End-to-End Race Driving with Deep Reinforcement Learning

Maximilian Jaritz1,2 Raoul de Charette1 Marin Toromanoff2 Etienne Perot2 Fawzi Nashashibi1

Self-supervised learning
Using Asynchronous Reinforcement Learning (A3C) framework

- Achieves experience decorrelation without experience replay
- Learn to maximize discounted reward from sparse reward

Main related works
1. Mnih et al., Asynchronous reinforcement learning (A3C)
2. Chen et al., Learning high level feature for direct perception
3. Bojarski et al., Imitation learning from expert driver

Contributions

- **New state encoder**
 Use a deeper encoder with past actions and speed to allow far away vision

- **Control strategy**
 Learn full control (steering, gas, brake, handbrake)
 Stochastic choice of discrete commands (as good as continuous)

- **Respawn strategy**
 Maximize environment variance for better asynchronous learning

Reward shaping
New frame-wise rewards
Enforce smooth reward using road distance as a penalty

Training setup
Trained asynchronously with 15 agents (on 3 PC)
Simultaneously driving on 3 tracks (mountains, snow, coast)

Gaming performance
Study of training tracks driving style
Learned to drive at 72.9km/h and covers 0.72km per run
Driving style is significantly smoother

- **Influence of speed limits**
 Use road curvature to limit speed from real road design (dashed lines)

- **Real data performance**
 Tested on real videos (web-footage) using open-loop predictions

- **Check out the videos**
