asynchronous method calls ; request queue

With implicit transparent futures

f Wait-by- }
Q __necessity
4 N \
C
— ; ()
(Result.getval()) | | [foo

L) O/

WBN!

Result.getval() s

ASP/ProActive

No race condition: each object manipulated by a single thread
Active and Passive objects

Asynchronous method calls ; request queue

With implicit transparent futures

a v -

(Result getval()) °°I
L _ -

Result.getval() s

ASP/ProActive

« No race condition: each object manipulated by a single thread

- d A hota = nawAetiva (“A” - 000000000000

ProActive is a Java library
ASP is a “calculus”

Active objects are the unit of distribution and
concurrency (one thread per AO / no data shared)

Futures are transmitted between AOs and
accessed transparently

;,)

7 Result.getval() 7

ABS

. COG
- COGs (set of objects)
- Each object is active
. obj
(can be invoked remotely)
- Cooperative scheduling L o)
- Explicit syntax for asynchronous (COG
call and future access
A a = new cog A();
B b= new cog B(); obj ob
b!fgo(a):b!foo(a):
[’ obj
foo(A a) { foo(A a) {
Fut<V> vFut = a!bar(p); Fut<V> vFut = a!bar(p);
await vFut?; await vFut?;
V v = vFut.get; V v = vFut.get;
} }

ABS versus ProActive

Creol, ABS, JCobox ASP/ProActive

« Explicit asynchronous calls * Transparent asynchonous calls
object.method() // synchronous object.method() // synchronous
object!method() // asynchronous or asynchronous

« Explicit futures

« Transparent first class futures

Fut<T> future = object!method(); T future = object.method();
T t = future.get; // blocks

Single-threaded
- ASP/ProActive

Cooperative Multi-threaded
— Creol - Multi-active Objects:
_ JCoBox MultiASP/new ProActive
- ABS

Local Concurrency /
9

2 >

Agenda

Active Object Programming models
Il. Multi-active Objects: Principles
l1l. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V. Conclusion and Future Works

<<

10

* A programming model that mixes local parallelism and
distribution with high-level programming constructs

« EXxecute several requests in parallel but in a controlled

Multi-active objects

manner (compatibility notion)

N

-

<
N
N

A \Js\\

N

Provided add, add and monitor are compatible

N —~ —~
add() { add() { Enonitor()
- Ty |

Note: monitor is compatible with join |

11

Scheduling Requests

* An « optimal » request policy that « maximizes
parallelism »:

-» Schedule a new request as soon as possible (when it
is compatible with all the served ones)

- Serve it in parallel with the others
- Serves
e Either the first request ®

P — Pl | [| L Pl L] PELN | A0 O mgq5 g n s

Compatibility =
requests can execute at the same time
and can be re-ordered

12

Declarative concurrency by annotating methods

@DefineGroups ({
@Group (name="7join",
@Group (name="routing",

})

selfCompatible=false)

selfCompatible=true)

@DefineRules ({
@Compatible ({" join",
@Compatible ({"routing",

})

"monitoring"})

"monitoring"})

public class Peer {

@MemberOf (" join")

@MemberOf ("routing")
public void add (Key k,

@MemberOf ("routing")

public JoinResponse join(Peer other) { ... }

Serializable wvalue) {

}

public Serializable lookup(Key k) { ... 1}
[|

- Groups
(Collection of related
methods)

- Rules
(Compatibility relationships

between groups)

- Memberships

(To which group each
method belongs)

13

Hypotheses and programming methodology

We trust the programmer: annotations supposed correct

static analysis or dynamic checks should be applied in the
future

Without annotations, a multi-active object runs like an active

object
_ _ . asy to
If more parallelism is required: prograry

1. Add annotations for non-conflicting methods

2. Declare dynamic compatibility (depending on runtime
values, eg request parameters)

3. Protect some memory access (e.g. by locks) and.add;

‘A

More parallelism = More complex code / better
performance

14

2 >

Agenda

Active Object Programming models
Il. Multi-active Objects: Principles
l1l. Scheduling in Multi-active Objects (X<

IV. A ProActive backend for ABS

V. Conclusion and Future Works

15

Thread Limitation per Multi-active Object

 Too many threads harm:
- memory consumption,
- too much concurrency wrt number of cores

@DefineThreadConfig(threadPoolSize=1, hardLimit=trxe) \ee
public class MyObject { K2

}

O O

x = b.m1()

Multi-active Object Scheduling - Workflow

Receive request @
(e
[Aptptl)x'll't' ﬁ\ oe@
compatibilities O@ GN“
[pfi\(?rri)tliﬁs ﬁ\ \:‘6@ P
| Q‘J\

Execute
request

—

Priority Specification Mechanism

@Group (name="G1",

@PriorityOrder ({
@Set (groupNames
@Set (groupNames
@Set (groupNames
1),
@PriorityOrder ({
@Set (groupNames
@Set (groupNames
})

public class MyObject {

}

selfCompatible=true)

{"e1"}),
{"e2"}),

{"e5","Ga"})

{"3"}),
{"62"})

High priority
G1
G3
G2)
G5 G4
Low priority

18

Thread Limitation per Group

@Group (name=" routing
public class MyObject {

}

", minThreads=2, maxThreads=5)

Threads never used
by the routing group

\ =

\

\ I .
Thread pool

Threads never used
by other groups

19

Summary of the MAO programming model

Key notions

Key features

* Groups of requests
« Compatibility
- possibly decided
dynamically
- between groups

- between requests from
the same group

* Global thread limit
(soft or hard)

 Upper and lower
bounds per group

* Priorities among
compatible requests

20

2 >

Agenda

Active Object Programming models
Il. Multi-active Objects: Principles
l1l. Scheduling in Multi-active Objects

IV. A ProActive backend for ABS

V. Conclusion and Future Works

<<

21

Motivation

Development and deployment of OBJECTIVE
distributed applications v Provide distributed
deployment to ABS

using ProActive
ABS - Abstract Behavioral Spec. Language

Modeling of distributed applications v/
Verification tools v/
Java Translator v/
No support for distribution X

From ABS to ProActive

: Challenges

ABS MultiASP/ProActive
> Active object model Object group Non uniform
Asynchronous Explicit Transparent
method calls
and futures model
Threading model Cooperative Multi-threaded

23

Towards translation of ABS in ProActive

« Select active objects
- ABS object group (COG) = ProActive active object
- Entry point to the local memory space

» Hierarchical indexing of objects

Object URL | @COG1 | @COG2

(1) Global index via the network

Object cogl cog?2
@ Local index via shared memory \
Object ID ID1 ID2 R Object ID ID3 ID4
Object ref ol 02 Object ref 03 o4
I S TT——

24

ABS code:

Server server = new cog Server()

Translation in ProActive:

Translation of a new cog statement

©

(2)cog (proxy)

Server server = new Server () (1)
COG cog = newActive(COG.class, {}, node2) (2)
cog.registerObject(server) (3)
A
runs nodel node’Z
mainCog (1)server (3) remote
server

O object

@ active object

local reference

remote reference

25

From ABS to ProActive

: Challenges

ABS MultiASP/ProActive
Active object model Object group Non uniform
> Asynchronous Explicit Transparent
method calls
and futures model
Threading model Cooperative Multi-threaded

26

Translation of an Asynchronous Method Cali

ABS code:

server!start()

Translation in ProActive:

server.getCog() .execute("start", {},@er.getm()
runs ‘ \

COG
nodel node’

Objects registry

. server , b

C Object ID
ma1cn> . : (aetCOQ || remote server j i
t
cog (proxy) exegu 2 og Start
execute

O object @ active object local reference remote reference 27

Asynchronous Method Call with Parameters

ABS code:

server!start(paraml, param2)

Translation in ProActive:

server.getCog() .execute("start", {paraml, param2}, serverl.getID())

o e N e o
- ——
s LT
P ~
——’— T
- ~~~

runS ~“~~
nodeZ2 RN
remote server copy of
O param1

execute Copy of
®icog /' param2

proxies Py

O object @ active object local reference remote reference 28

mainCog /A

4
7

-~
-
i

From ABS to ProActive

: Challenges

ABS MultiASP/ProActive
Active object model Object group Non uniform
Asynchronous Explicit Transparent
method calls
and futures model
> Threading model Cooperative) Multi-threaded

29

Translation of an await statement

ABS code:
Fut<Bool> readyFut = server!start() (1)
await readyFut? (2)

Translation in ProActive:
> PAFuture.getFutureValue(readyFut) (2)

@DefineGroups

(
@Group(name€%§§bedu11§§2} selfCompatible=true)
)

@DefineThreadConfig(threadPoolSi ze@ hardLimi t
public class CO

@MemberOf

public ABSTypeéexecute(..)

}
}

Translation of a get statement

ABS code:

Fut<Bool> readyFut = server!run() (1)
Bool ready = readyFut.get

Translation in ProActive

this.getCOG().switchHardLimit(true
——> Boolean ready = PAFuture.getFutureValue(readyFut) ; eNﬁa
this.getCOG() .switchHardLimit(false);

@DefineThreadConfig(threadPoolSize=1, hardLimit=false
public class COG {

}

31

Direct Modifications for Distribution

» Serialization
- Most classes implement now "Serializable"
- Optimization: "transient’ fields

* Deployment
- Node specification added in the ABS language

ABS code: —

Server server = new cog("slaves")Server();

32

Experimental evaluation: DNA matching algorithm

Computing time (s)

10000

8000

6000

4000

2000

e—e |ava backend (local)
¢ ProActive backend (distributed)

I

= -8 Speedup|]

Speedup

Degree of parallelism

33

The ProActive backend: A Fully Working Tool

« Automated compilation & deployment of ABS programs
 Significant speedup from local programs

* Overhead < 10% from a native ProActive application

34

Formalization: Correctness of translation

Operational semantics of MultiASP/ProActive
Translational semantics: ABS = MultiASP/ProActive

Proven:

- Translation simulates any ABS execution V
- Translation corresponds to a possible ABS execution

Restrictions:

- FIFO request service
- Causally ordered communications

35

Conclusion

« Multi-active objects implemented on top of ProActive
- A programming model for local concurrent and global distributed objects

 Many case studies & benchmarks

- NAS, Content Addressable Network, GCM components, ProActive
backend for ABS

* Visual post-mortem debugger of Multi-active Object app.
* Formal proofs (based on semantics)

- « maximal parallelism »
- Correctness of ABS translation

* Next steps: Q%,)
- Prove stronger properties, ongoing formalisation in Isabelle/HOL g’
- Find deadlocks using behavioural types (ongoing PhD) ﬁ

- _Design a recovery protocol for MAO

36

Questions?

Related publications:

1. Multi-threaded Active Objects. Ludovic Henrio, Fabrice
Huet, and Zsolt Istvan - In COORDINATION 2013.

2. Declarative Scheduling for Active Objects paper.
Ludovic Henrio and Justine Rochas - SAC 2014.

3. Justine Rochas, Ludovic Henrio. A ProActive Backend
for ABS: from Modelling to Deployment. Inria Research
Report 2014.

37

