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THE FORWARD BACKWARD ALGORITHM
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Figure 1: LEFT: Standard representation of a 1%¢ order LDS. RIGHT: The
graphical abbreviation of a 15¢ order LDS used in [1].

This report is supplementary material for [1], in essence it provides a detailed
derivation of the E-A step.

The 1%* order Linear Dynamical System (LDS) in [1] has L hidden state
vectors {a. r1,..,a. f¢,..,a ¢} (for notation clarity we drop the index f and
denote a hidden state a. s, as a,) with probability of the 1-st frame:?

p(ar) = N, (ar; u®, %), (1)
probability distribution of transition between succesive states:
placlag—1) = Ne (aggar—1, %) (2)
and observation model
p(Oclag) = Ne (i ae, 27%) 3)

Note that O; is an abstract notion of observation introduced only to enable us to
define conditional probabilities over the hidden states. In cases where an LDS is
embedded in a larger Bayesian network, as it is the case for [1], the observation
probability of the LDS is calculated based on the surrounding latent variables
and may not share a direct link with the observed data of the model that here
are the STFT coefficients of the mixture x1.p1.1,.

The forward-backward algorithm calculates the marginal posterior probabil-
ity p(a¢|O1.1) of a hidden state a, conditioned on the sequence of all observations
O1.1.2 For any particular state a, we have using Bayes:

p(ag|Or.r) x p(ag, O1.1) = (4)
P(Ortr:Llag, Ot Jp(age, Orue).- (5)

!The proper complex Gaussian distribution [2] is defined as Ne(x; p, 2) = [7%| L exp (—
[x — i x — u]), with x, u € C! and ¥ € C'*! being the argument, mean vector, and
covariance matrix respectively.

2The notation O1., is an abbrevation for the set {Og}L ;.




The past observations Oy.¢ are canceled from (5) via the Markov property (i.e.
the future observations Oy 1.1 are linked with the current hidden state a, but
are not linked with the past observations O;.4 as it is seen from Fig. 1).

Therefore the posterior probability of a hidden state is proportional to the
product of two quantities. The forward probability p(as, O1.¢) and the backward
probability p(Og+1:L ‘ag).

THE FORWARD RECURSION

The forward probability can be developed further by un-marginalising the pre-
vious state ay_q:

p(ag, O14) = / plag,ar—1,01.0-1,00)da,_; =

|
—~

D
=

ag—1
/ p(oélaé,%,% )p(a€7aé—1701:€—1)da€—1 - (7)
ag—1
p(oe|az)/ plaglag—1, Orr=1 )p(ar—1, O1.0—1)day_1. (8)

where all cancelings emerge from independencies seen in Fig. 1. In summary
the forward recursion calculates the forward probability p(as, O1.¢) using the
forward probability for frame ¢ — 1 that is p(a;—1, O1.¢—1), with:

p(ag, O14) = p(0z|ae)/ plaglag—1)p(ag—1, O1.p—1)dag_. 9)

ag—1

To obtain that p(as, O1.¢) we use proof by induction, that is we assume that for
frame ¢ — 1 the forward probability is complex-Gaussian with:

p(aéfholzéfl) :Nc (affflvu?_pz(é)_l) ) (10)

and by replacing (10), (2), (3) in (9), combining the Gaussian distributions?
and integrating® we derive the forward distribution p(ay, O1.¢):

p(aﬁa Ol:f) = NC (afau’?v 2?) ) (11)

with covariance matrix E‘f and mean vector p,f given respectively from egs.
(13) and (14) in [1].

3From Sec. 8.1.7 at [3] we have that the product of two Gaussian distributions
N (x5 g, EDN (X5 g, B2) = N(x3 1, ) with 3 = [S71 43517 and p = B[ uy +
5 o]

4Eq. (2.115) in [4] states that fx/\f(x; w,E)N (y; %, 22)dx = N(y; p, 21 + X2).



THE BACKWARD RECURSION

The backward distribution p(Qg41.1]ar) is developed by un-marginalising the
future state agy1:

p(Ops1.0]ar) :/ P(Opis1,Opyo.r,arr1|ag)dagy = (12)
ag+1

/ P(Oes1|Orert arar, 20 Orsnr avn|ag)dag = (13)

ag41

/ p(Opir|acs)p(Ovszlacsr, a0)p(acs |ag)das . (14)

ar+1

In summary the backward recursion calculates p(Qgi1.1]as) using the next
frame’s backward p(Opyo.1|ap+1) with:

P(Opti:1]ar) =/ P(Ort1laei1)p(Opyo.r|ac1)p(aci|ae)dagy ;. (15)

ag+1

All distributions are known, except of p(Opt2.1|ar+1). We use again induction
and assume that the backward probability of future frame ¢ + 1 is:

P(Orsaslar) = N (acsisnl 7). (16)

Then, replacing (16), (2), (3) in (15) combining and integrating as in the forward
recursion we arrive that:

P(Oe+1:L‘al) = Nc (af; /J;f, Ef) ) (17)

with covariance matrix Ef and mean vector p,f computed respectively with eqgs.
(16) and (17) in [1].

A DuMMY DISTRIBUTION

To simplify the notation in [1] we’ve introduced an intermediate distribution:
N (@41 1, F) = (Ol )p(Orsz:clacs ), (18)

with covariance matrix Eg (eq. (15) of [1]) and mean vector ug (eq. (17) of
[1]):

¢ S A

3= (Ee+1 + X ) ; (19)

v =1 -1

“g :2% <2£+1 1W+1 + Efﬂ /Lfﬂ) : (20)

Because the integration does not change the mean, we have uf = uﬁ. Note also
that there are only L — 1 { distributions, but there are L § distributions.



THE PROBABILITY OF TWO SUCCESSIVE STATES

Eq.(21) of [1] is incorrect and is correctly derived here!
The joint posterior probability of two succesive states is defined in terms of
the forward and backward probabilities in eq, (13.43) in [4]:

plagsi, ar|O01:n) < p(Opg2:.n]ar11)p(Ovg1|ars1)p(aryi|ae)p(ag, Or) o (21)
No(@agir; g, 39) Ne(agisar, B9) No(ag pf, 57). (22)

1 2 3

In (22) both the a; and ayy; are free variables, hence the joint distribution
is a function of the joint state variable ag, 1 ¢y = [a/, ;. aZ]T € C?,
To write the (22) as a single functional we must express all three factors:

1,2,3 in terms of the joint variable agsy; ). In practice we re-structure the
exponents (quadratic terms) of 1,2, 3.

RESTRUCTURING QUADRATIC FORMS

Let us start with 1. Discarding any terms that do not depend on a,41 we have:

-1 -1 H -1
log(1) = —af',; B} a1 +al D) pp+pg Tp ac =

¢t ¢ f
0w
0;

—1
= pg
0;

C71
X Orxr

H
—a +
LS 00 05y

AL041,6}

(23)

] ager1,e + a?@-ﬁ-l,é}

with O; the zero vector of dimension I, and 07y ; the zero matrix of dimension
I x1I.

Again, for 2, and by discarding terms independent on both a,11, ay:

log(2) = — (arr1 — a0)" 27 (a1 —ay) =

2&71 _Eafl
_a?£+1,l} |:_Ea1 ya-1 } Afp41,0}- (24)

Then, for 3, discarding terms independent on a, we write:
-1 -1 H_, -1
log(3) = —a?Ef ap + a?EZ) uf + uf Ef ay =

H 0;
A1,y T A1y 2‘1’71“‘1’
4 i1

H
0;

-1 aArg41,0}-
0| Y

(25)

Orxr Orxr

H
—a -1 +
{e+1,6} |}h><] Ef

COMPOSITION OF THE FINAL QUADRATIC

Now, by replacing (23), (24), (25) in (22) and summing we have:



> N L

H
_Eafl Ea71 + 2?71 a{l+1’€}+

p(ac+1,ar/O1:1) o exp ( —afiiig

1 -1 H
aI{{eH 0} Eéilﬂé 251“51 a1 z}) .
R I
(26)
The last remaining step is to identify that (26) is a complex-Gaussian
plagr1,a|O0r.) =N (a{e+1,e}; 1S, 25) ; (27)
with covariance matrix EE and mean vector ,u% given respectively with:
-1 -1 -1 -1
PR 3 %
Eg =17 a1 da—1 o1 ) (28)
-X Xy +X
e _ s st AT (gt ]
IR (zg HZ) ’ (Ee W) ‘ (29)

Notice that in eq. (22) in [1] it is incorrectly written u?? 1 Where it should be
Ba
Kyg-
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