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1. INTRODUCTION

This report is supplementary material for submission [1]. In
[1] we want to recover the STFT coefficients {yj, fe € cf };.]21

T
of the J source images Vf, £. Lety ¢, = [le’fé .. .ylﬂ} €

C!”7 be the catenated vector of all .J source images at time-
frequency point f, £.

1.0.1. Mixing Equation Revisited

Let the matrix M,, € N/*17 pe:
M, =d, @1, (1)

with ® the Kronecker product. The observation x, equals
the sum of active source-images plus some noise by, € C’:

J
Xpe =Y djzyjpe+b= 2

j=1
Mz,zyfeerfg. 3)

Now let also p(bf¢) = N. (bys;0,0¢I;) and we obtain the
observation model (eq. (4) in [1]): (parameters are omitted
when denoting probabilities, that is p(x; 6) is simply denoted

p(2)):
p(xpe|Ze = n,ype) = Ne (xp0; Muyge,06lr) . (4)

The symbol N, () denotes the proper complex Gaussian dis-
tribution [2].!

I"The proper complex Gaussian distribution is defined as NV (x; p, ) =
|72 texp (— [x — pl"= 71 [x — p]), withx, p € CT and = € CI*!
being the argument, mean vector, and covariance matrix respectively.

1.0.2. The Prior Distribution of Source Images

As all J source images are a priori independent we can cal-
culate the prior distribution of the catenated image y 7, with:

J

p(yse) =[] p(ysre) = )
j=1
J
LTV (3).050,u;.p0R ) = (6)
j=1
Ne (yre; 01, diag; (uj peRjif)) ©)

with diag ; (A ;) the IJ x I.J block-diagonal matrix with j-th
diagonal block A ;.

2. EM ALGORITHM

Fig. 1 shows the dependencies between hidden random vari-
ables and observations for the probabilistic model of [1]. Let
X1.r1.1 be a short-hand for a set, i.e. {xﬂ}i’f:l.

2.0.3. Complete Data Probability Distribution

The source images are assumed independent between all
f,4, 7 (as in [3, 4]), the observations x ¢, are also indepen-
dent over f,¢. Therefore, the completed data (observed and
hidden variables) probability p(y1.r1.1,, Z1.1, X1.F1.1,) for
the model in [1] writes:

p(y1:F1:La Zl:L7 X1:F1:L5 6) =

L FL
p(2) [ [ p(Ze\Zer) 1] pysopxselyse, Ze). (®)
=2 f=1
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Figure 1: Associated graphical model: White circles denote
hidden variables. Shaded (blue) circles denote observed vari-
ables. Loops denote temporal dependencies. Rectangles de-
note parameters to be estimated.

2.0.4. Factorising the Posterior Distribution

In the EM we want to derive the posterior distribution
p(¥1.71:1, Z1.1|X1.71.1,). From the Bayes rule we have:

p(yl:Fl:LaZI:L‘Xlel:L) X (9)
p(¥1:71:0, Z1:10, X1:F1:1,) X (10)
p(y1:r1:0] Z1:0, X1:71:0)P(Z1. L X1:F1:1) - (11)

Therefore replacing (11) on (8) we obtain:

p(y1:71:2]Z1:1, X1.71:0)P(Z1:L|X1:F1:1) X

L F.L
p(20) [[p(Ze| Zer) ] prsop(xpely e, Ze). (12)
=2 fio=1

Therefore, isolating the terms from (12) that depend on y s,
yields its posterior p(y s¢|x1.71:1.). Equivalently, isolating
the terms from (12) that contain Z, provides its posterior
D(Ze|X1:F1:1)-

Now, in Sec. 2.1 we compute p(yfe|x1:71..), and in
Sec. 2.2 we compute p(Z|X1.r1.1)-

2.1. E step Source Separation

The posterior of a source image p(y r¢| Z¢, X1:71.1.) is found
with (8), by dropping all terms of (8) that are independent of
¥s¢- Then (8) writes:?

p(yrelZe,x1:71:0) X p(Xpe|Ze,y pe)p(ype) o< (13)
Ne(yres ez, Bgez,) (14

The posterior covariance matrix X e, € CT7*1J and the
posterior mean vector ¥ ¢o, € C!7 are respectively computed
(for every Z;, = n,n € [1, N]) with:

—1
. MM,
Lpm = |diag; (uj reRy r) 1+T (1)

. X
Vitm = penM] O—f)f (16)

2We work in o< and therefore any term independent of y 7, is a constant
for p(y f¢lx1:r71:2) and can be dropped.
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2.1.1. Woodbury on the Posterior Covariance X top,

Applying Eq. (156) from [5] on (15) we have:

Efgn = diagJ (uj,ng<7f) — diagJ (uj,ng<7f) X
M,V M, diag; (u; s Rjf), (17)

with V¢4, € CT*T defined as

Vi = M, diag; (uj seRj, ) My, = (18)
J
> djnug R (19)
j=1

2.1.2. The Block Structure of Xy,

From (17) we can now partition X, in J2, I x I blocks:

J,J . )
{Zjr.fen € CT¥1}20_ | We are interested on the covariance

matrix X; e, € C™*T of a specific source image Y. fe. that
is the j-th, I x I diagonal block X, ¢on:

Xjjron = ujpeRyj
djntt R ;V s dinty peRy p, (20)
Eq. (20) corresponds to (10) in [1].
We will also need the non-diagonal blocks 3, ¢, 7 # 7

that are expressible with:

S fen = —djnt g R §V 5 drntiy g Ry g (21)

2.1.3. The Posterior Mean 'y ; ¢¢n, of a Source Image

We are interested on the posterior mean y; ¢e, € CT of a
specific source image y ;, r¢, obtained from the respective part
of the long vector ¥ s, that has been computed with (16).
We can simplify (16) by applying (158) from [5]:
Y jen = diagy (uj peRy ) My V) X g0 (22)
Or simply for a specific y;, r¢ € C:

Vifon = s peR; pdin Vi X (23)

Clearly, (23) is equivalent with (9) in [1].
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2.2. E step Source Diarisation

We compute p(Z1.1,|x1.71.1,) from (8), by marginalising out
all source images:

L
p(Z1.0%1.71:0) = p(Z1) HP(Z£|Z£71)><
=2
FL
11 p(Xse|Ze, y pe)p(y pe)dy e = 24)

fa=1"Yre

L
p(Z21) [ [ p(Zel Ze-1) %
=2

F,.L

I Ve (x50, Vyez). 29

fie=1

where (for each Z, = n) V¢, is calculated with (19). As
for the integral is calculated with Eq.(2.115) from [6].

2.2.1. Forward-Backward Algorithm for HMM

Eq. (25) is the joint distribution of an HMM with hidden
state Zy along ¢ € [1, L] (see Eq. (13.10) in [6]). and some
emission probabilities ¢y, defined:

F
Wz, = HNC (ng;O,VngZ). (26)
f=1

The posterior probability n¢, = p(Zy = n|x1.r1.1) of each
hidden state is hence computed using the forward-backward
algorithm: provided in equations (13.36), (13.38) of [6].

2.3. M step

In the M step, the parameters 6 are updated by maximising
the Expected Complete Data Log-likelihood (ECDLL) func-
tion (see Eq. (9.30) in [6]) with respect to the parameters
0.

2.3.1. M-Tpr, M

The update rules for the diarisation parameters 7,,., \,, are
the ML updates for HMM parameters: Equations (13.19),
(13.18) of [6].

2.3.2. M-wj si, hjpe, Ry ¢

The source image parameters w; ¢, hj e, Rj sV f, ¢, 7 are
updated as in [4]. To apply the rules derived in [4] one needs
the second order posterior moment of a source image y; re
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that is found with:

N
Qje = Zﬁén/ p(yrelZe = n,X1.71.1) X
n=1

Yre

Yifeyspedype = 27)

N
Z Nen (g pon + Vjgends pon) - (28)
n=1

2.3.3. M-o;
The ECDLL L(oy) regarding oy writes:

N
‘C(Of) = ZnZn/ p(ny|ZZ = naxlelzL)X
n=1

Yre
log Ne (xp0; Mpy e, 06I1) dy e (29)

Differentiating £(of) w.r.t. oy and setting the result to zero
yields the update rule for oy:

L
1 H
=1
N H N
(Z anifen) Xpo — Xy (Z an(fzn> +
n=1 n=1

N
Z nzntr{Mn (Bsen + Yremdien) M, }) . (30)
n=1

with X ¢¢,, defined as:

J

fcf@n = Mnyffn = Zd ,nyj,fén- (31)
j=1

Notice that d; ,, is already applied on (23) and it does not
need to be re-applied as it is binary.
2.3.4. Slmplification of the Quadratic Term

Now let’s work with the quadratic term in (30):

e{ M, (Spen + Fpendfe) ML} = (32)
tr{MnZ] renMT } + &M, % o (33)

Now let us define the variance part of the above as ¢4y,
which is practically the sum of all J? blocks of the source
covariance that due to M,, are multiplied with the diarisa-
tion:

5ﬂn = tr{MnxfgnMI} = (34)
J
tr{ S djndrn i, fen} = (39)
j=1r=1
-1
w{Pron — PV Pron } (36)
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