A Benchmark of Dynamical Variational Autoencoders applied to Speech Spectrogram Modeling

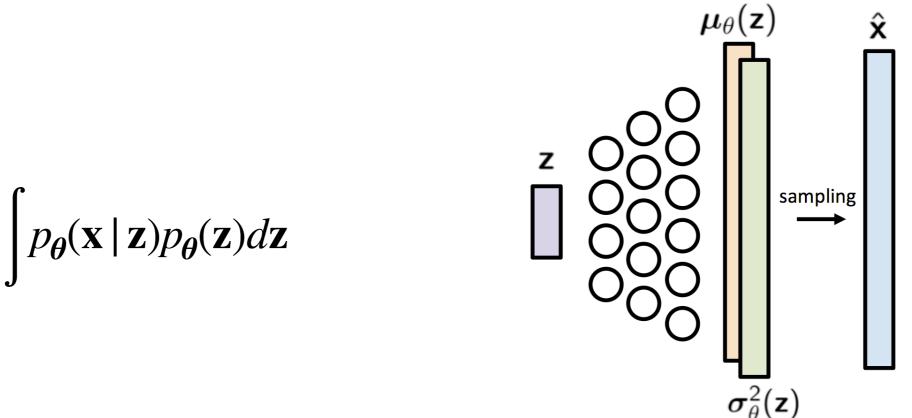
Xiaoyu Bie¹, Laurent Girin², Simon Leglaive³, Thomas Hueber² and Xavier Alameda-Pineda¹

¹ Inria, Univ. Grenoble Alpes, CNRS, LJK, 38000 Grenoble, France
² Univ. Grenoble Alpes, CNRS, Grenoble-INP, GIPSA-Iab, 38000 Grenoble, France
³ CentraleSupélec, IETR, 35576 Cesson-Sévigné, France
This research was supported by ANR-3IA MIAI, ANR-JCJC ML3RI and H2020 SPRING

Part 1:

From VAE to Dynamical VAE

Variational Autoencoder (VAE)



 $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x} \,|\, \mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$

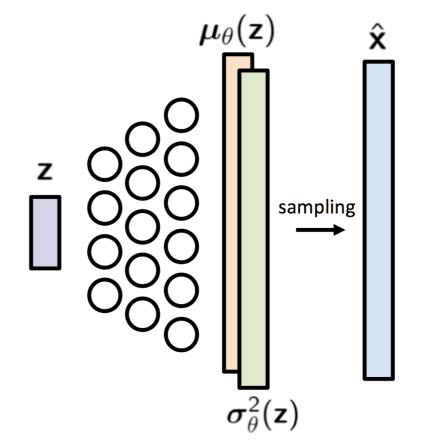
- VAE is a deep generative model, $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ (decoder) is defined via a DNN (e.g. MLP)
- For example, $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ can be a Gaussian with mean and variance being the output of the DNN with input \mathbf{z}
- Directly computing $p_{\theta}(\mathbf{x})$ for parameter estimation is intractable

Variational Autoencoder (VAE)

$$\ln p_{\theta}(\mathbf{x}) = \mathscr{L}(\mathbf{x}; \theta, \varphi) + D_{KL} [q_{\phi}(\mathbf{z} | \mathbf{x}) \parallel p_{\theta}(\mathbf{z} | \mathbf{x})]$$

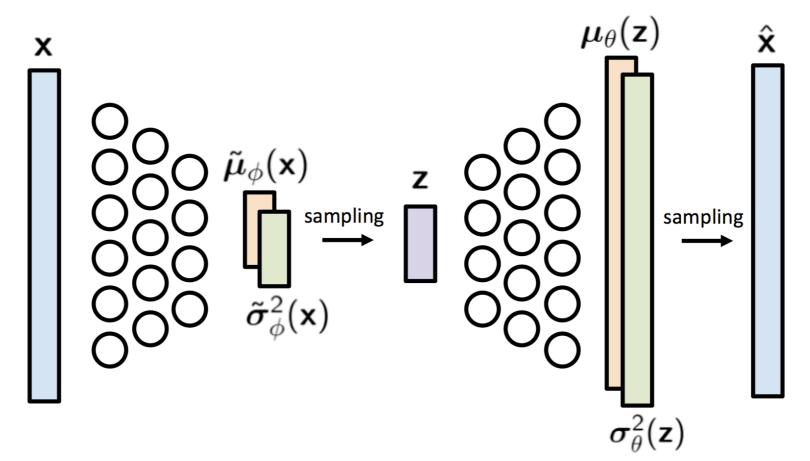
where

$$\mathscr{L}(\mathbf{x};\boldsymbol{\theta},\boldsymbol{\varphi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}\mid\mathbf{x})} \left[\ln p_{\boldsymbol{\theta}}(\mathbf{x}\mid\mathbf{z}) \right] - D_{KL} \left[q_{\boldsymbol{\phi}}(\mathbf{z}\mid\mathbf{x}) \parallel p(\mathbf{z}) \right]$$



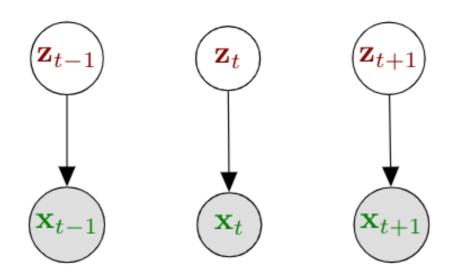
- VAE is a deep generative model, $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ (decoder) is defined via a DNN (e.g. MLP)
- For example, $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ can be a Gaussian with mean and variance being the output of the DNN with input \mathbf{z}
- Directly computing $p_{\theta}(\mathbf{x})$ for parameter estimation is intractable
- $\mathscr{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\varphi})$ is the evidence lower bound (ELBO), where $q_{\boldsymbol{\phi}}(\mathbf{z} \mid \mathbf{x})$ is the variational approximate posterior distribution

Variational Autoencoder (VAE)



- VAE is a deep generative model, $p_{\theta}(\mathbf{x} | \mathbf{z})$ (decoder) is defined via a DNN (e.g. MLP)
- For example, $p_{\theta}(\mathbf{x} \,|\, \mathbf{z})$ can be a Gaussian, with mean and variance being the output of the DNN with input \mathbf{z}
- Directly computing $p_{\theta}(\mathbf{x})$ for parameter estimation is intractable
- $\mathscr{L}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\varphi})$ is the evidence lower bound (ELBO), where $q_{\boldsymbol{\phi}}(\mathbf{z} \mid \mathbf{x})$ is the variational approximate posterior distribution
- A VAE model is trained by cascading the encoder and decoder and maximizing the ELBO w.r.t. both encoder and decoder parameters

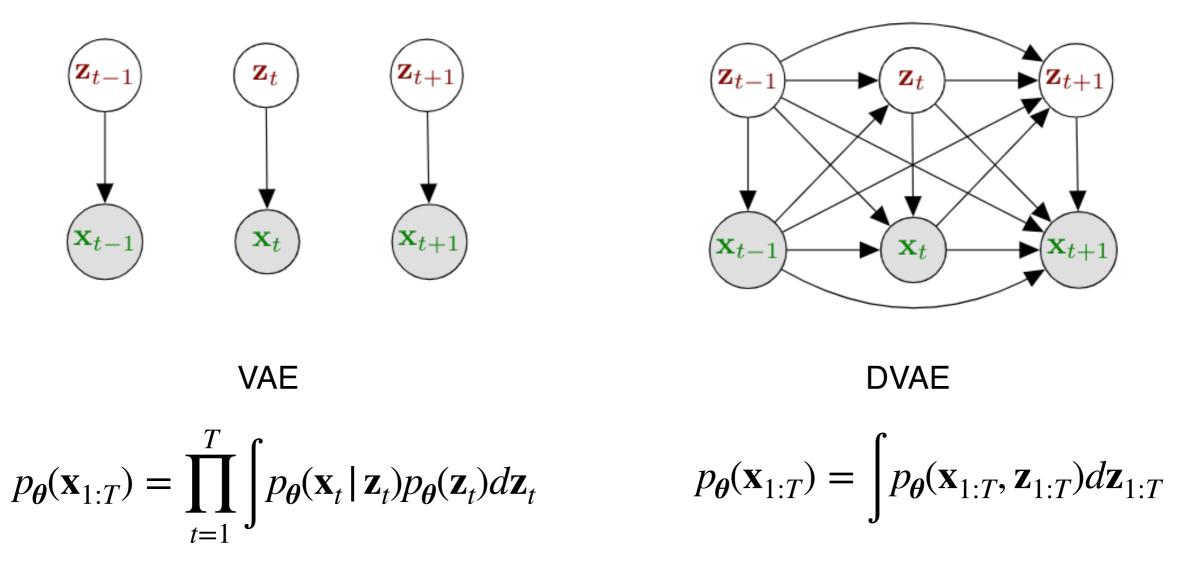
From VAE to Dynamical VAE (DVAE)



$$p_{\theta}(\mathbf{x}_{1:T}) = \prod_{t=1}^{T} \int p_{\theta}(\mathbf{x}_t | \mathbf{z}_t) p_{\theta}(\mathbf{z}_t) d\mathbf{z}_t$$

- Major limitation of VAE: All vector pairs $(\mathbf{x}_t, \mathbf{z}_t)$ are assumed independent
- Problem: There is correlation between frames for sequential data, VAE is too simple

From VAE to Dynamical VAE (DVAE)



- Major limitation of VAE: all vector pairs $(\mathbf{x}_t, \mathbf{z}_t)$ are assumed independent
- Problem: There is correlation between frames for sequential data, VAE is too simple
- DVAE is the generalization of VAE to correlated sequential data
- DVAE is a family of models obtained with different simplifications of the dependencies
- DVAE are trained using the same methodology as for the VAE

Part 2:

DVAE family

DVAE family

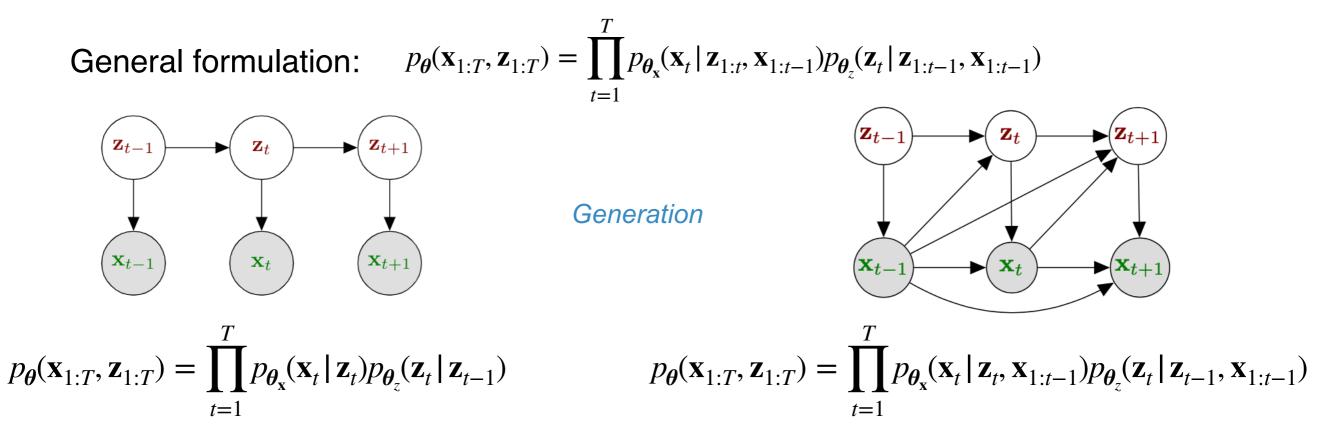
Unified generative equation for a DVAE model:

$$p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}) = \prod_{t=1}^{T} p_{\theta_{\mathbf{x}}}(\mathbf{x}_{t} | \mathbf{z}_{1:t}, \mathbf{x}_{1:t-1}) p_{\theta_{z}}(\mathbf{z}_{t} | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})$$

Simplifications of the dependencies for different DVAE models

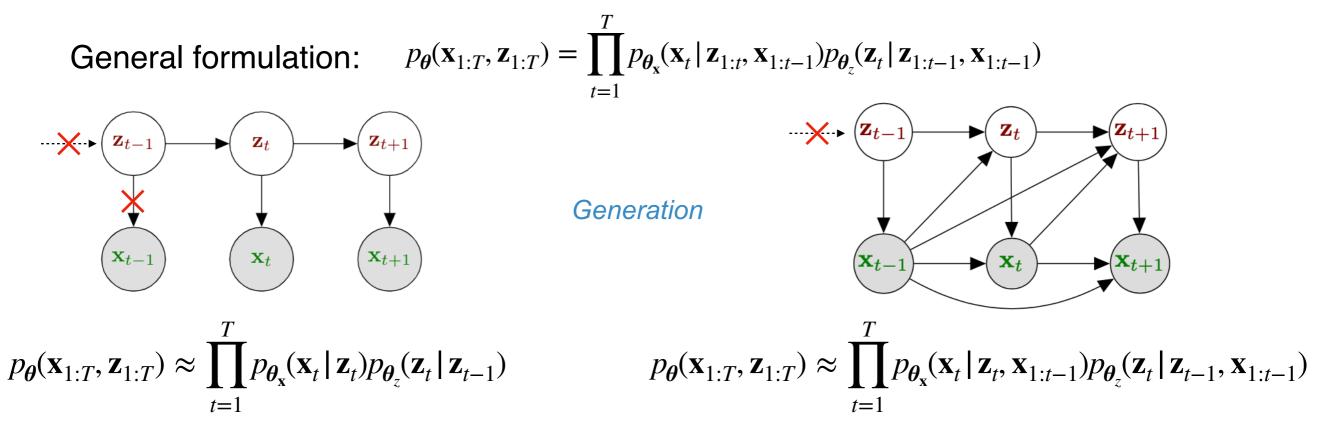
		$p_{\theta}(\mathbf{z}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t-1})$	$p_{\theta}(\mathbf{x}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t})$
VAE [*]	[Kingma and Welling, 2014, Rezende et al., 2014]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t)$	$p_{\theta}(\mathbf{x}_t \mathbf{z}_t)$
$RVAE^*$	[Leglaive et al., 2020]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t)$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{z}_{1:t})$
STORN	[Bayer and Osendorfer, 2014]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t)$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t})$
DKF^*	[Krishnan et al., 2015, Krishnan et al., 2017]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t \mathbf{z}_{t-1})$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{z}_t)$
DSAE	[Li and Mandt, 2018]	$p_{\boldsymbol{ heta}}(\mathbf{z}_t \mathbf{z}_{1:t-1})$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{z}_t, \mathbf{v})$
VRNN	[Chung et al., 2015, Goyal et al., 2017]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t-1})$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t})$
$SRNN^*$	[Fraccaro et al., 2016]	$p_{\boldsymbol{\theta}}(\mathbf{z}_t \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t-1})$	$p_{\boldsymbol{\theta}}(\mathbf{x}_t \mathbf{x}_{1:t-1}, \mathbf{z}_t)$

General formulation:
$$p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T}) = \prod_{t=1}^{T} p_{\theta_x}(\mathbf{x}_t | \mathbf{z}_{1:t}, \mathbf{x}_{1:t-1}) p_{\theta_z}(\mathbf{z}_t | \mathbf{z}_{1:t-1}, \mathbf{x}_{1:t-1})$$

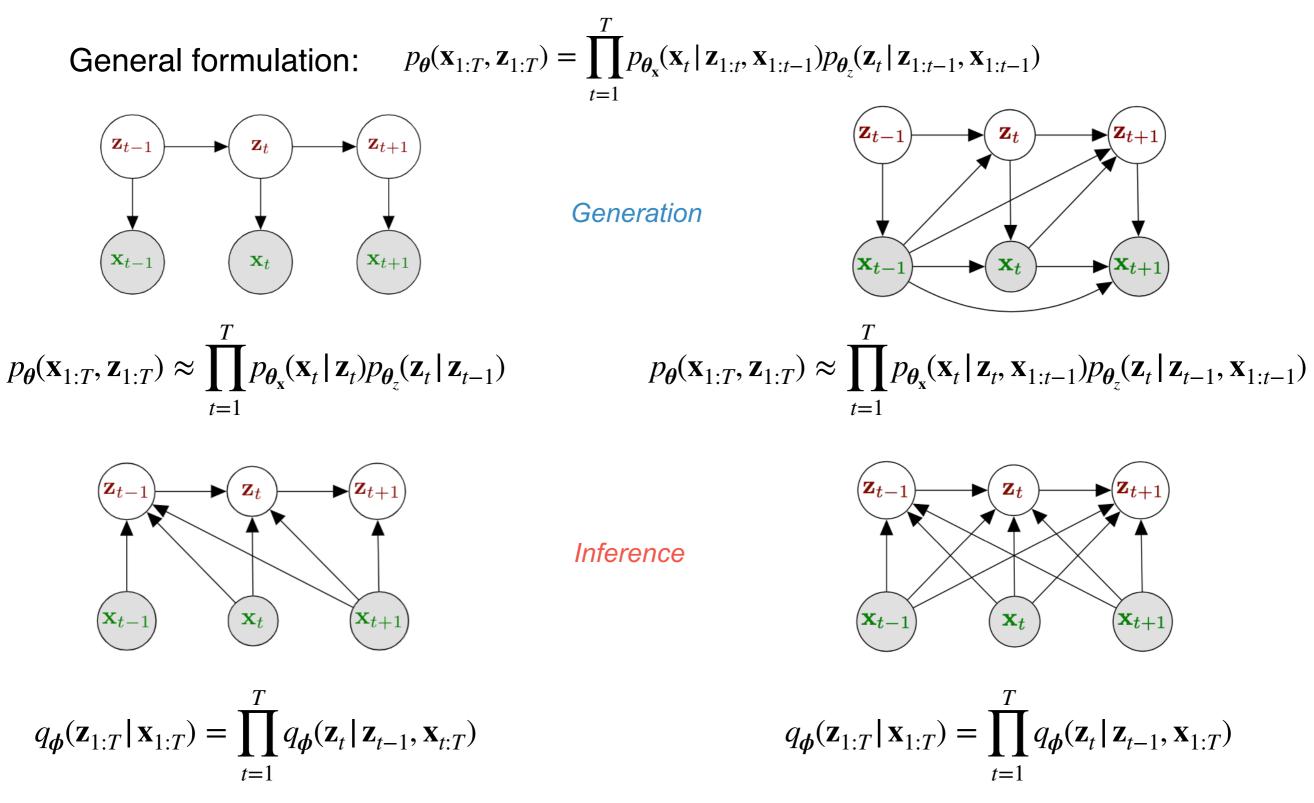


A simple SSM-like generative model

Add previous observation $\mathbf{x}_{1:t-1}$

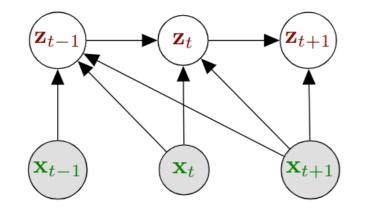


When we come to the posterior, we can apply D-separation to identify the dependencies [Bishop, 2006]



The inference model respects the structure of the exact posterior distribution

 $\begin{array}{ll} \textbf{General formulation:} \quad p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) = \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{1:t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{1:t-1}, \textbf{x}_{1:t-1}) \\ \hline \textbf{x}_{t-1} \quad \textbf{x}_{t} \quad \textbf{x}_{t+1} \\ \textbf{g}_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta_{x}}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta_{z}}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{1:T}, \textbf{z}_{1:T}) \approx \prod_{t=1}^{T} p_{\theta}(\textbf{x}_{t} | \textbf{z}_{t}, \textbf{x}_{1:t-1}) p_{\theta}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{t}, \textbf{x}_{t-1}, \textbf{x}_{1:t-1}) p_{\theta}(\textbf{z}_{t} | \textbf{z}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{t}, \textbf{x}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{t}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{1:t-1}) p_{\theta}(\textbf{z}_{t}, \textbf{x}_{t-1}, \textbf{x}_{1:t-1}) \\ p_{\theta}(\textbf{x}_{t}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}) \\ p_{\theta}(\textbf{x}_{t}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1}, \textbf{x}_{t-1},$



Inference

$$q_{\boldsymbol{\phi}}(\mathbf{z}_{1:T} | \mathbf{x}_{1:T}) = \prod_{t=1}^{T} q_{\boldsymbol{\phi}}(\mathbf{z}_t | \mathbf{z}_{t-1}, \mathbf{x}_{t:T})$$

DKF (Krishnan et al., 2015, 2017)

Non-autoregressive DVAE

$$\mathbf{z}_{t-1} \qquad \mathbf{z}_{t} \qquad \mathbf{z}_{t+1} \\ \mathbf{x}_{t-1} \qquad \mathbf{x}_{t} \qquad \mathbf{x}_{t+1} \\ \mathbf{x}_{t} \qquad \mathbf{x}_{t+1} \\ \mathbf{x}_{t+1} \qquad \mathbf{x}_{t+1} \\ \mathbf{x}_{t} \qquad \mathbf{x$$

$$q_{\boldsymbol{\phi}}(\mathbf{z}_{1:T} | \mathbf{x}_{1:T}) = \prod_{t=1}^{T} q_{\boldsymbol{\phi}}(\mathbf{z}_t | \mathbf{z}_{t-1}, \mathbf{x}_{1:T})$$

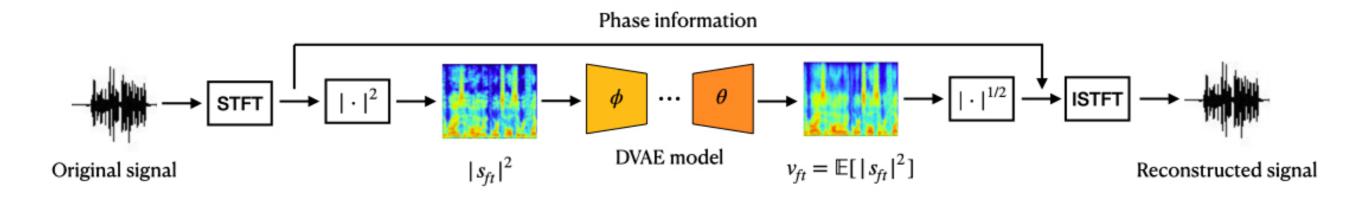
SRNN (Fraccaro et al., 2016)

Autoregressive DVAE

Part 3:

Application to speech spectrogram modeling

Analysis-resynthesis of speech signals



- Dataset: WSJ0 subsets (si_tr_s, si_dt_05 and si_et_05, different speakers)
- Time-domain 16 kHz signals are normalized by absolute maximum value
- STFT with a 32ms sine window and 16ms hop length
- Crop the magnitude spectrogram into 150-frame sequences during training
- In summary
 - 9h for training (*si_tr_s*)
 - 1.5h for validation (*si_dt_05*)
 - 1.5h for evaluation (*si_et_05, no cropping*)

	VAE	DKF	STORN	VRNN	SRNN	RVAE	DSAE
Autoregressive			\checkmark	\checkmark	\checkmark		
True Posterior		\checkmark			\checkmark	\checkmark	
Dynamical model on \mathbf{z}_t		\checkmark		\checkmark	\checkmark		\checkmark
RMSE (× 10^{-2})	5.10	3.44	3.38	2.67	2.48	4.99	4.69
PESQ	2.05	3.30	3.05	3.60	3.64	2.27	2.32
STOI	0.86	0.94	0.93	0.96	0.97	0.89	0.90

• All DVAEs outperform the vanilla VAE

	VAE	DKF	STORN	VRNN	SRNN	RVAE	DSAE
Autoregressive			\checkmark	\checkmark	\checkmark		
True Posterior		\checkmark			\checkmark	\checkmark	
Dynamical model on \mathbf{z}_t		\checkmark		\checkmark	\checkmark		\checkmark
RMSE (× 10^{-2})	5.10	3.44	3.38	2.67	2.48	4.99	4.69
PESQ	2.05	3.30	3.05	3.60	3.64	2.27	2.32
STOI	0.86	0.94	0.93	0.96	0.97	0.89	0.90

- All DVAEs outperform the vanilla VAE
- Autoregressive models are powerful in speech analysis-resynthesis

	VAE	DKF	STORN	VRNN	SRNN	RVAE	DSAE
Autoregressive			\checkmark	\checkmark	\checkmark		
True Posterior		\checkmark			\checkmark	\checkmark	
Dynamical model on \mathbf{z}_t		\checkmark		\checkmark	\checkmark		\checkmark
RMSE (× 10^{-2})	5.10	3.44	3.38	2.67	2.48	4.99	4.69
PESQ	2.05	3.30	3.05	3.60	3.64	2.27	2.32
STOI	0.86	0.94	0.93	0.96	0.97	0.89	0.90

- All DVAEs outperform the vanilla VAE
- Autoregressive models are powerful in speech analysis-resynthesis
- It is rewarding to respect the structure of the exact posterior distribution when designing the inference model

	VAE	DKF	STORN	VRNN	SRNN	RVAE	DSAE
Autoregressive			\checkmark	\checkmark	\checkmark		
True Posterior		\checkmark			\checkmark	\checkmark	
Dynamical model on \mathbf{z}_t		\checkmark		\checkmark	\checkmark		\checkmark
RMSE (× 10^{-2})	5.10	3.44	3.38	2.67	2.48	4.99	4.69
PESQ	2.05	3.30	3.05	3.60	3.64	2.27	2.32
STOI	0.86	0.94	0.93	0.96	0.97	0.89	0.90

- All DVAEs outperform the vanilla VAE
- Autoregressive models are powerful in speech analysis-resynthesis
- It is rewarding to respect the structure of the exact posterior distribution when designing the inference model
- It is better to apply a dynamical model on \mathbf{z}_t , not simply assume that it is i.i.d

	VAE	DKF	STORN	VRNN	SRNN	RVAE	DSAE
Autoregressive			\checkmark	\checkmark	\checkmark		
True Posterior		\checkmark			\checkmark	\checkmark	
Dynamical model on \mathbf{z}_t		\checkmark		\checkmark	\checkmark		\checkmark
RMSE (× 10^{-2})	5.10	3.44	3.38	2.67	2.48	4.99	4.69
PESQ	2.05	3.30	3.05	3.60	3.64	2.27	2.32
STOI	0.86	0.94	0.93	0.96	0.97	0.89	0.90

- All DVAEs outperform the vanilla VAE
- Autoregressive models are powerful in speech analysis-resynthesis
- It is rewarding to respect the structure of the exact posterior distribution when designing the inference model
- It is better to apply a dynamical model on \mathbf{z}_t , not simply assume that it is i.i.d
- SRNN performs the best because it features all three properties

Conclusion

- DVAE family, great potential to model speech signals!
- Code in PyTorch is available at https://github.com/XiaoyuBIE1994/DVAE-speech
- Important considerations when designing a new DVAE model:
 - Autoregressive or non-autoregressive
 - Whether the inference model respects the structure of the exact posterior distribution
 - Whether apply a dynamical model on the latent variable z_t
- More discussion for DVAE family: Girin L, Leglaive S, Bie X, et al. Dynamical variational autoencoders: A comprehensive review. arXiv preprint arXiv:2008.12595, 2020.
- Application of DVAE models in unsupervised speech enhancement: Bie X, Leglaive S, Alameda-Pineda X, et al. Unsupervised Speech Enhancement using Dynamical Variational Auto-Encoders. arXiv preprint arXiv:2106.12271, 2021.