An Inverse-Gamma Source Variance Prior With Factorized Parametrization for Audio Source Separation

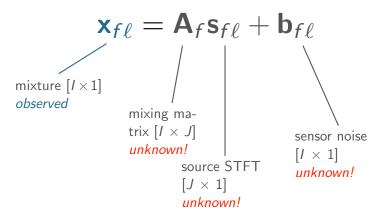
Dionyssos Kounades-Bastian, Laurent Girin, Xavier Alameda-Pineda, Sharon Gannot, Radu Horaud

Source Separation from Convolutive Mixtures

- Problem: J Source signals, mixed with filters and summed, are recorded at I microphones: Recover the original sources!
- An ill-posed problem: very large number of unknown variables and parameters.

Problem Formulation in STFT domain

- Separate a mixture of *J* sources with *I* microphones.
- In STFT domain the problem becomes:



• f = [1, F]: frequency bins, $\ell = [1, L]$: time frames.

Outline of the General Methodology

- There are multitudinous MASS methods.
- We embrace the family of methods based on Wiener demixing.
- The general recipe is:
 - Estimate $|s_{i,f\ell}|^2$, e.g. via NMF^[1].
 - Estimate the mixing matrices \mathbf{A}_f .
 - Construct demixing Wiener Filters to extract $\mathbf{s}_{f\ell}$ from $\mathbf{x}_{f\ell}$.
 - Iterate ..

^{[1] [}Ozerov and Févotte, 2010]

Local Gaussian Composite Model

- Inspired by^{[1][2]}:
- Each source $s_{j,f\ell}$: sum of latent components

$$s_{j,f\ell} = \sum_{k=1}^{K_j} c_{k,f\ell} \Leftrightarrow \mathbf{s}_{f\ell} = \mathbf{G}\mathbf{c}_{f\ell},$$

with a known binary matrix $\mathbf{G} \in \mathbb{N}^{J \times K}$;

- in total we have $K = \sum\limits_{j=1}^J K_j$ components.
- Each component follows $p(c_{k,f\ell}) = \mathcal{N}_c(c_{k,f\ell}; 0, u_{k,f\ell})$.

^{[1] [}A. Ozerov and C. Févotte, 2010]

^{[2] [}N. Q. K. Duong, E. Vincent and R. Gribonval, 2010]

Non-Negative Matrix Factorisation (NMF)

- Typically: $u_{k,f\ell} = w_{fk} h_{k\ell}$ as in^{[1][3]}
- This is equivalent with NMF on $|s_{i,f\ell}|^2$:

• Benefits:

- Reduces the number of parameters to be estimated.
- Avoids the permutation of sources between frequencies.

Limitations:

- $u_{k,f\ell}$ is of rank=1 (thus $|s_{j,f\ell}|^2$ is of rank= $|\mathcal{K}_j|$);
- Limited flexiblity of the estimated demixing Wiener-filters due to low-rank constraint on $|s_{j,f\ell}|^2$.

^{[1] [}A. Ozerov and C. Févotte, 2010]

^{[3] [}S. Arberet, A. Ozerov, N. Q. K. Duong, E. Vincent, R. Gribonval, F. Bimbot, and P. Vandergheynst, 2010]

Our Goal

- We would like to have $|s_{j,f\ell}|^2$ be full-rank (i.e. unfactorised);
- use no more parameters as the standard NMF;
- and without introducing frequency-permuation;
- We want NMF but without factorisation! How?

Proposed Model Formulation

• each $u_{k,f\ell} \in \mathbb{R}_+$ is considered as a r.v.

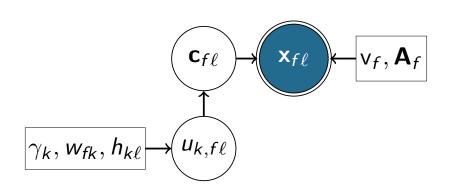
$$\begin{aligned} p(u_{k,f\ell}) &= \mathcal{IG} \left(\gamma_k , \delta_{k,f\ell} \right) \\ &= \frac{(\delta_{k,f\ell})^{\gamma_k}}{\Gamma(\gamma_k)} u_{k,f\ell}^{-(\gamma_k+1)} \exp \left(-\frac{\delta_{k,f\ell}}{u_{k,f\ell}} \right), \end{aligned}$$

- $\mathcal{IG}\left(\gamma_k, \delta_{k, f\ell}\right)$ is the Inverse-Gamma distribution with scale parameter $\delta_{k, f\ell}$ and shape parameter γ_k .
- we factorise the scale parameter $\delta_{k,f\ell} = w_{fk}h_{k\ell}$.
- The NMF is placed on the hyperparamter, instead of $u_{k,f\ell}$.

Proposed Model Highlights

- Number of parameters: almost same with NMF;
- the K additional γ_k control the relevance of $u_{k,f\ell}$.
- $u_{k,f\ell}$ is of full rank $\Rightarrow |s_{j,f\ell}|^2$ is of full rank;
- potentially allows more flexible demixing Wiener-filters;

Associated Graphical Model



Inference & EM Algorithm

Probabilistic inference of:

$$\mathcal{C} = \{\boldsymbol{c}_{f\ell}\}_{f,\ell}\,, \mathcal{U} = \{u_{k,f\ell}\}_{f,\ell,k} \text{ given } \mathcal{X} = \{\boldsymbol{x}_{f\ell}\}_{f,\ell}.$$

- Gaussian sensor noise: $p(\mathcal{X}|\mathcal{C}) = \mathcal{N}_c(\mathbf{A}_f \mathbf{G} \mathbf{c}_{f\ell}, \mathbf{v}_f \mathbf{I}_I)$.
- A standard EM alternates between:
 - Inference of p(C, U|X).
 - Estimation of $\theta = \left\{ \mathsf{v}_f, \mathsf{w}_{\mathit{fk}}, \mathsf{h}_{\mathit{k\ell}}, \mathsf{A}_f, \gamma_{\mathit{k}} \right\}_{f,\ell,\mathit{k}}$.
- Inference of $p(C, \mathcal{U}|\mathcal{X})$ is intractable in our case;

Variational EM

- Variational approximation: $p(C, \mathcal{U}|\mathcal{X}) \approx p(C|\mathcal{X})p(\mathcal{U}|\mathcal{X})$,
- E-step split into two steps:
 - Components E-step: Estimate p(C|X) given p(U|X)
 - Component's PSD E-step: Estimate $p(\mathcal{U}|\mathcal{X})$ given $p(\mathcal{C}|\mathcal{X})$.
- M-step: Estimation of \mathbf{A}_f , \mathbf{v}_f and Inverse-Gamma parameters: via maximization of the complete-data expected log-likelihood.

Expectation Step - Components

• Components E-step: $p(\mathbf{c}_{f\ell}|\mathcal{X}) = \mathcal{N}_c(\hat{\mathbf{c}}_{f\ell}, \mathbf{\Sigma}_{f\ell}^c)$ with

$$oldsymbol{\Sigma}_{f\ell}^{\mathsf{c}} = \left[\mathsf{diag}_{\mathcal{K}} \left(.., rac{1}{\hat{u}_{k,f\ell}}, ..
ight) + rac{\left(\mathbf{A}_{f} \mathbf{G}
ight)^{\mathrm{H}} \mathbf{A}_{f} \mathbf{G}}{\mathsf{v}_{f}}
ight]^{-1}, \ \hat{c}_{f\ell} = oldsymbol{\Sigma}_{f\ell}^{\mathsf{c}} \left(\mathbf{A}_{f} \mathbf{G}
ight)^{\mathrm{H}} rac{\mathbf{x}_{f\ell}}{\mathsf{v}_{f}}.$$

- $\hat{u}_{k,f\ell} \in \mathbb{R}_+$ is given from the "old" $p(\mathcal{U}|\mathcal{X})$.
- The sources $\hat{\mathbf{s}}_{f\ell} \in \mathbb{C}^J$ are extracted with:

$$\hat{s}_{f\ell} = G\hat{c}_{f\ell},$$

Expectation Step - PSD (of components)

Component's PSD E-step:

$$\hat{u}_{k,f\ell} = \frac{\sum_{kk,f\ell}^{c} + |\hat{c}_{k,f\ell}|^2 + w_{fk}h_{k\ell}}{\gamma_k + 1}.$$

- $\hat{u}_{k,f\ell}$ is full rank!
- Increasing γ_k decreases the contribution of $c_{k,f\ell}$.

Maximization Step

• The parameter set $\theta = \{\mathbf{A}_f, \mathbf{v}_f, w_{fk}, h_{k\ell}, \gamma_k\}_{f,\ell,k}$ is updated by maximizing the complete data expected log-likelihood \triangleq

$$\mathbb{E}_{p(\mathcal{C}|\mathcal{X})p(\mathcal{U}|\mathcal{X})}\left[\log p(\mathcal{X},\mathcal{C},\mathcal{U})\right].$$

- LS estimators for A_f and v_f;
- Updates for w_{fk} , $h_{k\ell}$: conceptually similar with IS-NMF^[4].
- scale-invariant update for γ_k :

$$\gamma_k = \frac{FL}{\sum\limits_{f,\ell=1}^{F,L} \log\left(1 + \frac{\sum_{k,f,\ell}^c + |\hat{c}_{k,f\ell}|^2}{w_{fk}h_{k\ell}}\right)}.$$

^[4] C. Févotte, N. Bertin and J. L. Durrieu, 2009]

Experimental Setup

- Convolutive stereo mixtures, 3 speech signals from TIMIT (length = 2s),
- Simulations using BRIR^[5] with $T_{60} = 680$ ms.
- Comparison with NMF-MASS method^[1].
- Initialization of mixing matrices: **blind!** (the entries of \mathbf{A}_f set to 1). Initialization of NMF ($K_j = 20$): **corrupted** versions of the true source's spectra:
- Performance evaluation using SDR^[6] (higher the better).

^{[5] [}C. Hummersone, R. Mason and T. Brookes. 2013]

^{[1] [}Ozerov & Févotte 2010]

^{[6] [}E. Vincent, R. Gribonval, and C. Fevotte, 2006]

Quantitative Results

Average SDR (dB) scores on 10 sets of speakers:

	Proposed			Baseline ^[1]		
Corrupt.	s_1	<i>s</i> ₂	s 3	s_1	<i>s</i> ₂	s 3
20dB	8.6	6.2	9.3	8.3	5.7	8.1
10dB	8.3	6.0	8.0	8.1	5.8	7.5
0dB	2.6	1.7	8.0	1.7	8.0	0.2

SDR measured at the input:

^{[1] [}Ozerov & Févotte 2010]

Estimated Values of the Shape Parameter $\log(\gamma_k)$

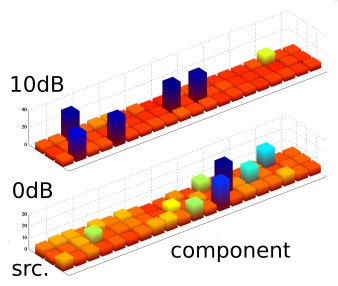


Figure: High $\gamma_k \Rightarrow$ irrelevant component!

Conclusions and Future Work

- We propose an NMF "without factorisation" to parameterize $|s_{i,\ell}|^2$, for MASS.
- Our model includes a component weighting mechanism.
- Results obtained with 3 sources and 2 microphones (underdetermined mixtures) are quite encouraging;
- We plan to thoroughly investigate initialization strategies to address blind setups.

Thank you!