A Variational EM Algorithm for the Separation of Time-Varying Convolutive Audio Mixtures

Notes on Forward Backward Algorithm

Kounades-Bastian D.
Girin L.
Alameda-Pineda X.
Horaud R.
Gannot S.

The Forward Backward Algorithm

Figure 1: LEFT: Standard representation of a $1^{\text {st }}$ order LDS. RIGHT: The graphical abbreviation of a $1^{\text {st }}$ order LDS used in [1].

This report is supplementary material for [1], in essence it provides a detailed derivation of the E-A step.

The $1^{\text {st }}$ order Linear Dynamical System (LDS) in [1] has L hidden state vectors $\left\{\mathbf{a}_{:, f 1}, . ., \mathbf{a}_{:, f \ell}, . ., \mathbf{a}_{:, f L}\right\}$ (for notation clarity we drop the index f and denote a hidden state $\mathbf{a}_{:, f \ell}$ as \mathbf{a}_{ℓ}) with probability of the 1 -st frame: ${ }^{1}$

$$
\begin{equation*}
p\left(\mathbf{a}_{1}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{1} ; \boldsymbol{\mu}^{a}, \boldsymbol{\Sigma}^{a}\right), \tag{1}
\end{equation*}
$$

probability distribution of transition between succesive states:

$$
\begin{equation*}
p\left(\mathbf{a}_{\ell} \mid \mathbf{a}_{\ell-1}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{\ell} ; \mathbf{a}_{\ell-1}, \mathbf{\Sigma}^{a}\right) . \tag{2}
\end{equation*}
$$

and observation model

$$
\begin{equation*}
p\left(\mathcal{O}_{\ell} \mid \mathbf{a}_{\ell}\right)=\mathcal{N}_{c}\left(\boldsymbol{\mu}_{\ell}^{\iota a} ; \mathbf{a}_{\ell}, \boldsymbol{\Sigma}_{\ell}^{\iota a}\right) \tag{3}
\end{equation*}
$$

Note that \mathcal{O}_{l} is an abstract notion of observation introduced only to enable us to define conditional probabilities over the hidden states. In cases where an LDS is embedded in a larger Bayesian network, as it is the case for [1], the observation probability of the LDS is calculated based on the surrounding latent variables and may not share a direct link with the observed data of the model that here are the STFT coefficients of the mixture $\mathbf{x}_{1: F 1: L}$.

The forward-backward algorithm calculates the marginal posterior probability $p\left(\mathbf{a}_{\ell} \mid \mathcal{O}_{1: L}\right)$ of a hidden state \mathbf{a}_{ℓ} conditioned on the sequence of all observations $\mathcal{O}_{1: L} .{ }^{2}$ For any particular state \mathbf{a}_{ℓ} we have using Bayes:

$$
\begin{array}{r}
p\left(\mathbf{a}_{\ell} \mid \mathcal{O}_{1: L}\right) \propto p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: L}\right)= \\
p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right) p\left(\mathbf{a}_{f \ell}, \mathcal{O}_{1: \ell}\right) . \tag{5}
\end{array}
$$

[^0]The past observations $\mathcal{O}_{1: \ell}$ are canceled from (5) via the Markov property (i.e. the future observations $\mathcal{O}_{\ell+1: L}$ are linked with the current hidden state \mathbf{a}_{ℓ} but are not linked with the past observations $\mathcal{O}_{1: \ell}$ as it is seen from Fig. 1).

Therefore the posterior probability of a hidden state is proportional to the product of two quantities. The forward probability $p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)$ and the backward probability $p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)$.

The Forward Recursion

The forward probability can be developed further by un-marginalising the previous state $\mathbf{a}_{\ell-1}$:

$$
\begin{array}{r}
p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)=\int_{\mathbf{a}_{\ell-1}} p\left(\mathbf{a}_{\ell}, \mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}, \mathcal{O}_{\ell}\right) \mathbf{d a}_{\ell-1}= \\
\int_{\mathbf{a}_{\ell-1}} p\left(\mathcal{O}_{\ell} \mid \mathbf{a}_{\ell}, \mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right) p\left(\mathbf{a}_{\ell}, \mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right) \mathbf{d a}_{\ell-1}= \\
p\left(\mathcal{O}_{\ell} \mid \mathbf{a}_{\ell}\right) \int_{\mathbf{a}_{\ell-1}} p\left(\mathbf{a}_{\ell} \mid \mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right) p\left(\mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right) \mathbf{d a}_{\ell-1} . \tag{8}
\end{array}
$$

where all cancelings emerge from independencies seen in Fig. 1. In summary the forward recursion calculates the forward probability $p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)$ using the forward probability for frame $\ell-1$ that is $p\left(\mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right)$, with:

$$
\begin{equation*}
p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)=p\left(\mathcal{O}_{\ell} \mid \mathbf{a}_{\ell}\right) \int_{\mathbf{a}_{\ell-1}} p\left(\mathbf{a}_{\ell} \mid \mathbf{a}_{\ell-1}\right) p\left(\mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right) \mathbf{d a}_{\ell-1} \tag{9}
\end{equation*}
$$

To obtain that $p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)$ we use proof by induction, that is we assume that for frame $\ell-1$ the forward probability is complex-Gaussian with:

$$
\begin{equation*}
p\left(\mathbf{a}_{\ell-1}, \mathcal{O}_{1: \ell-1}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{f \ell-1}, \boldsymbol{\mu}_{\ell-1}^{\phi}, \boldsymbol{\Sigma}_{\ell-1}^{\phi}\right) \tag{10}
\end{equation*}
$$

and by replacing (10), (2), (3) in (9), combining the Gaussian distributions ${ }^{3}$ and integrating ${ }^{4}$ we derive the forward distribution $p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)$:

$$
\begin{equation*}
p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{\ell}, \boldsymbol{\mu}_{\ell}^{\phi}, \boldsymbol{\Sigma}_{\ell}^{\phi}\right) \tag{11}
\end{equation*}
$$

with covariance matrix $\boldsymbol{\Sigma}_{\ell}^{\phi}$ and mean vector $\boldsymbol{\mu}_{\ell}^{\phi}$ given respectively from eqs. (13) and (14) in [1].

[^1]
The Backward Recursion

The backward distribution $p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)$ is developed by un-marginalising the future state $\mathbf{a}_{\ell+1}$:

$$
\begin{gather*}
p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)=\int_{\mathbf{a}_{\ell+1}} p\left(\mathcal{O}_{\ell+1}, \mathcal{O}_{\ell+2: L}, \mathbf{a}_{\ell+1} \mid \mathbf{a}_{\ell}\right) \mathbf{d a}_{\ell+1}= \tag{12}\\
\int_{\mathbf{a}_{\ell+1}} p\left(\mathcal{O}_{\ell+1} \mid \mathcal{O}_{\ell+2: L}, \mathbf{a}_{\ell+1}, \mathbf{a}_{\ell}\right) p\left(\mathcal{O}_{\ell+2: L}, \mathbf{a}_{\ell+1} \mid \mathbf{a}_{\ell}\right) \mathbf{d} \mathbf{a}_{\ell+1}= \tag{13}\\
\int_{\mathbf{a}_{\ell+1}} p\left(\mathcal{O}_{\ell+1} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}, \mathbf{a}\right) p\left(\mathbf{a}_{\ell+1} \mid \mathbf{a}_{\ell}\right) \mathbf{d a}_{\ell+1} \tag{14}
\end{gather*}
$$

In summary the backward recursion calculates $p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)$ using the next frame's backward $p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right)$ with:

$$
\begin{equation*}
p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)=\int_{\mathbf{a}_{\ell+1}} p\left(\mathcal{O}_{\ell+1} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathbf{a}_{\ell+1} \mid \mathbf{a}_{\ell}\right) \mathbf{d a}_{\ell+1} \tag{15}
\end{equation*}
$$

All distributions are known, except of $p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right)$. We use again induction and assume that the backward probability of future frame $\ell+1$ is:

$$
\begin{equation*}
p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{\ell+1} ; \boldsymbol{\mu}_{\ell+1}^{\beta}, \boldsymbol{\Sigma}_{\ell+1}^{\beta}\right) . \tag{16}
\end{equation*}
$$

Then, replacing (16), (2), (3) in (15) combining and integrating as in the forward recursion we arrive that:

$$
\begin{equation*}
p\left(\mathcal{O}_{\ell+1: L} \mid \mathbf{a}_{\ell}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{\ell} ; \boldsymbol{\mu}_{\ell}^{\beta}, \boldsymbol{\Sigma}_{\ell}^{\beta}\right), \tag{17}
\end{equation*}
$$

with covariance matrix $\boldsymbol{\Sigma}_{\ell}^{\beta}$ and mean vector $\boldsymbol{\mu}_{\ell}^{\beta}$ computed respectively with eqs. (16) and (17) in [1].

A Dummy Distribution

To simplify the notation in [1] we've introduced an intermediate distribution:

$$
\begin{equation*}
\mathcal{N}_{c}\left(\mathbf{a}_{\ell+1} ; \boldsymbol{\mu}_{\ell}^{\zeta}, \boldsymbol{\Sigma}_{\ell}^{\zeta}\right)=p\left(\mathcal{O}_{\ell+1} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right) \tag{18}
\end{equation*}
$$

with covariance matrix $\boldsymbol{\Sigma}_{\ell}^{\zeta}$ (eq. (15) of [1]) and mean vector $\boldsymbol{\mu}_{\ell}^{\zeta}$ (eq. (17) of [1]):

$$
\begin{align*}
\boldsymbol{\Sigma}_{\ell}^{\zeta} & =\left(\boldsymbol{\Sigma}_{\ell+1}^{\beta}{ }^{-1}+\boldsymbol{\Sigma}_{\ell+1}^{\iota}{ }^{-1}\right)^{-1} \tag{19}\\
\boldsymbol{\mu}_{\ell}^{\zeta} & =\boldsymbol{\Sigma}_{\ell}^{\zeta}\left(\boldsymbol{\Sigma}_{\ell+1}^{\iota}{ }^{-1} \boldsymbol{\mu}_{\ell+1}^{\iota}+\boldsymbol{\Sigma}_{\ell+1}^{\beta}{ }^{-1} \boldsymbol{\mu}_{\ell+1}^{\beta}\right) \tag{20}
\end{align*}
$$

Because the integration does not change the mean, we have $\boldsymbol{\mu}_{\ell}^{\beta}=\boldsymbol{\mu}_{\ell}^{\zeta}$. Note also that there are only $L-1 \zeta$ distributions, but there are $L \beta$ distributions.

The Probability of Two Successive States

Eq.(21) of [1] is incorrect and is correctly derived here!
The joint posterior probability of two succesive states is defined in terms of the forward and backward probabilities in eq, (13.43) in [4]:

$$
\begin{align*}
p\left(\mathbf{a}_{\ell+1}, \mathbf{a}_{\ell} \mid \mathcal{O}_{1: L}\right) \propto p\left(\mathcal{O}_{\ell+2: L} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathcal{O}_{\ell+1} \mid \mathbf{a}_{\ell+1}\right) p\left(\mathbf{a}_{\ell+1} \mid \mathbf{a}_{\ell}\right) p\left(\mathbf{a}_{\ell}, \mathcal{O}_{1: \ell}\right) \propto \tag{21}\\
\underbrace{\mathcal{N}_{c}\left(\mathbf{a}_{\ell+1} ; \boldsymbol{\mu}_{\ell}^{\zeta}, \boldsymbol{\Sigma}_{\ell}^{\zeta}\right)}_{1} \underbrace{\mathcal{N}_{c}\left(\mathbf{a}_{\ell+1} ; \mathbf{a}_{\ell}, \boldsymbol{\Sigma}^{a}\right)}_{2} \underbrace{\mathcal{N}_{c}\left(\mathbf{a}_{\ell} ; \boldsymbol{\mu}_{\ell}^{\phi}, \boldsymbol{\Sigma}_{\ell}^{\phi}\right)}_{3} . \tag{22}
\end{align*}
$$

In (22) both the \mathbf{a}_{ℓ} and $\mathbf{a}_{\ell+1}$ are free variables, hence the joint distribution is a function of the joint state variable $\mathbf{a}_{\{\ell+1, \ell\}}=\left[\mathbf{a}_{\ell+1}^{\top}, \mathbf{a}_{\ell}^{\top}\right]^{\top} \in \mathbb{C}^{2 I}$.

To write the (22) as a single functional we must express all three factors: $1,2,3$ in terms of the joint variable $\mathbf{a}_{\{\ell+1, \ell\}}$. In practice we re-structure the exponents (quadratic terms) of $1,2,3$.

Restructuring Quadratic Forms

Let us start with 1. Discarding any terms that do not depend on $\mathbf{a}_{\ell+1}$ we have:

$$
\left.\begin{array}{r}
\log (1)=-\mathbf{a}_{\ell+1}^{\mathrm{H}} \boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \mathbf{a}_{\ell+1}+\mathbf{a}_{\ell+1}^{\mathrm{H}} \boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \boldsymbol{\mu}_{\ell}^{\zeta}+\boldsymbol{\mu}_{\ell}^{\zeta^{\mathrm{H}}} \boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \mathbf{a}_{\ell+1}= \\
-\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} & \mathbf{0}_{I \times I} \\
\mathbf{0}_{I \times I} & \mathbf{0}_{I \times I}
\end{array}\right] \mathbf{a}_{\{\ell+1, \ell\}}+\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\boldsymbol{\Sigma}_{\ell}^{\boldsymbol{\Sigma}_{\ell}^{-1}} \boldsymbol{\mu}_{\ell}^{\zeta} \mathbf{0}_{I}\right.
\end{array}\right]+\left[\begin{array}{c}
\left.\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \boldsymbol{\mu}_{\ell}^{\zeta}\right]^{\mathrm{H}} \mathbf{a}_{\{\ell+1, \ell\}} \tag{23}
\end{array}\right.
$$

with $\mathbf{0}_{I}$ the zero vector of dimension I, and $\mathbf{0}_{I \times I}$ the zero matrix of dimension $I \times I$.

Again, for 2 , and by discarding terms independent on both $\mathbf{a}_{\ell+1}, \mathbf{a}_{\ell}$:

$$
\begin{align*}
\log (2) & =-\left(\mathbf{a}_{\ell+1}-\mathbf{a}_{\ell}\right)^{\mathrm{H}} \boldsymbol{\Sigma}^{a-1}\left(\mathbf{a}_{\ell+1}-\mathbf{a}_{\ell}\right)= \\
& -\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{cc}
\boldsymbol{\Sigma}^{a-1} & -\boldsymbol{\Sigma}^{a-1} \\
-\boldsymbol{\Sigma}^{a-1} & \boldsymbol{\Sigma}^{a-1}
\end{array}\right] \mathbf{a}_{\{\ell+1, \ell\}} . \tag{24}
\end{align*}
$$

Then, for 3, discarding terms independent on \mathbf{a}_{ℓ} we write:

$$
\begin{array}{r}
\log (3)=-\mathbf{a}_{\ell}^{\mathrm{H}} \boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \mathbf{a}_{\ell}+\mathbf{a}_{\ell}^{\mathrm{H}} \boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \boldsymbol{\mu}_{\ell}^{\phi}+\boldsymbol{\mu}_{\ell}^{\phi^{\mathrm{H}}} \boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \mathbf{a}_{\ell}= \\
-\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{cc}
\mathbf{0}_{I \times I} & \mathbf{0}_{I \times I} \\
\mathbf{0}_{I \times I} & \boldsymbol{\Sigma}_{\ell}^{\phi^{-1}}
\end{array}\right] \mathbf{a}_{\{\ell+1, \ell\}}+\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{c}
\boldsymbol{0}_{I} \\
\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \\
\boldsymbol{\mu}_{\ell}^{\phi}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0}_{I} \\
\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \\
\boldsymbol{\mu}_{\ell}^{\phi}
\end{array}\right]^{\mathrm{H}} \mathbf{a}_{\{\ell+1, \ell\}} . \tag{25}
\end{array}
$$

Composition of the Final Quadratic
Now, by replacing (23), (24), (25) in (22) and summing we have:

$$
\begin{array}{r}
p\left(\mathbf{a}_{\ell+1}, \mathbf{a}_{\ell} \mid \mathcal{O}_{1: L}\right) \propto \exp \left(-\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}}+\boldsymbol{\Sigma}^{a-1} & -\boldsymbol{\Sigma}^{a-1} \\
-\boldsymbol{\Sigma}^{a-1} & \boldsymbol{\Sigma}^{a-1}+\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}}
\end{array}\right] \mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}+\right. \\
\left.\mathbf{a}_{\{\ell+1, \ell\}}^{\mathrm{H}}\left[\begin{array}{c}
\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \boldsymbol{\mu}_{\ell}^{\zeta} \\
\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \\
\boldsymbol{\mu}_{\ell}^{\phi}
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \boldsymbol{\mu}_{\ell}^{\zeta} \\
\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \boldsymbol{\mu}_{\ell}^{\mathrm{H}}
\end{array}\right]^{\mathrm{H}} \mathbf{a}_{\{\ell+1, \ell\}}\right) . \tag{26}
\end{array}
$$

The last remaining step is to identify that (26) is a complex-Gaussian

$$
\begin{equation*}
p\left(\mathbf{a}_{\ell+1}, \mathbf{a}_{\ell} \mid \mathcal{O}_{1: L}\right)=\mathcal{N}_{c}\left(\mathbf{a}_{\{\ell+1, \ell\}} ; \boldsymbol{\mu}_{\ell}^{\xi}, \boldsymbol{\Sigma}_{\ell}^{\xi}\right) \tag{27}
\end{equation*}
$$

with covariance matrix $\boldsymbol{\Sigma}_{\ell}^{\xi}$ and mean vector $\boldsymbol{\mu}_{\ell}^{\xi}$ given respectively with:

$$
\begin{align*}
& \boldsymbol{\Sigma}_{\ell}^{\xi}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}}+\boldsymbol{\Sigma}^{a^{-1}} & -\boldsymbol{\Sigma}^{a^{-1}} \\
-\boldsymbol{\Sigma}^{a^{-1}} & \boldsymbol{\Sigma}_{f \ell}^{\phi a^{-1}}+\boldsymbol{\Sigma}^{a-1}
\end{array}\right]^{-1}, \tag{28}\\
& \boldsymbol{\mu}_{\ell}^{\xi}=\boldsymbol{\Sigma}_{\ell}^{\xi}\left[\left(\boldsymbol{\Sigma}_{\ell}^{\zeta^{-1}} \boldsymbol{\mu}_{\ell}^{\beta}\right)^{\top},\left(\boldsymbol{\Sigma}_{\ell}^{\phi^{-1}} \boldsymbol{\mu}_{\ell}^{\phi}\right)^{\top}\right]^{\top} . \tag{29}
\end{align*}
$$

Notice that in eq. (22) in [1] it is incorrectly written $\boldsymbol{\mu}_{f \ell+1}^{\beta a}$ where it should be $\boldsymbol{\mu}_{f \ell}^{\beta a}$.

Bibliography

[1] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, and R. Horaud, "A variational EM algorithm for the separation of time-varying convolutive audio mixtures," IEEE/ACM Trans. Audio, Speech and Language Process., vol. 24, no. 8, pp. 1408-1423, 2016.
[2] F. Neeser and J. Massey, "Proper complex random processes with applications to information theory," IEEE Trans. Info. Theory, vol. 39, no. 4, pp. 1293-1302, 1993.
[3] K. B. Petersen and M. S. Pedersen, The matrix cookbook. Version. Nov 15, 2012.
[4] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[^0]: ${ }^{1}$ The proper complex Gaussian distribution [2] is defined as $\mathcal{N}_{c}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=|\pi \boldsymbol{\Sigma}|^{-1} \exp (-$ $\left.[\mathbf{x}-\boldsymbol{\mu}]^{\mathrm{H}} \boldsymbol{\Sigma}^{-1}[\mathbf{x}-\boldsymbol{\mu}]\right)$, with $\mathbf{x}, \boldsymbol{\mu} \in \mathbb{C}^{I}$ and $\boldsymbol{\Sigma} \in \mathbb{C}^{I \times I}$ being the argument, mean vector, and covariance matrix respectively.
 ${ }^{2}$ The notation $\mathcal{O}_{1: L}$ is an abbrevation for the set $\left\{\mathcal{O}_{\ell}\right\}_{\ell=1}^{L}$.

[^1]: ${ }^{3}$ From Sec. 8.1.7 at [3] we have that the product of two Gaussian distributions $\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)=\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}=\left[\boldsymbol{\Sigma}_{1}^{-1}+\boldsymbol{\Sigma}_{2}^{-1}\right]^{-1}$ and $\boldsymbol{\mu}=\boldsymbol{\Sigma}\left[\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\mu}_{1}+\right.$ $\left.\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\mu}_{2}\right]$.
 ${ }^{2}{ }_{4} \mathrm{Eq} .(2.115)$ in [4] states that $\int_{\mathbf{x}} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}_{1}\right) \mathcal{N}\left(\mathbf{y} ; \mathbf{x}, \boldsymbol{\Sigma}_{2}\right) \mathbf{d x}=\mathcal{N}\left(\mathbf{y} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}\right)$.

