Local Relative Transfer Function for Sound Source Localization

Xiaofei Li¹, Radu Horaud¹, Laurent Girin^{1,2}, Sharon Gannot³

¹INRIA Grenoble Rhône-Alpes. {*firstname.lastname@inria.fr*} ²GIPSA-Lab & Univ. Grenoble Alpes ³Faculty of Engineering, Bar-IIan University

September 1, 2015

Introduction

- 2 Problem formulation and usual RTF
- 3 Local relative transfer function
- 4 Sound source localization using local-RTF vector
- 5 Experiments

Task & The scenario

- Sound source localization.
- Microphone array with an arbitrary topology.
- Single static desired speech source.

Baseline method & Challenge

- Relative transfer function (RTF): as a function of direction of arrival.
- Challenge: It is hard to select a good reference channel in a complex acoustic environment.

Proposed method

- To avoid a potential bad unique reference channel, we propose
 - local RTF that takes local reference channel.
 - a biased local-RTF estimator and a unbiased estimator.

In the STFT domain, the signals received by the M microphones are approximated as:

$$\mathbf{x}(\omega, l) \approx \mathbf{h}(\omega) \mathbf{s}(\omega, l) + \mathbf{n}(\omega, l)$$

• ω and I are the indices of frequency-bin and time-frame.

- $s(\omega, I)$ is the source signal.
- $\mathbf{x}(\omega, l) = [x_1(\omega, l), \dots, x_M(\omega, l)]^T$ is the sensor signal vector.
- $\mathbf{n}(\omega, l) = [n_1(\omega, l), \dots, n_M(\omega, l)]^T$ is the sensor noise vector.
- h(ω) = [h₁(ω),..., h_M(ω)]^T is the acoustic transfer function (ATF) vector.

RTF Definition ATF ratio $r_m(\omega) = \frac{h_m(\omega)}{h_1(\omega)}$, where the first channel is taken as the reference.

RTF Estimation

• The cross-spectral method: $\hat{r}_m(\omega) = \frac{\hat{\Phi}_{x_m x_1}(\omega)}{\hat{\Phi}_{x_1 x_1}(\omega)}$.

 $\hat{\Phi}_{x_mx_1}(\omega)$ and $\hat{\Phi}_{x_1x_1}(\omega)$ are the cross and auto-PSD of sensor signals.

An unbiased estimator based on the nonstationarity of speech [Gannot01]¹.

In [Gannot01], it is proved that the RTF estimation error are *inversely proportional* to the SNR at the reference channel.

¹S. Gannot, et al. "Signal enhancement using beamforming and nonstationarity with applications to speech," *IEEE Trans. Signal Proc.*, vol. 49, no. 8, pp. 1614-1626, 2001 .

- We should select the channel with the highest SNR as the reference. However, it is hard to precisely estimate the SNR at each channel in a complex environment.
- As an alternative solution, we define local-RTF

$$a_m(\omega) = \frac{|h_m(\omega)|}{\|\mathbf{h}(\omega)\|} e^{j(\arg[h_m(\omega)] - \arg[h_{m-1}(\omega)])}$$

where $\arg[\cdot]$ is the phase of complex number, $|| \cdot ||$ is the l_2 -norm.

- Local phase difference & Normalized level.
- Avoid a potential bad global reference channel.

The corresponding *local-RTF* vector is $\mathbf{a}(\omega) = [a_1(\omega), \dots, a_M(\omega)]^T$.

- It is NOT an actual transfer function vector that can be directly used for beamforming.
- It is rather a robust feature expected to be appropriate for sound source localization due to its lower sensitivity to noise (compared to regular RTF vector).

The local-RTF of the *m*-th channel can be estimated by the *cross-spectral method*:

$$\hat{a}_m(\omega) = \frac{\sqrt{\hat{\Phi}_{x_m x_m}(\omega)}}{\sqrt{\sum_{m=1}^M \hat{\Phi}_{x_m x_m}(\omega)}} e^{j\arg[\hat{\Phi}_{x_m x_{m-1}}(\omega)]}$$

- This estimator is biased, and in high SNR the bias is small.
- It is suitable for high SNR scenarios, due to the bias and low computational load.

Inspired by [Cohen04]², we propose an unbiased local-RTF estimator.

[Cohen04] provides:

ρ̂_m(ω): an unbiased estimation of the ATF ratio ρ_m(ω) = h_m(ω)/h_{m-1}(ω).
 Φ̂_{smsm}(ω, I): a PSD estimation of the image source h_m(ω)s(ω, I).
 Φ̂_{smsm}(ω) = 1/L Σ^L_{I=1} Φ̂_{smsm}(ω, I): the frame-averaged power of the image source signal over frames.

Based on $\hat{\rho}_m(\omega)$ and $\hat{\Phi}_{s_m s_m}(\omega)$, the local-RTF is estimated as

$$\hat{a}_m(\omega) = \frac{\sqrt{\hat{\Phi}_{s_m s_m}(\omega)}}{\sqrt{\sum_{m=1}^M \hat{\Phi}_{s_m s_m}(\omega)}} e^{j \arg[\hat{\rho}_m(\omega)]}$$

- The estimation error of this estimator depends on the estimate accuracy of $\hat{\rho}_m(\omega)$ and $\hat{\Phi}_{s_m s_m}(\omega)$. The detailed analysis can be found in [Cohen04].
- This unbiased estimator is more suitable for low SNRs.

Sound source localization using local-RTF vector

- Concatenate the local-RTF vectors across frequencies: $\hat{\mathbf{a}} = [\hat{\mathbf{a}}^T(0), \dots, \hat{\mathbf{a}}^T(\omega), \dots, \hat{\mathbf{a}}^T(\Omega-1)]^T.$
- Lookup table dataset: {a_k, d_k}^K_{k=1}.
 a_k and d_k denote the feature vector and source direction.
- Localization method
 - Lookup: find the *I* best directions $\{\mathbf{a}_{k_i}, \mathbf{d}_{k_i}\}_{i=1}^{I}$.
 - Interpolation: weighted mean

$$\hat{\mathbf{d}} = rac{\sum_{i=1}^{I} \| \hat{\mathbf{a}} - \mathbf{a}_{k_i} \|^{-1} \mathbf{d}_{k_i}}{\sum_{i=1}^{I} \| \hat{\mathbf{a}} - \mathbf{a}_{k_i} \|^{-1}}$$

where the reciprocal of the feature difference $\|\hat{\mathbf{a}} - \mathbf{a}_{k_i}\|^{-1}$ is taken as the weight.

Experiments: Audio-visual data set

- Audio-visual data set.
- Lookup table: 432 source directions in the camera field-of-view.
- **Test data**: the speech signal is emited from other 108 directions in the camera field-of-view.

Figure: (left) Dummy head with four microphones (red circles) and cameras. (right) The lookup source directions.

Two types of **noise** are added into the test data with various SNRs.

- Environmental noise is recorded in a noisy office environment, includes people movements, devices, outside environment (passing cars, street noise), etc.
- **Directional WGN** is emitted by a loudspeaker with a direction beyond the camera field-of-view in the same noisy office.

Comparison method (Regular RTF): RTF with a unique reference derived from [Cohen04], using the reference channel with the highest input SNR³.

³Note that the input SNR is computed using the estimated noise and speech power provided by [Cohen04].

Experiments: Results for environmental noise

Localization errors⁴ for Biased estimator (Local-RTF 1), Unbiased estimator (Local-RTF 2) and the comparison method (Regular RTF). The bold values are the minimum error at each SNR.

SNR	Local-RTF 1		Local-RTF 2		Regular RTF	
(dB)	Azi.	Ele.	Azi.	Ele.	Azi.	Ele.
10	0.83	0.51	0.85	0.47	0.96	0.76
5	0.83	0.56	0.86	0.47	0.95	0.82
0	0.85	0.62	0.89	0.46	1.02	0.74
-5	1.00	0.76	1.02	0.51	1.20	1.05
-10	1.53	1.22	1.51	0.75	1.79	1.30

- Local-RTF 1 vs 2: The biased estimator has comparable performance with the unbiased estimator in high SNRs, however larger elevation error in low SNRs.
- Local-RTF 2 vs Regular RTF: Regular RTF perform worse than the proposed, due to its imprecise input SNR estimation.

⁴The absolute angle error (in degrees) in azimuth (Azi.) and elevation (Ele.). = -9

Experiments: Results for directional WGN

SNR	Local-RTF 1		Local-RTF 2		Regular RTF	
(dB)	Azi.	Ele.	Azi.	Ele.	Azi.	Ele.
10	0.80	0.49	0.82	0.49	0.80	0.87
5	1.24	0.65	0.80	0.54	0.87	0.80
0	3.39	1.31	0.91	0.56	1.11	0.64
-5	8.33	2.74	1.40	0.77	1.31	0.75
-10	11.2	3.87	3.82	1.48	1.64	1.00

- Local-RTF 1 vs 2: Compared to the unbiased estimator, the biased estimator performs better slightly for 10 dB SNR, however deteriorates abruptly with the decreasing of SNR. Because the directional noise brings a larger estimation bias.
- Local-RTF 2 vs Regular RTF: Regular RTF performs better when the SNR is low (-5, -10 dB). This indicates that the highest SNR channel are correctly selected in Regular RTF. Because
 - the noise directivity induces a large noise power difference among channels for low SNRs.
 - the noise signal is relatively stationary.

Conclusions

- Local-RTF and two estimators are proposed.
- Experiments show that local-RTF is more robust than the regular RTF when the noise power cannot be precisely estimated.

Thank you very much!

Q & A

xiaofei.li@inria.fr