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The Forward Backward Algorithm
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Figure 1: LEFT: Standard representation of a 1st order LDS. RIGHT: The
graphical abbreviation of a 1st order LDS used in [1].

This report is supplementary material for [1], in essence it provides a detailed
derivation of the E-A step.

The 1st order Linear Dynamical System (LDS) in [1] has L hidden state
vectors {a:,f1, ..,a:,f`, ..,a:,fL} (for notation clarity we drop the index f and
denote a hidden state a:,f` as a`) with probability of the 1-st frame:1

p(a1) = Nc (a1;µa,Σa) , (1)

probability distribution of transition between succesive states:

p(a`|a`−1) = Nc (a`; a`−1,Σ
a) . (2)

and observation model

p (O`|a`) = Nc (µιa` ; a`,Σ
ιa
` ) (3)

Note that Ol is an abstract notion of observation introduced only to enable us to
define conditional probabilities over the hidden states. In cases where an LDS is
embedded in a larger Bayesian network, as it is the case for [1], the observation
probability of the LDS is calculated based on the surrounding latent variables
and may not share a direct link with the observed data of the model that here
are the STFT coefficients of the mixture x1:F1:L.

The forward-backward algorithm calculates the marginal posterior probabil-
ity p(a`|O1:L) of a hidden state a` conditioned on the sequence of all observations
O1:L.2 For any particular state a` we have using Bayes:

p(a`|O1:L) ∝ p(a`,O1:L) = (4)

p(O`+1:L|a`,���O1:` )p(af`,O1:`). (5)

1The proper complex Gaussian distribution [2] is defined as Nc(x;µ,Σ) = |πΣ|−1 exp
(
−

[x − µ]HΣ−1[x − µ]
)
, with x,µ ∈ CI and Σ ∈ CI×I being the argument, mean vector, and

covariance matrix respectively.
2The notation O1:L is an abbrevation for the set {O`}L`=1.
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The past observations O1:` are canceled from (5) via the Markov property (i.e.
the future observations O`+1:L are linked with the current hidden state a` but
are not linked with the past observations O1:` as it is seen from Fig. 1).

Therefore the posterior probability of a hidden state is proportional to the
product of two quantities. The forward probability p(a`,O1:`) and the backward
probability p(O`+1:L|a`).

The Forward Recursion

The forward probability can be developed further by un-marginalising the pre-
vious state a`−1:

p(a`,O1:`) =

∫
a`−1

p(a`,a`−1,O1:`−1,O`)da`−1 = (6)∫
a`−1

p(O`|a`,���a`−1,����O1:`−1 )p(a`,a`−1,O1:`−1)da`−1 = (7)

p(O`|a`)
∫
a`−1

p(a`|a`−1,����O1:`−1 )p(a`−1,O1:`−1)da`−1. (8)

where all cancelings emerge from independencies seen in Fig. 1. In summary
the forward recursion calculates the forward probability p(a`,O1:`) using the
forward probability for frame `− 1 that is p(a`−1,O1:`−1), with:

p(a`,O1:`) = p(O`|a`)
∫
a`−1

p(a`|a`−1)p(a`−1,O1:`−1)da`−1. (9)

To obtain that p(a`,O1:`) we use proof by induction, that is we assume that for
frame `− 1 the forward probability is complex-Gaussian with:

p(a`−1,O1:`−1) = Nc
(
af`−1,µ

φ
`−1,Σ

φ
`−1

)
, (10)

and by replacing (10), (2), (3) in (9), combining the Gaussian distributions3

and integrating4 we derive the forward distribution p(a`,O1:`):

p(a`,O1:`) = Nc
(
a`,µ

φ
` ,Σ

φ
`

)
, (11)

with covariance matrix Σφ
` and mean vector µφ` given respectively from eqs.

(13) and (14) in [1].

3From Sec. 8.1.7 at [3] we have that the product of two Gaussian distributions

N (x;µ1,Σ1)N (x;µ2,Σ2) = N (x;µ,Σ) with Σ =
[
Σ−1

1 + Σ−1
2

]−1
and µ = Σ

[
Σ−1

1 µ1 +

Σ−1
2 µ2

]
.

4Eq. (2.115) in [4] states that
∫
xN (x;µ,Σ1)N (y; x,Σ2)dx = N (y;µ,Σ1 + Σ2).
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The Backward Recursion

The backward distribution p(O`+1:L|a`) is developed by un-marginalising the
future state a`+1:

p(O`+1:L|a`) =

∫
a`+1

p(O`+1,O`+2:L,a`+1|a`)da`+1 = (12)∫
a`+1

p(O`+1|����O`+2:L,a`+1,��a`)p(O`+2:L,a`+1|a`)da`+1 = (13)∫
a`+1

p(O`+1|a`+1)p(O`+2:L|a`+1,��a`)p(a`+1|a`)da`+1. (14)

In summary the backward recursion calculates p(O`+1:L|a`) using the next
frame’s backward p(O`+2:L|a`+1) with:

p(O`+1:L|a`) =

∫
a`+1

p(O`+1|a`+1)p(O`+2:L|a`+1)p(a`+1|a`)da`+1. (15)

All distributions are known, except of p(O`+2:L|a`+1). We use again induction
and assume that the backward probability of future frame `+ 1 is:

p(O`+2:L|a`+1) = Nc
(
a`+1;µβ`+1,Σ

β
`+1

)
. (16)

Then, replacing (16), (2), (3) in (15) combining and integrating as in the forward
recursion we arrive that:

p(O`+1:L|a`) = Nc
(
a`;µ

β
` ,Σ

β
`

)
, (17)

with covariance matrix Σβ
` and mean vector µβ` computed respectively with eqs.

(16) and (17) in [1].

A Dummy Distribution

To simplify the notation in [1] we’ve introduced an intermediate distribution:

Nc
(
a`+1;µζ` ,Σ

ζ
`

)
= p(O`+1|a`+1)p(O`+2:L|a`+1), (18)

with covariance matrix Σζ
` (eq. (15) of [1]) and mean vector µζ` (eq. (17) of

[1]):

Σζ
` =

(
Σβ
`+1

−1
+ Σι

`+1
−1
)−1

, (19)

µζ` =Σζ
`

(
Σι
`+1
−1µι`+1 + Σβ

`+1

−1
µβ`+1

)
. (20)

Because the integration does not change the mean, we have µβ` = µζ` . Note also
that there are only L− 1 ζ distributions, but there are L β distributions.
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The Probability of Two Successive States

Eq.(21) of [1] is incorrect and is correctly derived here!

The joint posterior probability of two succesive states is defined in terms of
the forward and backward probabilities in eq, (13.43) in [4]:

p(a`+1,a`|O1:L) ∝ p(O`+2:L|a`+1)p(O`+1|a`+1)p(a`+1|a`)p(a`,O1:`) ∝ (21)

Nc(a`+1;µζ` ,Σ
ζ
` )︸ ︷︷ ︸

1

Nc(a`+1; a`,Σ
a)︸ ︷︷ ︸

2

Nc(a`;µφ` ,Σ
φ
` )︸ ︷︷ ︸

3

. (22)

In (22) both the a` and a`+1 are free variables, hence the joint distribution

is a function of the joint state variable a{`+1,`} =
[
a>`+1,a

>
`

]> ∈ C2I .

To write the (22) as a single functional we must express all three factors:
1, 2, 3 in terms of the joint variable a{`+1,`}. In practice we re-structure the
exponents (quadratic terms) of 1, 2, 3.

Restructuring Quadratic Forms

Let us start with 1. Discarding any terms that do not depend on a`+1 we have:

log(1) = −aH
`+1Σ

ζ
`

−1
a`+1 + aH

`+1Σ
ζ
`

−1
µζ` + µζ`

H
Σζ
`

−1
a`+1 =

−aH
{`+1,`}

[
Σζ
`

−1
0I×I

0I×I 0I×I

]
a{`+1,`} + aH

{`+1,`}

[
Σζ
`

−1
µζ`

0I

]
+

[
Σζ
`

−1
µζ`

0I

]H
a{`+1,`}

(23)

with 0I the zero vector of dimension I, and 0I×I the zero matrix of dimension
I × I.

Again, for 2, and by discarding terms independent on both a`+1,a`:

log(2) = − (a`+1 − a`)
H

Σa−1 (a`+1 − a`) =

−aH
{`+1,`}

[
Σa−1 −Σa−1

−Σa−1 Σa−1

]
a{`+1,`}. (24)

Then, for 3, discarding terms independent on a` we write:

log(3) = −aH
` Σφ

`

−1
a` + aH

` Σφ
`

−1
µφ` + µφ`

H
Σφ
`

−1
a` =

−aH
{`+1,`}

[
0I×I 0I×I

0I×I Σφ
`

−1

]
a{`+1,`} + aH

{`+1,`}

[
0I

Σφ
`

−1
µφ`

]
+

[
0I

Σφ
`

−1
µφ`

]H
a{`+1,`}.

(25)

Composition of the Final Quadratic

Now, by replacing (23), (24), (25) in (22) and summing we have:
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p(a`+1,a`|O1:L) ∝ exp

(
− aH
{`+1,`}

[
Σζ
`

−1
+ Σa−1 −Σa−1

−Σa−1 Σa−1 + Σφ
`

−1

]
aH
{`+1,`}+

aH
{`+1,`}

[
Σζ
`

−1
µζ`

Σφ
`

−1
µφ`

]
+

[
Σζ
`

−1
µζ`

Σφ
`

−1
µφ`

]H
a{`+1,`}

)
.

(26)

The last remaining step is to identify that (26) is a complex-Gaussian

p(a`+1,a`|O1:L) = Nc
(
a{`+1,`};µ

ξ
` ,Σ

ξ
`

)
, (27)

with covariance matrix Σξ
` and mean vector µξ` given respectively with:

Σξ
` =

[
Σζ
`

−1
+ Σa−1 −Σa−1

−Σa−1 Σφa
f`

−1
+ Σa−1

]−1
, (28)

µξ` = Σξ
`

[(
Σζ
`

−1
µβ`

)>
,
(
Σφ
`

−1
µφ`

)>]>
. (29)

Notice that in eq. (22) in [1] it is incorrectly written µβaf`+1 where it should be

µβaf` .
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