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Summary

Models of stochastic chemical reaction networks (CRN) represent the time-
evolution of the number of molecules of different species reacting with each other.
The system is composed of a finite number of species, reacting according to a
finite number of chemical reactions. Though initially studied in the 70’s through
a determinist setting, considering the concentration of each species, the stochastic
models proved to be more pertinent when one of the species is present with only a
small number of molecules.

The state of the system is given by the number of molecules of each species
at time t. Associating to every reaction a velocity that satisfies the law of mass
action, the system is represented by a continuous time Markov jump process, with
transitions given by each possible reaction, whose rates are polynomial in the state
of the process.

The choice of kinetics for the reactions create two specific features for the
system that will be studied in this work: the rates of reactions polynomial in the
state are the source of a variety of timescales in the processes. Besides, when one
of the species is in small number, the rates of the transitions can present some
discontinuities. The combination of both features are the source of interesting time
evolution of the processes.

In this work, we aim to study these time evolutions. Scaling methods such as
averaging principles and time changes are used to study the processes.

Chapter 2 tackles two subjects: first, the Filonov’s criterion, useful to show the
stability of the process associated to the CRN is introduced. We then study several
examples of CRN, with associated process that exhibits interesting time evolutions
starting from states in the boundary of the domain.

In Chapter 3, we study the process associated to a specific CRN. From a par-
ticular type of initial state in the boundary of the domain, we show that after a
scaling, the process converges to a discontinuous Markov process, of the AIMD type
(addition increase, multiplicative decrease).

In Chapter 4, we study a class of CRNs for which the different processes present
a hierarchy of timescales. A limit theorem for the scaled processes is shown.

The last Chapter 5 presents a technical result on CRN with only two species,
showing that the process always reaches the boundary of the domain after an inte-
grable time.

Key words. Chemical reaction networks. Stochastic processes. Markov pro-
cesses. Scaling methods. Multiple timescales. Averaging principle. Time changes.
Lyapunov methods.
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Résumé

Les modèles stochastiques de réseaux de réaction chimiques (CRN) représentent
l’évolution temporelle du nombre de molécules des espèces présentes dans le système.
Ce dernier est composé d’un nombre fini d’espèces, qui réagissent entre elles via un
nombre fini de réactions chimiques. Initialement étudiés dans le cadre déterministe
en considérant les concentrations de chaque espèce, les modèles stochastiques s’avè-
rent plus pertinents quand une des espèces est présente en petit nombre.

L’état du système est donné par le nombre de molécules de chaque espèce au
temps t. En associant une vitesse à chaque réaction, suivant la loi d’action de masse,
le système est représenté par un processus de saut de Markov à temps continu. Les
transitions du processus sont données par les réactions, et leur taux est polynomial
en l’état du processus.

Le choix de cette cinétique est à l’origine des deux spécificités de ces systèmes,
qui seront étudiées dans ce manuscrit: premièrement, dû aux taux polynomiaux
en l’état, le processus évolue sur plusieurs échelles de temps. Par ailleurs, sur les
frontières du domaines (une espèce au moins est présente dans le système en petit
nombre), les vitesses de réactions peuvent présenter des discontinuités. La super-
position de ces deux particularités est à l’origine des comportements intéressants
de ces processus.

Dans ce manuscrit, nous étudions l’évolution temporelle de ces processus, en
utilisant des outils de “scaling”, tels que le principe de “stochastic averaging” et
des changement de temps.

Le chapitre 2 aborde deux problématiques : premièrement, nous introduisons
le critère de Filonov, utilisé pour montrer la stabilité de ces systèmes. Puis nous
étudions différents exemples de CRN, dont les processus associés présentent des
évolutions temporelles intéressantes.

Dans le chapitre 3, nous étudions le processus associé à un exemple de réseau
chimique. Nous montrons que, partant d’un état près du bord du domaine, le
processus renormalisé converge vers un processus de Markov discontinu, de type
AIMD (croissance additive, décroissance multiplicative).

Dans le chapitre 4, nous étudions une classe de CRNs pour laquelle le processus
associé présente une hiérarchie d’échelles de temps. Un théorème limite est montré
pour le processus renormalisé.

Le dernier chapitre 5 présente un résultat technique pour une classe de réseaux
à deux espèces, et montre que si le processus part du centre du domaine, il retourne
au bord en un temps intégrable, quel que soit le réseau regardé.

Mots clefs. Réseaux de réactions chimiques. Processus stochastique. Pro-
cessus de Markov. Méthodes de scaling. Echelles de temps multliples. Principe
d’averaging. CHangements de temps.
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CHAPTER 1

Introduction

Contents

1. Chemical Reaction Networks 9
2. Deterministic models of CRN 10
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4. Mathematical tools 15
5. Contributions 21
1.A. Topologies in the Skorokhod space 29
1.B. Proof of the Deficiency zero theorems 32

1. Chemical Reaction Networks

A model of chemical reaction network represents a system of molecules of differ-
ent species, on which different reactions can occur. For example, Michaelis-Menten
enzyme-substrate model is a chemical reaction network :

(1.1) E + S ⇌ ES ⇀ E + P.

This system has four species E, S, ES and P , and three reactions, represented by
the arrows. The reaction E + S ⇀ ES uses a molecule of E and a molecule of S
to create a molecule of ES.

Chemical reaction network theory aims to give a mathematical framework to
study the time evolution of the quantity of molecules of each species.
Formally, we define a chemical reaction network (CRN) as a triple of finite sets
(S, C,R). The set S is the set of chemical species. For a model with m species,
m ≥ 1, we will usually set S = {1, . . . ,m}, and the species i will often be written
as Si.
C is a set containing linear combinations of species called complexes, which will
represent the reactant and product of the reactions. It is a subset of Nm, where
N = {0, 1, 2, . . .} : for y = (yi)1≤i≤m ∈ C, we will often use the notation

y = y1S1 + . . .+ ymSm =

m∑
i=1

yiSi,

and the notation ∅ refers to the complex associated to the null vector of Nm. For
a complex y, the integer yi is called the stoichiometric coefficient of the species Si

in y.
Finally, R is a finite subset of C2 \ {(y, y), y ∈ C} that represents the chemical
reactions. An element (y−, y+) ∈ R will be written y− ⇀ y+. It basically corre-
sponds to the transformation of y−i molecules of Si into y

+
i molecules of Si, for all i.

The vocabulary of chemistry is traditionally used in the CRN theory (species,
reactions, etc.) but the models do not necessarily represent real chemical systems.

9



10 1. INTRODUCTION

The system is not necessarily closed, and reaction creating or removing molecules
without a mass conservation are allowed, as input reactions ∅⇀ y for y ∈ C, output
reactions y ⇀ ∅, or reactions of the form S1 ⇀ S1 + S2 or 2S1 + S2 ⇀ S2.
It is assumed that each species is present in at least one complex, and each complex
is involved in at least one reaction.

A CRN can be also represented by an oriented graph, called the reaction graph,
whose vertices are the complexes and whose set of directed edges is R.

S1+S2 S1

S2∅

Figure 1. Example of a CRN

For the CRN of Figure 1, the set of species is S={1, 2}, the set of complexes is
C={∅, S1+S2, S1, S2} and the set of reactions is

R = {(∅, S2), (S2, ∅), (S2, S1+S2), (S1+S2, S1), (S1, S2)}.

The models of CRN can be either studied from a deterministic or a stochastic
point of view, depending on the number of elements of each species present initially
in the system.

When the system has a large number of molecules of each species, it is usually
described by a deterministic model, which gives the time evolution of the concen-
tration of each species. The state of the system is an element of the continuous
space Rm

+ . These models are historically the first models of CRNs that have been
studied from a mathematical point of view, they are described in Section 2.

However, when at least one of the species is present in a small number, the
time evolution of the system has to be represented by a stochastic discrete model of
CRN,usually a Markov process. In this setting, we study the number of molecules
of each species, and the state of the system is an element of Nm. These stochastic
models of CRNs are the models studied in this PhD thesis. A formal definition of
these models is given in Section 3.

2. Deterministic models of CRN

The deterministic model is usually used to describe systems for which all species
are in large number, of the order of Avogadro’s number (1023) for example. The
relevant quantity to represent the system is here the concentration of each species.
The non negative real valued vector x(t) ∈ Rm

+ contains the concentration of each
species at time t.

To describe the evolution of (x(t)), one needs to define the kinetics for the
reactions.

2.1. Mass action kinetic and dynamic. Initially introduced by the math-
ematician Guldberg and the chemist Waage in 1864 in [35], the law of mass action
states that the velocity of a reaction is proportional to the concentration of the
reactant, at the power their stoichiometric coefficient. As an example, a reaction
r1 = S1+S2 ⇀ S3 will have a velocity proportional to x1x2, if xi stands for the
concentration of species Si. The positive coefficient of proportionality is noted κr1 ,
and is called the constant rate of reaction. For the reaction r2 = 2S1 ⇀ S2, the
velocity will be quadratic in x1 : of the form κr2x

2
1.
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Generally, using the notation, for x = (xi) ∈ Rm
+ and y = (yi) ∈ Nm,

xy =

m∏
i=1

xyi

i ,

with the convention 00 = 1, the velocity of reaction r = y− ⇀ y+ in state x ∈ Rm
+

is given by:

vr(x) = κrx
y−

= κr

m∏
i=1

x
y−
i

i .

At time t, the velocity of reaction r depends only on the state of the system.
This choice of kinetics is usually chosen when the considered model is well stirred :
the molecules are well mixed in the system, and the spatial dimension does not
have to be taken into account. We will always assume the mass action kinetics for
the models of CRN studied.

To a CRN, we can associate a set (κr, r ∈ R), where κr is the constant of
reaction of r. We will use the notation (S, C,R, κ) to designate the CRN with mass
action kinetics.

The ordinary differential equation (ODE) associated to this CRN is deduced
from this kinetic: for t ≥ 0, for all 1 ≤ i ≤ m,

(1.2)
dxi
dt

(t) =
∑

r=y−⇀y+∈R

vr(x(t))(y
+
i − y−i ) =

∑
r=y−⇀y+∈R

κr(x(t))
y−

(y+i − y−i ).

We will see later that some properties of mathematical models of CRN do not
depend on the specific choice of κr, as long as they are positive. In fact, part
of the theory aims to find such properties that depend only on the graph of the
CRN (provided that the mass action kinetic is chosen). In the following, when not
mentioned otherwise, we will assume that the κr = 1 for all reactions.

2.2. Preliminaries of CRN theory. The purpose of deterministic CRN
theory is to give some insights on the solutions of ODE (1.2) : existence, uniqueness
and stability of a equilibrium states are investigated.

First, note that a solution of ODE (1.2) is not necessarily defined for all t ≥ 0.
As an example, if (x(t)) is solution of the ODE associated to the CRN

2S1 ⇀ 3S1,

and x(0) = x0 > 0,

x(t) =
1

1
x0

− t
, for t ∈ [0, 1/x0),

and (x(t)) goes to infinity in a finite time. The solution is only defined on a finite
interval [0, 1/x0). This is one of the difficulties raised by polynomial ODEs.

The solution (x(t)) of the ODE (1.2) lives in a subspace of Rm
+ , called the

stoichiometric compatibility class: for t ≥ 0,

x(t) ∈ (x(0) + S) ∩ Rm
+ ,

where S is the vector space generated by {y+ − y−, y−⇀y+∈R}:

(1.3) S
def.
=

 ∑
r=y−⇀y+∈R

ar(y
+ − y−), (ar) ∈ RR

 .

When mentioning the “uniqueness” or the “stability” of an equilibrium, we always
refer to uniqueness and stability within each stoichiometric compatibility class.

One of the goals of the CRN theory is to find some conditions on the graph of
the CRN to ensure the existence, uniqueness and stability of a positive equilibrium
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for the ODE (1.2). A condition on the graph is by definition independent of the
constants (κr, r ∈ R) chosen.

A central result in this field is the Deficiency zero theorem. To state it, we
need first to introduce some definitions of properties verified by the graph of a
given CRN.

The connected components of the graph of a CRN determine a partition of the
complexes into linkage classes. For example, the CRN

(1.4) S1 ⇌ ∅, 2S1 ⇌ S2 + S1 ⇀ S2

has two linkage classes, {S1, ∅} and {2S1, S2 + S1, S2}.
A path from complex y to complex y′ is a finite sequence of reactions that goes

from y to y′: it corresponds to a directed path in the graph of the CRN. For example,
in the CRN (1.4), there is a path from 2S1 to S2, given by 2S1⇀S2+S1⇀S2. A
CRN is called weakly reversible if for y, y′ ∈ C, if there is a path from y to y′, then
we can find a path from y′ to y.

The CRN of Figure 1 is weakly reversible. However, the CRN of Relation (1.4)
is not weakly reversible, since there is a path from 2S1 to S2 but no path from S2

to 2S1.
The deficiency of the CRN is the integer

(1.5) δ
def.
= |C| − ℓ− s,

where ℓ is the number of linkage classes of the CRN, and s is the dimension of the
vector space S introduced in Relation (1.3). It can be shown (see Section 1.B.5 of
the Appendix) that the deficiency is a non negative integer. For example, the CRN
of Figure 1 has deficiency δ = 4 − 1 − 2 = 1, whereas the CRN given in Figure 2
has deficiency 0.

S2 S1+S2

S1

κ2

κ12κ1

Figure 2. A weakly reversible CRN, with deficiency 0.

We can now state a simple version of the Deficiency zero theorem.

2.3. Deficiency zero theorem.

Theorem 1.1. Let {S, C,R} be a weakly reversible CRN with deficiency zero.
For any constant of reactions κ, the solution of the ODE associated to the deter-
ministic CRN with mass action kinetic {S, C,R, κ} has precisely one equilibrium in
each of its positive stoichiometric compatibility class. Besides, that equilibrium is
asymptotically locally stable.

This theorem has been established by Feinberg in [28] and [25]. Note that the
full statement of Deficiency zero theorem actually says more than what is given
here, see the cited reference for the original theorem.

A sketch of the proof of this theorem is given in the Appendix 1.B.

3. Stochastic models of CRN

As mentioned above, the deterministic model of CRN is well suited when all
species are present in the system in large numbers. However, when at least one of
the species of the system is present in small numbers, its time evolution is usually
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better represented by a stochastic discrete model of CRN. In this configuration,
we study a process (X(t)) on Nm, that represents the number of molecules of each
species at time t.

3.1. Kinetic of the reactions. Similarly to the deterministic models, we will
use here the law of mass action to define the kinetics of the model. In the spirit
of the heuristic reasoning of Guldberg and Waage, see Voit et al. [76], we want to
find for each reaction a kinetic that would depend only on the state of the system,
i.e. on the number of molecules of each species at the given time. We give here an
intuitive approach to the definition of the kinetic.

If we are at state x ∈ Nm, lets focus on a reaction r of the form S1 + S2⇀y,
where y stands for any complex (different from S1 + S2). Assume that two given
molecules of S1 and S2 meet and react after an exponential time with rate κr
(written E(κr)). Since there are x1x2 pairs of such molecules in the system, we
would have such a reaction r happening after a time with exponential distribution
E(κrx1x2).

Similarly, for a reaction r2 of the form S1 ⇀ y, one molecule of species S1 would
react with this reaction after a time E(κr2). Since there are x1 molecules of S1 in
the system, we would have reaction r2 happening after a time with distribution
E(x1κr2).

Finally, if we look at a reaction r3 of the form 2S1 ⇀ y, since there are only
x1(x1 − 1)/2 such pairs, with the same ideas we will get a reaction after a time
E(κr3x1(x1 − 1)/2).

We can generalize this principle to a reaction r = y− ⇀ y+: setting

(1.6)

{
λr(x) = κr

∏m
i=1

xi!

(xi−y−
i )!

if for all i, xi ≥ y−i ,

λr(x) = 0 otherwise,

the reaction r will happen after a time E(λr(x)) (the division by y−i ! is here con-
tained in the constant κr). The following notation is often used :

(1.7) x(y
−) =

{∏m
i=1

xi!

(xi−y−
i )!

if for all i, xi ≥ y−i ,

0 otherwise.

Note that if the state x ∈ Nm, is such that xi < y−i for some species i, i.e. if
there are not enough molecules of species i to do reaction r, λr(x) = 0 and the
reaction can’t happen. This ensures the non-negativity of the reachable states.

This allows us to define formally the process (X(t)). Since the rate of the
reactions are only dependent on the state of the system, the process is a Markov
process. It is well defined by a continuous time Markov process on Nm, with
transitions given by, for r = y−r ⇀ y+r ∈ R:

(1.8) x 7→ x+ y+r − y−r at rate λr(x).

This kinetic is relevant as long as the system is “well stirred”, since the kinetic
of the reactions do not have a spatial dependance.

3.2. Specificity of the stochastic model of CRN. A process associated to
a stochastic CRN with mass action kinetics exhibit several specific features. First,
the rates of transitions being polynomial in the state variable, the time between two
jumps of the process cannot be lower bounded in general and therefore may lead
to explosion for some CRNs. As an example, the process associated to the CRN
2S1 ⇀ 3S1, represents a pure birth process, and starting from x0 ≥ 2, it explodes
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almost surely in a finite time whose distribution is given by

ζ =

+∞∑
k=x0

Ek

k(k − 1)
< +∞

where (Ei) are i.i.d. random variables exponentially distributed with rate 1.
In particular, it is not clear if the process (X(t)) is stochastically bounded on

a time interval [0, T ] for T > 0, and we don’t necessarily have

P
(
sup
t<T

∥X(t)∥ <∞
)

= 1.

Polynomial rates will also create different timescales for the different reactions.
For example, in the following CRN,

2S1 ⇀ ∅⇀ S1 ↼ S2,

when the initial state is of the form (N,N) with N large, reaction 2S1 ⇀ ∅ is most
likely to happen before the other reactions, and it will even happen O(N) times
before another reaction may happen. The timescales associated to each of these
three reactions are very different.

A second specificity of this choice of transition rates is seen on the boundary
of the space of states. If one of the species has only a few molecules in the system,
some reaction may not happen. For example, if we start from the initial state
(x1, x2) = (0, x2) in the CRN

∅⇀ S1 + S2 ⇀ S1 ⇀ ∅,

the only reaction that can happen is ∅⇀ S1 + S2, since both other reactions need
a molecule of S1. We will see that this particularity of the stochastic models is at
the origin of very interesting behaviors for the sample paths of the process.

These two features of the models of stochastic CRN with mass action kinetic
are the source of difficulties, in particular to prove their stability.

3.3. Stability of a stochastic CRN. Similarly, as in the study of determin-
istic CRN, one of the main interest is the stability property of these models. Since
the mathematical model is a continuous time Markov jump process, the term “sta-
bility” refers to the positive recurrence of the associated Markov process. Assuming
that the process is irreducible on E0 ⊂ Nm, it is positive recurrent if one can find
an invariant distribution πE0

on E0, solution of the equation, for all x ∈ E0,∑
r=y−⇀y+∈R

πE0
(x+ y− − y+)λr(x+ y− − y+) = πE0

(x)
∑
r∈R

λr(x),

and, in this case, the following limit holds :

lim
t→+∞

P (X(t) ∈ A) = πE0(A), ∀A ⊂ E0.

A lot of studies have been carried out on the stochastic CRN that try to give
a general criterion on the graph of the CRN that would ensure its stability. See for
example Anderson and Kim [8], Anderson et al. [9], [10].

The most famous result on this question is the (stochastic) Deficiency zero
theorem, which is a consequence of the eponymous stability theorem for the deter-
ministic CRNs (see Theorem 1.1), due to Anderson et al. [7].

The Deficiency zero theorem for stochastic models shows that if the graph of
the CRN verifies the same conditions as in Theorem 1.1, i.e. if the CRN is weakly
reversible and has deficiency zero, then, whatever the (positive) constant rates of
the reactions are, the process associated is positive recurrent, and it even gives an
explicit expression of its invariant distribution. See Anderson et al. [7].
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Theorem 1.2. Let (S, C,R) be a weakly reversible CRN with deficiency zero
and κ a set of reaction constant. Let (X(t)) be the Markov process associated to
the stochastic CRN with mass action kinetic (S, C,R, κ), whose Q-matrix is given
by (1.8), irreducible on E0 ⊂ Nm. The positive measure on E0, defined by

(1.9) πc
E0
(x) =

m∏
i=1

cxi
i

xi!
, ∀x ∈ E0,

where c is an equilibrium of the determinist CRN with mass action (S, C,R, κ), is
an invariant measure of (X(t)).

See Appendix 1.B for the proof.
This powerful result applies only to a class of specific CRN, and outside of this

class, almost no stability results stands, though the following conjecture is believed
to be true :

Conjecture 1.3. A continuous time Markov jump process associated to a
weakly reversible stochastic CRN with mass action kinetic is always positive recur-
rent.

It has not been proven until now.
However, several weaker results have been shown, and tools have been devel-

oped to try to show this conjecture, all held on the Lyapunov theorem.

4. Mathematical tools

This Section is dedicated to the presentation of several mathematical tools used
to study stochastic CRNs.

In the following, unless otherwise specified, (X(t)) is a continuous time Markov
process on Nm associated to a stochastic CRN with mass action kinetic (S, C,R, κ),
with S = {1, . . . ,m}.

4.1. Stability criterion. To show the stability of the process associated to
a stochastic CRN, and if the Deficiency zero theorem does not hold, the ideas of a
Lyapunov criterion can be useful. It consists in showing that the “energy” of the
system is decreasing: Here, we will call Energy function a non negative function
on the set of states Nm, that goes to infinity when the state gets large, i.e. that
verifies

lim
∥x∥→+∞

f(x) = +∞.

The Energy function used the most in the CRN theory community is the Entropy
function, defined as

V (x) =

m∑
i=1

xi ln(xi)− xi + 1.

We will also use as energy function the norm L1, ∥ · ∥1, linear functions of the
form x 7→ a1x1 + . . . + amxm, with ai > 0 for all i, or polynomials of the form
x 7→ a1x

q1
1 + . . .+ amx

qm
m for qi ≥ 1.

The goal is to define the energy of the system such that it decreases with time,
if the initial state is large enough. This method is often used in the literature of
stochastic CRN, with the Foster-Lyapunov criterion. Let A be the infinitesimal
generator of the process with Q-matrix given by (1.8) :

(1.10) A(f)(x) =
∑

r=y−⇀y+∈R

λr(x)(f(x+ y+ − y−)− f(x)),

for any function f : Nm → R and x ∈ Nm.



16 1. INTRODUCTION

The Foster-Lyapunov criterion is the following : if one can find an energy
function f0, a finite subset K ⊂ Nm and some γ > 0 such that

A(f0)(x) ≤ −γ for x ∈ Nm \K,

then the process is positive recurrent.
This criterion has been extensively used in Anderson and Kim [8], Anderson

et al. [9], Anderson et al. [10] to show the stability of some classes of stochastic
CRN, using the Entropy function as an Energy function.

4.2. Scaling analysis.
4.2.1. Motivation. Knowing that a process is stable, or even the explicit ex-

pression of its invariant distribution only gives information on its the long term
behavior, and not on its transient behavior. If we are looking for some results on
the sample paths of the process, or the value of a hitting time (time needed by the
process to reach a set A ⊂ Nm from a state x), some other methods have to be
used.

One of the tools to get this kind of information is a scaling approach. The idea
is to take some “scaling parameter” N and study the process (XN (t)) depending on
N . The parameter N can be the norm of the initial state of (XN (t)), or the volume
of the system... We are looking for some limit results on functions of (XN (t)) when
N gets large.

To find some limit theorems on the sample paths of the process, we will need
to “scale” the process according to the parameter N , in time and/or in space.

Usually, for CRNs, the scaled process will take the form(
X

N
(t)
)
=

(
XN

i (t/Nγ)

Nαi
, 1 ≤ i ≤ m

)
,

where γ, αi ∈ R. The scaling in space can be different for each species. For a
species i, αi is chosen sufficiently large to ensure that the process (Xi(t)) stays
bounded, but not too large so that this process does not become trivial when N
gets large. The scaling in time may depend on the regime one wants to investigate
since different timescales can be of interest for the same model.

4.2.2. Stochastic differential equations (SDE). The continuous time Markov
process given by the transitions (1.8) can be expressed as the solution of a Stochastic
Differential Equation (SDE). This representation is especially useful to establish
functional limit theorems. See Theorem (20.6) of Rogers and Williams [69].

For a Poisson process P on R2
+, with intensity measure the Lebesgue measure

on R2
+, we will use the notation for A ∈ B(R+),

P(A,dt) =

∫
x∈A

P(x,dt).

The use of Poisson process on R2
+, instead of on R to write the SDE is particularly

useful when the process has time dependent, random intensities. As an example,
the process (X(t)) that represents the CRN S ⇀ 2S verify the Relation

X(t) = X(0) + Y

(∫ t

0

X(s) ds

)
,

where Y is a Poisson process on R. This is Kurtz’s representation, see Kurtz
[51] Using a Poisson process P on a 2 dimensional space, the previous equation is
equivalent to

X(t) = X(0) +

∫ t

0

P((0, X(S−)),ds).
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For a general CRN, the SDE verified by the process (X(t)) whose transitions
are (1.8) is :

dX(t) =
∑

r=(y−
r ,y+

r )∈R

(
y+r −y−r

)
Pr

((
0, κr

X(t−)!

(X(t−)−y−r )!

)
,dt

)
,

where (Pr, r ∈ R) are independent Poisson processes on R2
+ with intensity measure

the Lebesgue measure on R2
+.

4.2.3. Classical scaling. This historical example was meant to show some con-
nection between the deterministic and the stochastic model of CRN. The stochastic
point of view is usually used when at least one of the species has a small number
of molecules. Therefore, when all species are in large number, we could expect the
stochastic model to “converge” in some way to the determinist model, solution of
an ODE.

This can be formulated with a scaling according to the volume of the system V .
It has initially been presented in Kurtz [51]. Each species of the system is present
initially with a number of molecules of order V : XV

i (0) = O(V ). The scaling in
space is the same for all species:

X
V
(t) =

XV (t)

V

The particularity of this system is that the reaction constants are also scaled with
the volume. Defining the reaction rates as in Section 3.1, we understand them as
a “frequency of meeting” for the molecules needed for the reaction. If the volume
of the system increases, the frequency of meeting should decrease. More precisely,
the more molecules are needed for the reaction, the more it will be hard for them
to meet. Conversely, for the input reactions, if the volume of the system increases,
there are more ways to enter the system, and therefore the frequency of the reactions
∅ ⇀ y, for y ∈ C, increases. We define the scaled constant of reactions as follows:
for a reaction r = y− ⇀ y+∈R,

κ̄Vr =
κr

V ∥y−∥−1
,

where ∥y∥ def.
=
∑m

i=1 |yi| for y ∈ Rm.
Note that if the reaction needs only one molecule to happen, ∥y−∥ = 1 and no

scaling is done.
This scaling done, all reaction rates are of order of V . Indeed, if the process is

at a state xV = (x1V, . . . , xmV ), for a given reaction r = y− ⇀ y+,

λVr (xV ) = κ̄Vr x
(y−)
V ≈ κr

V ∥y−∥

m∏
i=1

(xiV )y
−
i = κrV x

y−
.

Since the scaled process needs a number of reactions of order V to change
significantly, and every reaction happens at a frequency of order V , the normal

timescale t 7→ t is the right timescale to study the process (X
V
(t)). Here, no

scaling in time is necessary.

In this configuration, it can be shown that the scaled process (X
V
(t)) converges

to a deterministic function, solution of the ODE associated to the deterministic
CRN, with mass action kinetic and reaction constant (κr), stated in (1.2). This
result, known as the “classical scaling” of CRNs, has been formally proved in Kurtz
[51]. See also Section 4.1 of Chapter 2.
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4.2.4. Multiple timescales and averaging principle. In the previous example,
the scaling on the κr and the “uniform” scaling in space put us in a very conve-
nient situation, where the processes of each species evolves at the same timescale.
However, in more general scaling situations, this is not always the case and one
single scaling will not always allow us to investigate the behavior of each species.

For example, lets look at the CRN of Figure 2. The process (X(t)) associated
to this CRN has the following transitions :

x ∈ N2 →


x− e2 with rate κ12x1x2,

x+ e2 − e1 with rate κ1x1,

x− e1 with rate κ2x2,

Starting from a state xN = (N,N) with N ≫ 1, we would like to see the evolution
of the process scaled in space (

XN
1 (t)

N
,
XN

2 (t)

N

)
.

(a) Decrease of (XN
2 (t)/N):The process (XN

2 (t)/N) has a transition x2 →
x2− 1/N with rate O(N2), associated to the reaction S1+S2 ⇀ S1, there-
fore it evolves at the timescale t 7→ t/N . On the other hand, since both
reactions changing (XN

1 (t)) have a rate O(N), at this timescale, the pro-
cess (XN

1 (t/N)/N) does not change. Here, (XN
1 (t)/N) is a slower pro-

cess than (XN
2 (t)/N). The process (XN

1 (t/N)/N) converges to a constant
equal to 1 when N gets large, and this result leads to the convergence
of (XN

2 (t/N)/N), to the function t → e−κ12t. Here the multiplicity of
timescales is not an issue, since both processes are “well known” at the
timescale we chose: one moves slowly, and the other is constant.

(b) Decrease of (XN
1 (t)/N): Once (XN

2 (t)) has decreased, we can take the
initial state of the process as (N, k), for some k ∈ N, and look at the process
scaled in space (XN

1 (t)/N,XN
2 (t)). The process (XN

2 (t)) has transitions
with rate O(N) and therefore moves on a timescale t 7→ t/N . On the
other hand, the process (XN

1 (t)/N) has transitions x 7→ x − 1/N at rate
N , and therefore it evolves on the normal timescale t 7→ t. To have some
scaling results on (XN

1 (t)/N), one has to deal with (XN
2 (t)) which is here

a fast process. In this situation, we use an averaging principle. The slow
process is expressed in terms of the equilibrium of the fast process. A
convergence of the fast process is obtained for its occupation measure.
Here, the occupation measure (µN ) associated to (XN

2 (t)) is given by

⟨µN , g⟩ =
∫
g(s,XN

2 (s)) ds.

The averaging principle consists in proving the convergence in distribu-
tion of the pair “slow process + occupation measure of the fast process”
((XN

1 (t)/N), µN ), and in finding an expression for its limit. Here, the
limit of (XN

1 (t)/N) is (e−κ1t) and the limit of µN is the measure ds⊗π(x)
where π is a Poisson distribution on N with parameter κ1/κ12.

The limit of the slow process is sometimes expressed as the solution of an ODE
involving the limit of the occupation measure. The proof of the convergences of
this example can be found in Section 6 of Chapter 2.

We review quickly the literature in a stochastic context. It should be noted that
this is also a well-studied topic in (deterministic) dynamical systems. See Verhulst
[75] for example. Early works on the proof of averaging principles are due to
Has’minskǐı. See Has’minskĭı [39, 40]. Chapter 7 of Freidlin and Wentzell [31]
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considers these questions in terms of the convergence of Cesaro averages of the fast
component. Papanicolaou et al. [63] has introduced a stochastic calculus approach
to these problems, mainly for diffusion processes. Kurtz [55] has extended this
approach to jump processes by giving convenient (and useful) tightness criteria
for sequences of random measures and a characterization of their possible limiting
points.

Averaging principles have been used in various situations to study chemical
reaction networks. Kurtz and co-authors have in particular investigated several
examples of CRNs with scaling methods. In this approach, some reaction rates may
be sped-up with some power of the scaling parameter and the state variables are
scaled accordingly. See for example Ball et al. [11], Kang and Kurtz [46], and Kim
et al. [50] where, for various examples of CRNs, the choice of convenient scalings of
reaction rates is investigated and limit theorems are derived. The technical analyses
of these references follows the general lines of Kurtz [55].

4.2.5. Random time change. One of the specific features of stochastic CRNs is
the discontinuity of the kinetics on the boundary of the space of states, which can
create discontinuities in the timescale of the process. As an example, lets look at
the following CRN :

∅ κ1−⇀↽−
κ2

S1
κ3↼− S1 + S2.

Starting from the state (1, N), with N ≫ 1, as long as XN
1 (t) ≥ 1, XN

2 (t)/N
decreases exponentially at the normal timescale. However, if reaction S1 ⇀ ∅ de-
creases XN

1 (t) to 0, one will have to wait for reaction ∅ ⇀ S1, i.e. for a time
exponentially distributed to see any new evolutions on XN

2 (t). (XN
2 (t)/N) is alter-

natively constant, and exponentially decreasing.
This discontinuity can create difficulties to show any limit theorem for the

sample path of the scaled process. One way of dealing with it is to use random
time changes, to separate the two different evolutions. In this example, we can
simply “cut out” the times where XN

1 (t) = 0, which does not take any information
away, do the scaling analysis on the process (Y N (t)) that we get once these delays
are taken off, and finally add the delays a posteriori to reconstruct the process.

Formally, we define a time change (τN (t)), and a process (Y N (t))
def.
= (XN (τN (t)))

on which the usual techniques of convergence in distribution can be applied. The
idea is to show the convergence in distribution of (τN (t)) to (τ(t)), and a scaled
version of (Y N (t)) to (y(t)). Under some convenient conditions, one can then de-
duce the convergence of the scaled version of (XN (t)) to (y(τ−1(t))), where (τ−1(t))
stands for the generalized inverse of (τ(t)).

In the example presented above, we set

τN (t) =

∫ t

0

1{XN
1 (s)≥1} ds.

We get a convergence in distribution of the process (Y N
2 (t)/N) = (XN

2 (τN (t))/N)
to (e−tκ3), and the limit (τ(t)) is here a discontinuous Markov process.

For a technical framework of random changes in time, see Chapter 6 of Ethier
and Kurtz [24] and Section III.21 of Rogers and Williams [68]. A similar example
is studied in detail in Chapter 2

4.3. Topologies on the Skorokhod space. When looking at the conver-
gence in distribution of processes, the diversity of phenomena present in the sto-
chastic models of CRN created some difficulties to choose the right topology on the
space of sample paths. Indeed, if the scaled process converges, sometimes, for the
uniform norm (uniform convergence) to the solution of an ODE, as in the classical
scaling of Section 4.2.3, we will see later that the combination of boundary effects
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and polynomial rates can create some discontinuities in the limit of the scaled pro-
cess, which prevent uniform convergence of the sequences.
Here, the continuous time Markov jump processes live in the Skorokhod space of
càdlàg functions from R+ to Rm

+ (continuous from the right, with left limits at all
t), on which several topologies can be defined.

Four topologies are useful in the study of stochastic CRNs: the uniform topol-
ogy, the J1 and M1-Skorokhod topologies and the S-Jakubowski topology. A de-
tailed description of each of the topologies is given in the Appendix 1.A, I will give
here a small survey of the reason we need to weaken the uniform topology.

Figure 3. Converges
in the J1 topology

Figure 4. Converges
in the M1 topology

Figure 5. Converges in the S topology

The uniform topology works well when the limit of the process is continuous,
and is most often the topology used in practice. When the possible limit of the
sequence exhibits a jump, this topology is not weak enough. For example, the
sequence of Figure 3 does not converge for the Uniform topology. To cope with
this, Skorokhod introduced the J1 topology, that adds some flexibility on the time
instants of jumps, and for which the sequence of Figure 3 converges, to the function
1{[1/2,1)}. This topology is usually sufficient to show the convergence of processes
to a process with jumps.

In the framework of stochastic CRNs however, a final jump of a scaled process
can be the consequence of a large number of small jumps happening in a small
time interval, whose length goes to zero when the parameter of scaling gets large.
This situation is not well apprehended by the J1-Skorokhod topology. Indeed, for
this topology, if xn → x and x has a jump at time t, the functions xn must have
a jump of similar height at a time tn → t. As an illustration, the sequence of
Figure 4 does not converge to 1{[1/2,1)} for the J1-Skorokhod topology, since the xn
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are continuous, and therefore have no jump around t = 1/2. A weaker topology can
be defined to cope with this problem : the M1-topology, for which this particular
example converges. This topology is constructed using the “extended graph” of the
function, defined for a function x as the set containing the graph {(t, x(t))} and all
the points between (t, x(t−)) and (t, x(t)). The value of the functions xn does not
really mater around a instant of jump t of the limit function, as long as it is in the
interval [x(t−), x(t)].

Finally, one last situation can be seen in the stochastic CRNs: the graph of a
scaled process can present a “spike”, whose length goes to zero when the scaling
parameter goes to infinity. As an example, see the sequence of Figure 5. The spike
at t = 1/4 should intuitively converge to a continuous point with value 0, and the
sequence should converge to the function 1{[1/2,1)}. This is not the case with the
M1-Skorokhod topology, since around 1/4 in Figure 5, the graph of xn always have
points very far from the extended graph of 1{[1/2,1)}. To study such a convergence,
one can use a weaker topology, the S-Jakubowski topology.

This last topology is a sequential topology, that cannot be metricized. However,
its criterion for compactness is very simple to use, and the usual properties needed
to study convergence of processes hold for this topology.

From the strongest to the weakest to the weakest, the topologies can be ordered
as follow :

Uniform → J1 → M1 → S.

A sequence converging for the J1 topology converges for the M1 and the S-Jaku-
bowski topologies for example, but not necessarily for the uniform topology.

The advantages and drawbacks of each topology are more extensively presented
in Appendix 1.A, as well as their use in the framework of convergence of processes.

For references on the uniform topology and the J1-topology, see Billingsley [14].
For theM1-Skorokhod topology, see Whitt [77], and for the S-Jakubowski topology,
see Jakubowski [44].

5. Contributions

Two specific features characterize Markov processes associated to a stochastic
chemical reaction network.

(a) Polynomial rates : the transition rates exhibit a polynomial dependance
on the state variable, and therefore can have different orders of magnitude.
This is reflected in the behavior of the process as amultiplicity of timescales
and/or a multiplicity of order of magnitude of each species. As an example,
in the CRN introduced in Agazzi and Mattingly [4],

(1.11) S2 ⇀ ∅⇀ S1 + S2, 5S1 + 2S2 ⇀ 3S2 ⇀ 2S1,

if both species are O(N) with N ≫ 1, reaction 5S1 + 2S2 ⇀ 3S2 is by far
the fastest reaction, since it has a rate of order N7, and it is the only reac-
tion to happen until XN

1 (t) has decreased enough. This creates multiple
relevant timescales for the process, as can be seen in the representation of
the sample paths of the processes :

Figure 6 shows on the left the timescale where (XN
2 (t)/N) decreases,

and on the right a zoom in at time t = 0 to see the decrease of (XN
1 (t)/N),

which happens at a much faster timescale. These multiple timescales can
be the source of difficulties when one wants to prove a scaling result on
these processes, see the example described in Section 4.2.4.

(b) Boundary effects : the dynamical behavior along some boundaries of
the space of states can present discontinuities, referred to as “boundary
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Figure 6. Process (XN
1 (t), XN

2 (t)) associated to the CRN (1.11),
starting from (N,N), N = 1000.

effects”. This is due to the fact that some chemical reactions require a min-
imal number of copies of some chemical species to take place. Boundary
effects appear when the complexes of the CRN contain different species.
For example, the CRN

∅ ⇌ S1 ↼ S1 + S2.

have some boundary effects because of the complex S1+S2. Indeed, start-
ing from the state (0, N) with N ≫ 1, even if the rate of this reaction is
“globally” of the order N , in fact it depends closely on the states visited
by (XN

1 (t)): if XN
1 (t) = 0, the reaction is “frozen” and can’t happen, and

when XN
1 (t) ≥ 1, it has a very large rate and is the fastest reaction.

It is usually a combination of both features that creates the most interesting
behaviors. The work of my PhD thesis aim to study these phenomena using scaling
methods.

As presented in Section 4.2, scaling methods have already been used to study
stochastic CRNs. Until now however, most of the studies, motivated by biological
models, used scalings of the constant of reactions. See Kang and Kurtz [46] and
Ball et al. [11] for example.

Our purpose is to study the process without changing the order of magnitude
of the constant of reactions, given by the mass action kinetic. We study two types
of scalings :

(a) In Chapters 2 and 3, we focus on the boundary effects of the system. The
scaling parameter is chosen as the norm of the initial state of the process.
We study interesting examples of CRN to present these boundary effects,
and undertake a scaling analysis from a large state in the boundary of
the system. We investigate the time evolution of the CRN, in particular
how the process starting from such a saturated initial state returns to
the neighborhood of the origin. See Section 5.1 for more details on the
motivations. If N is the scaling parameter, the initial state xN verifies

lim
N→+∞

∥xN∥
N

= 1,

where ∥ − ∥ stands for the norm L1 in Nm, and for at least one species,

lim
N→+∞

xNi
N

= 0.

The phenomena observed using this scaling on different specific CRNs
proved to be diverse, and their study with scaling methods quite challeng-
ing.
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(b) In Chapter 4, we study a CRN with fast input : the constant of input
reactions (of the form ∅ → y, for a complex y) are chosen as κrN , where
N is the parameter of scaling. All the other constants of reactions are
unchanged. We study a CRN chosen to have no boundary effects in fact,
by taking only complexes of the form kSi, with k ≥ 1, and focus on the
multiple timescales present in the system, due to the polynomial rates. For
these CRNs, the process studied lives in the interior of the state space,
boundary effects do not play a role.

5.1. Chapter 2: A Scaling Approach to Stochastic Chemical Reaction
Networks. In this first Chapter, two main subjects are developed.

First, we introduce an extended criterion to prove the stability of stochastic
CRNs: the Filonov criterion. Second, we introduce a scaling method with respect
to the norm of the initial state on several examples.

The Filonov criterion for stability. Recall that the Foster-Lyapunov criterion is
often used to show the stability of a Markov jump process. It relies on the definition
of an Energy function f0, i.e. a non negative function on Nm that verify

lim
∥x∥→+∞

f0(x) = +∞,

and the proof of an inequality :

A(f0)(x) ≤ −γ, for x ∈ Nm \K,
where K is a finite set of Nm, γ > 0 and A is the infinitesimal generator of the
process. See Section 4.1 for more details.

However, this criterion can be in practice very difficult to use. Indeed, for
the Foster-Lyapunov criterion to hold, the system has to see its energy decrease
after one jump of the process. Working with one of the “simple” energy function
presented in Section 4.1, it is not always the case. For example, the CRN

(1.12) ∅⇀ S1 + S2 ⇀ S1 ⇀ ∅
is stable since it verifies the conditions of the deficiency zero theorem, but for any
of the energy functions presented above, one has A(f0)(0, x2) ≥ 0. This is due to
some boundary effects of the system: from a state (0, x2) with x2 ≥ 1, the only
reaction that can happen is ∅ ⇀ S1 + S2, that increases the energy, f0 being the
entropy, a norm, or polynomial.

A first approach here would be to define the energy function piecewise on a
partition of the state space. This is the approach used in Agazzi and Mattingly
[4], and it raises a lot of difficulties once one needs to “glue” the different parts
together.

Another way to cope with this is to use an extended version of the Foster-
Lyapunov criterion, known as the Filonov criterion, see Filonov [30]. This is the
approach that is presented in the first article. For this criterion, instead of requiring
that the energy of the system decreases after the first jump of the process (X(t)),
we allow a delay before the decrease. The counterpart is that the decrease must
be in some way proportional to the “waiting time”. The criterion is expressed as
follows :

Ex [f0(X(τ))− f(x)] ≤ −γEx[τ ], ∀x /∈ K,

where as before, f0 is an energy function, γ > 0 and K a finite set of Nm, and τ is
an integrable stopping time.

For example, on the CRN (1.12), starting from (0, x2) with x2≫1, the first
jump is to the state (1, x2 + 1), but then the most likely reaction to happen is
S1 + S2 ⇀ S1, and it happens several times in a row, since its rate is proportional
to x2. Therefore, after the third jump, the process is most likely at the state
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(1, x2 − 1). Taking as an energy function f(x) = x1 +2x2, and τ the instant of the
third jump of the process, we have

E(0,x2)[X1(τ) + 2X2(τ)− 2x2] ≤ −E(0,x2)[τ ]

for x2 large enough. This deals with the states at the boundary of the state space.
For the other states, one can define τ as the first instant of jump of the process,
and show that the inequality holds.

Note that the stopping time τ is random. It can be chosen as here as the instant
of the nth jump of the process, but also as the hitting time of some subset of Nm,
and can even be deterministic.

This criterion is presented in Section 4 of Chapter 2, and is applied to different
examples in the four following sections. In particular, in Section 7 it is applied to
a specific example of the literature on which it is particularly efficient.

To use this criterion, it is pretty straightforward to see that one has to “know”
the behavior of the system, and more precisely the time evolution of its energy,
to be able to set the “right” stopping time. The key information needed to apply
Filonov’s criterion is to understand how the energy decreases, starting from a given
large state. Because of the definition of the energy function, this is closely related
to the behavior of the process itself, starting from a large state. This encourages
the study of the asymptotic behavior of the sample paths of the system with a
scaling analysis with respect to the norm of the initial state, presented above.

Scaling analysis. This chapter presents also several scaling results, that il-
lustrate the diversity of boundary effects on the sample paths of CRNs, and of
timescales within a single CRN.

One scaling is done for a general class of CRN. It states that if all species are
of order N , with N large, slowing down the time so that only the fastest reactions
can be seen, the scaled process converges in distribution to a deterministic function
solution of an ODE. This result is quite similar to the “classical scaling” presented
in section 4.2.3, but without any scaling on the κr.

We then present specific examples of CRNs that, from our point of view, exhibit
interesting behaviors.

Three scaling results are presented for the CRN of Figure 2. On this first
example, we show that depending on the initial state chosen for the process, al-
ready three different timescales are relevant. Starting from (N,N) with N large,
the relevant timescale is t → t/N . This is in fact a consequence of the general

result presented above. Starting from (
√
N,N), the interesting timescale to see the

evolution of (XN
2 (t)/N) is here t → t/

√
N . Finally, starting from (N, 0), using an

averaging principle, we show that the relevant timescale is the normal timescale
t→ t.

A part is dedicated to the CRN of Agazzi and Mattingly [4] introduced in
Relation (1.11), and a scaling analysis is done to better understand the sample
path of the process starting from (N, 1), to a neighborhood of zero.

Finally, a thorough study of the CRN

∅ κ0−⇀↽−
κ1

S1+S2, pS1+S2
κ2−⇀↽−
κ3

pS1+2S2,

with p≥2 is carried out. It has been introduced and discussed in Agazzi et al. [2] for
p=2. Its transient behavior exhibits several unusual scaling properties with respect
to the norm of the initial state. Such a behavior is probably not an exception
in the context of CRNs, but more likely quite common. Additionally, it gives an
interesting example of the use of time change arguments to derive scaling results.

The associated Markov process (X1(t), X2(t)) has several boundary behaviors:
at least p copies of S1 are required for the second reaction to occur, and negative
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jumps of (X1(t)) can occur only when (X2(t)) is not null. It leads in fact to a kind
of bi-modal behavior for the CRN.

A scaling analysis of this CRN is achieved for two classes of initial states.

(a) An initial state of the form (N, b), with b∈N fixed.
Our main result shows that there exists some t∞>0, such that the conver-
gence in distribution of processes

lim
N→+∞

(
X1(Nt)

N
, t<t∞

)
= (C(t∞−t), t<t∞),

holds for some constant C>0.
(b) If the initial state is of the form (a,N), a<p.

The occupation measure of (X2(N
p−1t)/N) converges to the occupation

measure of (V (t)), where (V (t)) is an explosive Markov jump process on
(0, 1], with a multiplicative structure, almost surely converging to 0.

Contrary to the first examples, to decrease the norm of the process, one has
to speed-up the timescale by a factor N in (a) and Np−1 in (b) and the decay in
(a) is only linear with respect to time. This is somewhat unusual in the current
mathematical literature of CRNs, but these kind of examples are more and more
studied, since they are source of difficulties showing up in the study of the stability
of general CRN, as mentioned in Agazzi et al. [2].

5.2. Chapter 3: Stochastic Chemical Reaction Networks with Dis-
continuous Limits and AIMD processes. In this Chapter, we study a class of
cyclic CRNs, with m species, m ≥ 2:

(1.13) ∅ κ0−⇀ S1
κ1−⇀ S1+S2

κ2−⇀ · · ·
κi−⇀ Si+Si+1

κi+1−−−⇀ Si+1+Si+2
κi+2−−−⇀ · · ·

κm−1−−−⇀ Sm−1+Sm
κm−−⇀ Sm

κm+1−−−⇀ ∅.

Once again, the CRN presents boundary effects, since the reaction in the middle
of Relation (1.13) does not occur if either xi or xi+1 is null. A molecule of Si may
be transformed into a molecule of Si+2 only if there is at least a molecule of Si+1,
even if the (i+1)th coordinates is not changed by the reaction.

We investigate this class of CRNs via the convergence in distribution of its
scaled sample paths. In the spirit of Chapter 2, the scaling we consider in this
chapter does not change the basic dynamic of the CRN, in particular its reaction
rates. It is assumed that the initial state of the CRN is “large”, its norm is pro-
portional to some scaling parameter N . We investigate the time evolution of the
process associated to this CRN, starting from a saturated initial state and its way
back to a neighborhood of the origin.

A first Section is dedicated to the study of the CRN with a general m. Because
of the polynomial rate, if both Si and Si+1 are of order N , the reaction Si+Si+1 ⇀
Si+1 + Si+2 has a rate of order N2, which is maximal for this class of CRNs. We
show that the process goes “quickly” to a set of states for which the indices of the
coordinates whose value is greater than εN are at distance at least two, the other
coordinates being o(N).

In a second Section we study the CRN with three chemical species. Several
interesting initial states are studied, and for each one, a scaling analysis is carried
out. In particular, starting from a state xN = (1, N, 1), it is shown that the process
(XN (t)/N) converges in distribution to a continuous, but random, process. This
case provides an example of a CRN whose first order is not the solution of a set of
deterministic ODEs.
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The three last parts are dedicated to the study of the CRN with four chemical
species. A class of initial states gives rise to a more complex behavior than what we
have observed whenm=3. We did not try a complete (cumbersome) classification of
initial states here, but we do believe that the class of initial states studied exhibits
the most interesting behaviors.

∅ κ0−⇀ S1
κ1−⇀ S1 + S2

κ2−⇀ S2 + S3
κ3−⇀ S3 + S4

κ4−⇀ S4
κ5−⇀ ∅.

The initial states considered are of the type (0, N, 0, 0), with the convention
that ”0”, resp. “N”, means O(1), resp. O(N). We show that the process lives

in the subset of the state space of elements of the type (0, N, 0,
√
N) and that the

decay of the norm of the state occurs on the timescale (
√
Nt). More important,

this decay is in fact based on a Discrete-Induced Transitions phenomenon (DIT).
DIT have already been studied in CRN models, more precisely in auto-catalytic

CRNs:

Si+Sj ⇀ 2Si, ∅ −⇀↽− Si, 1≤i̸=j≤m.

It is characterized by the fact that a limited number molecules of one chemical
species can switch the entire bio-chemical state of a system, see Togashi and Kaneko
[74], Bibbona et al. [13] and del Sole [22].

In our CRN with four chemical species and the initial state of the type

(0, N, 0,
√
N),

it turns out that the growth of the fourth coordinate (X4(t)) occurs only during time

intervals whose duration are O(1/
√
N) and during them there is a large number of

positive jumps of this process, of the order of
√
N . Recall that this phenomenon

is only due to the law of mass action which drives the kinetics of the CRN. This is
where boundary effects have a significant impact.

The switch effect occurs during these small time intervals, the occurrence of
them is driven by the isolated instants of creation of particles of chemical species
S3. They play a critical role in the kinetics of the system, since this is at these
instants, and only there, that the second coordinate (X2(t)) can decrease.

We prove that (XN
4 (t)/

√
N) converges in distribution to a continuous time

Markov jump process, the jumps being the consequence of the DIT. It is shown
that the limit of the process is in fact an Additive Increase, Multiplicative De-
crease (AIMD) process, with infinitesimal generator given by, for bounded function
f∈C1(R+) and v≥0,

(1.14) Ω0(f)(v) = − 1

γ
vf ′(v) +

∫ +∞

0

(
f
(√

v2+2βs
)
−f(v)

)
e−s ds,

for some constants β, γ>0. The fact that a positive jump in the limit is a conse-
quence of a large number of positive jumps of the initial process, in a small time
interval, prevents us to use the classical J1-Skorokhod topology. We prove the con-
vergence in distribution for the M1-Skorokhod topology instead, see Section 4.3.

The positive jumps of XN
4 (t) are negative jumps of XN

2 (t), and on the normal

timescale, O(
√
N) happen. To see the decrease of (XN

2 (t)/N), we accelerate the

time, and look at the timescale t 7→ t
√
N .

Theorem. If X(0)=(0, N, 0, vN ), with (vN/
√
N) converging to v≥0, then the

relation

lim
N→+∞

X2

(√
Nt
)

N
, t<t∞

 =

((
1− t

t∞

)2

, t<t∞

)
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holds for the convergence in distribution, with

t∞ =
√
2
κ5
κ20

√
κ4
κ3

Γ

(
κ0
2κ5

)/
Γ

(
κ5+κ0
2κ0

)
,

where Γ is the classical Gamma function.

The quite technical proof of this theorem is done using multiple time changes.
In particular, since the process XN

2 (t) basically does not move if XN
3 (t) = 0, the

timescale (ℓ1(t)) defined by, for t≥0,

LN
1 (t)

def.
=

∫ t

0

1{UN
3 (s)≥1} ds and ℓN1 (t)

def.
= inf{s>0 : LN

1 (s)>t}.

proves to be the relevant timescale to see the evolution of (XN
2 (t)/N).

The process (XN
4 (t

√
N)/

√
N) behaves like a fast process, and we prove that

its occupation measure converges to the invariant measure of the AIMD, defined by
Relation (1.14). This invariant measure is calculated explicitly in Section dedicated
to the AIMD process.

5.3. Chapter 4: Analysis of stochastic chemical reaction networks
with a hierarchy of timescales. This Chapter focus on a class of CRNs, that
we call k-Unary CRNs.

k-Unary Chemical Reaction Networks. The only chemical reactions for this
class of CRNs are as follows for 1≤i̸=j≤n,

kiSi
κij−−⇀ kjSj , kiSi

κi0−−⇀ ∅, ∅ κ0i−−⇀ kiSi,

provided that, respectively, κij>0, κi0>0, or κ0i>0. The second reaction, resp. last
reaction, is the spontaneous destruction, resp. creation, of ki molecules of chemical
species Si. For 1≤i≤n, it is assumed that the time evolution of the ith coordinate
is a jump process whose jumps are ±ki. Here kiSi is the only complex involving
the chemical species Si.

The parameters of these networks is a matrix Rκ=(κij , 0≤i, j≤n) and a vector
(ki). They are quite general in fact, modulo an irreducibility property for the
matrix Rκ. They can be described as transformations of sets of ki molecules of Si

into kj molecules of Sj , if κij>0. In state x=(xj), the ith coordinate decreases at

a rate proportional to x
(ki)
i .

Scaling External Input Rates. The scaling investigated in this paper is as fol-
lows. For all i∈{1, . . . , n} such that κ0i>0, the creation of chemical species Si is
scaled by N , it becomes

(1.15) ∅ Nκ0i−−−⇀ kiSi.

The other reaction rates do not change. Rather than starting from a “large” initial
state, this scaling regime assume heavy traffic conditions at the entrance of the
CRNs. A natural question in this setting is of establishing a limit theorem on the
orders of magnitude in N of the coordinates of (XN (t))=(XN

i (t)). This scaling
has already been considered in Togashi and Kaneko [73] for CRNs and probably in
many other examples.

A basic example of such a situation is the k-Unary CRN with one chemical
species,

∅ λN−−⇀↽−−
µ

k1S1.

It can be easily seen that, under convenient initial conditions, the scaled process

(1.16)

(
XN

1

(
t/N (1−1/k1)

)
N1/k1

)
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converges in distribution to a non-trivial deterministic function, the solution of an
ODE.

A Hierarchy of Timescales. Coming back to our CRNs, if we assume a kind of
equilibrium of flows in the network, due to the external inputs of the order of N ,
the input flow through each node should be also of the same order of N . The case
of the CRN with a single node suggests then that the state variable of the ith node
(XN

i (t)/N1/ki), 1≤i≤n, should be of the order of N1/ki .
Relation (1.16) also states that the “natural” timescale of (Xi(t)/N

1/ki) is
(t/N (1−1/ki)). In particular, this implies that, at the “normal” timescale (t), all
coordinates (Xi(t)/N

1/ki) whose index i∈{1, . . . , n} is such that ki≥2, are fast pro-
cesses. The CRN exhibits in fact a hierarchy of timescales: The process associated
to (Xj(t)/N

1/kj ) is faster than the process (Xi(t)/N
1/ki) if kj>ki. A limit theorem

to establish the convergence of the scaled process

(1.17)

(
XN

i (t)

N1/ki

)
has to handle this multi-timescale feature and the interactions of the coordinates.

Outline of the Chapter. The goal of this Chapter is of establishing a limit
theorem for the convergence in distribution of the scaled process (1.17) :

— For the occupation measure of the coordinates of the Markov process whose
indices i∈{1, . . . , n} are such that ki≥2;

— For the vector of the other components for the uniform topology.

The proof of this result is done in several steps. The identification of the limit
of the sequence of occupation measures is the most challenging. The difficulty is
to identify simultaneously all the species that evolve at the same timescale, using
only one equation. Relative entropy functions associated to each timescale and
convexity arguments are the main ingredients of the proof.

5.4. On the Recurrence Properties of Stochastic Chemical Reaction
Networks with Two Species. This last chapter focus on a general class of weakly
reversible stochastic chemical reaction networks (CRNs) with two chemical species
S1 and S2. They are referred to as 2D-CRNs.

Our goal in this chapter is of giving an insight on the amount of time required
for the process to return from a state in the interior of the domain to the boundary
of it.

More precisely, we set (X(t)) the process associated to a weakly reversible
2D-CRN, and V the entropy function : for x=(x1, x2)∈R2

+,

V (x) = v(x1) + v(x2) with v : y ∈ N 7→ y ln(y)−y+1,

with the convention 0 ln(0)=0.
Starting from a large state in the interior of N2, we show that there exists some

K>0 such that

TK
def.
= inf{t≥0 : min(X1(t), X2(t)) ≤ K}

is integrable and that we can find a constant C0 such that

(1.18) Ex(TK) ≤ C0V (x),

for all x=(x1, x2) such that min(x1, x2)>K.
The proof is done with the use of Filonov’s formulation of the Lyapunov con-

dition introduced in Chapter 2 with the entropy function. One has to show that
there exists positive constants γ, K and an integrable stopping time τ such that,
for x=(x1, x2)∈N2 with min(x1, x2)≥K, then

(1.19) Ex(V (X(τ))−V (X(0))) ≤ −γEx(τ).
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In this case, it can be shown that Relation (1.18) holds.
Filonov’s approach has already been used for specific examples of CRNs in

Chapter 2 and Chapter 3 to prove the positive recurrence of the associated Markov
processes. In this chapter we show that it can also be used in the context of a quite
large class of CRNs.

This result can also be useful to show the stability of such a CRN. The stability
of this class of CRNs, i.e. the positive recurrence of (X(t)), is investigated in Agazzi
et al. [2] by showing that the entropy function V is a Lyapunov function for the
infinitesimal generator of (X(t)), i.e. it considers essentially the case when τ is
taken as t1. The proof of Filonov’s criterion in the interior of the state space can
be considered as an alternative to the difficult proof of Lyapunov’s citerion in the
same domain.

To establish Relation (1.19), a finite partition of the interior of the state space is
used to define a convenient stopping time τ . Ideas related to the notion of endotactic
CRN developed in [10] are used. For some subsets of the partition, taking τ=t1 is
enough, where t1 is the first instant of jump of the process (X(t)). For the other
cases, functional limit theorems for the Markov process on a convenient timescale
are necessary to define the appropriate τ .

1.A. Topologies in the Skorokhod space

I will here give a quick presentation of the four topologies used in my PhD thesis:
the uniform topology, the J1-Skorokhod topology, the M1-Skorokhod topology and
the S-Jakubowski topology. In this order, these topologies are presented from the
strongest to the weakest, meaning that if a sequence converges for one of it, it
converges for all the following ones. The topologies are presented on the set of
càdlàg functions from [0, 1) to R, noted D[0,1)(R). The extension to DR+

(Rm) can
be found in Billingsley [14], Whitt [77].

See Section 11.6 of Whitt [77] for a sum up of this method.
All four topologies that we will present do not verify all the required properties.

The uniform topology is not separable, but its criterion for compactness is very
useful. Both J1 and M1-Skorokhod topologies satisfy all these properties, but the
S-Jakubowski topology cannot be metricized. However, it is constructed so that
the Prokhorov theorem still holds. We will give a characterization of the compact
sets for each topologies.

1.A.1. The uniform topology. The topology associated to the uniform norm
∥ − ∥∞ is a priori used for the set of continuous functions C([0, 1],R+).

It can be used for a sequence of processes of D[0,1)(R) when its limit is a
continuous process. It is the most commonly used topology when the sequence
converges to the solution of an ODE, as in the classical scaling of Section 4.2.3.
For this topology, the criterion for compactness is the same as the one from Arzelà-
Ascoli’s theorem:
A set K ⊂ D[0,1)(R) of càdlàg functions is relatively compact for the uniform
topology if it is uniformly bounded at 0, and uniformly equicontinuous, i.e. if

sup
x∈K

|x(0)| < +∞,

and defining the modulus of continuity ω as

ωδ(x)
def.
= sup

|t−s|<δ

|x(t)− x(s)|

for δ > 0 and x ∈ D[0,1)(R), if

lim
δ→0

sup
x∈K

ωδ(x) = 0.
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It can be shown that a sequence of processes tight for the uniform topology is
indeed converging in distribution, still for the uniform topology. However, the
topological space associated to this topology is not separable: the set of functions
{1{[x,1)}, x ∈ R} constitute an uncountable set of functions all at distance 1 of one
another, which prevents the use the Prokhorov theorem.

When the limit of the sequence of processes presents a discontinuity, this topol-
ogy is not weak enough to be used. Indeed, it lacks a tolerance on the small pertur-
bation of the time. For example, the functions 1{[1/2−1/N,1)} with graph in Figure 3
do not converge to 1{[1/2,1)} for the uniform topology.

The uniform topology is stronger than all the other topologies presented below,
and therefore a sequence converging for the uniform topology will converge for the
three other topologies presented here.

1.A.2. The J1-Skorokhod topology. The J1-Skorokhod topology is the
most commonly used when working on the Skorokhod space D[0,1)(R). In this
topology, the sequence 1{[1/2−1/N,1)} of Figure 3 indeed converges to the function
1{[1/2,1)}. The idea is to add the missing flexibility on the time variable, in par-
ticular flexibility in the location of jumps, using a time change. A distance can be
defined to have a complete, metric space, see Whitt [77].

On this space can be defined a criterion for compactness similar to the Arzelà-
Ascoli theorem. We introduce the modified modulus of continuity,

ω′
δ(x) = inf

{
max
i≤r

ρ(x, [ti−1, ti)) : 0 = t0 < . . . < tr = T, inf(ti − ti−1) ≥ δ

}
with ρ(x, I) = sup

s,t∈I
|x(s)− x(t)|

for θ > 0, x ∈ D[0,1)(R), and I ⊂ [0, T ] an interval. A set K ⊂ D[0,1)(R) of
càdlàg functions is relatively compact in J1 if it is uniformly bounded on [0, 1), and
“piecewise uniformly equicontinuous”, i.e. if

sup
x∈K

∥x∥∞ < +∞,

and if

lim
δ→0

sup
x∈K

ω′
δ(x) = 0.

Intuitively, this modulus of continuity allows a finite number of jumps at the
instants ti, but between these, the process must be uniformly equicontinuous. In
particular, this topology requires that the converging functions have jumps corre-
sponding to each jump in the limit function. In particular, the sequence of functions
defined by Figure 4 does not converges in the J1-Skorokhod topology. In the frame-
work of CRNs, the process studied is often scaled in space as (XN (t)/Nα), for some
α > 0. Therefore, if we want to show the converges in distribution of this scaled
process to a process with jumps, the jump should be a consequence of a large
number of small jumps, happening in a time interval vanishing when N gets large.
Therefore, this topology is not “weak enough” for our purpose.

1.A.3. The M1-Skorokhod topology. To remedy to this issue, a strategy is
to extend the ε-balls around a sample path. Indeed, the ε-ball around the function
1{[1/2,1)} in the J1-topology only extends a little the uniform ε-ball to the left
and to the right, along the “time dimension”, see Figure 7. Adding all the points
connecting the left and right limits of the jumps, we get an ε-ball as in Figure 8,
which allows more flexibility to the convergent sequences. This is formally carried
out by introducing the complete graph of x ∈ D[0,1)(R):

Λ(x)
def.
= {(t, z) ∈ [0, 1)× R : z = αx(t−) + (1− α)x(t), α ∈ [0, 1]} ,
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Figure 7. ε-ball in
the J1 topology

Figure 8. ε-ball in
the M1 topology

and setting the distance in M1 as some kind of distance between complete graphs
(involving a parametrization and an ordering of the complete graphs). See Whitt
[77] for a formal definition. The topology associated to this distance is complete,
separable, weaker than the J1-Skorokhod topology, and this time the sequence of
Figure 4 converges to 1{[1/2,1)} in this topology.

Besides, one can define a criterion for compactness in this topology, using an-
other modulus of continuity : for x ∈ D[0,1)(R), 0 < δ < 1,

ω′′
δ (x)

def.
= sup

t∈[0,1−δ]

sup
t≤t1<t2<t3<t+δ

d(x(t2), [x(t1), x(t3)]),

where d(·, A) stands for the distance to the set A.
A set K ⊂ D[0,1)(R) of càdlàg functions is relatively compact in M1 if it is

uniformly bounded on [0, 1), and i.e. if

sup
x∈K

∥x∥∞ < +∞,

and if

lim
δ→0

sup
x∈K

ω′′
δ (x) = 0.

1.A.4. The S-Jakubowski topology. In the example of Figure 5, the func-
tion presents a “spike” at t ≈ 1/4, whose length goes to zero when n gets large.
We could hope for the limit of this sequence to be 1{[1/2,1)}, but this sequence does
not converges in theM1-Skorokhod topology. However, the S-Jakubowski topology
can be used to study this kind of sequence.

This last topology is the least intuitive one. Indeed, contrary to the others, it
is not constructed on a the definition of a distance, and even cannot be metricized.
This topology has been introduced to match with the following criterion for compact
set : if K ⊂ D[0,1](R) is uniformly bounded, i.e. verify

sup
x∈K

∥x∥∞ < C < +∞,

and if for all a < b,

sup
x∈K

Na,b(x) < +∞

where Na,b(x) is the number of up-crossing given levels a < b of a function x,
(i.e. as the maximal k ≥ 1 such that there are 0 ≤ t1 < t2 . . . < t2k ≤ 1 that
verify x(t2i−1) < a and x(t2i) > b for all 1 ≤ i ≤ k), then we want the set K
to be relatively compact for the topology chosen. The construction, and more de-
tails on this topology can be found in Jakubowski [44], we will call this topology
the S-Jakubowski topology. It is a sequential topology, which is separable, and
weaker than the J1 and M1-Skorokhod topologies. Even if the topological space
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cannot be metricized, the topology is constructed in such a way that an equivalent
of Prokhorov’s theorem holds, and knowing the tightness of a sequence of processes
still implies its relative compactness. To sum up, to show the convergence in dis-
tribution of a sequence (Yn) of processes for the S-Jakubowski topology, one has
to show

— its tightness, by showing that {∥Yn∥∞} and {Na,b(Yn), n ≥ 1} are uni-
formly tight, for all a < b.

— that the finite-dimensional distributions (on a dense subset of [0, 1]) con-
verge in distribution.

One of the advantages of this topology is that, contrary to the J1 andM1-Skorokhod
topologies, the sum of two converging sequences still converges to the sum of their
limits, without making any assumptions on the time instants of jumps of the limits.

1.B. Proof of the Deficiency zero theorems

1.B.1. Deterministic theorem. The theorem proven here is the following :

Theorem 1.4. Let {S, C,R} be a weakly reversible CRN with deficiency zero.
For any constant set of positive constant of reactions (κr, r ∈ R), the solution of the
ODE associated to the deterministic CRN with mass action kinetic {S, C,R, κ} has
precisely one equilibrium in each of its positive stoichiometric compatibility class.
Besides, that equilibrium is asymptotically locally stable.

Note here that this is a “weak” version of the Deficiency zero Theorem.
The proof given here essentially follows Lectures 4 and 5 of Feinberg [25]

and Gunawardena [36].

1.B.2. General notations. In the following proof, the set of positive real
numbers is noted P. The number of element of a finite set I is noted |I|.

The concentrations of species are elements of in PS and the complexes, elements
of NC . The support of a vector x ∈ RC (or RS) is the set

supp(x)
def.
= {y ∈ C : xy ̸= 0}.

We will need a few standard notations from linear algebra. For a finite set of
indices I (here, I = C or S), RI is a vector space, on which we define the usual
inner product ⟨·, ·⟩: for x, y ∈ RI ,

⟨x, y⟩ =
∑
i∈I

xiyi.

The canonical basis of RC is noted (ωy, y ∈ C).
For a set A ⊂ RI , we note Span A the linear vector space generated by A.
The dimension of H a linear subspace of RI is noted dimH. H⊥ is the set of

vectors that are orthogonal to all elements of H.
If E and F are two euclidean spaces, and g is a linear map, g : E → F , we

denote by Ker g the kernel of g, Im g the image of g. The rank theorem states that

dim(Ker g) + dim(Im g) = dim(E).

Finally, the transpose of the linear map g is noted gT : F → E.

1.B.3. Model. We recall the ODE (1.2) associated to the CRN (S, C,R, κ):

(1.20) ċ = f(c) =
∑

r=y−⇀y+∈R

κrc
y−

(y+ − y−).

The function f can be decomposed in f = Y Aκψ with Y the canonical projection
from RC to RS : for all y ∈ C, Y (ωy) = y, Aκ : PC → PC defined as
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(1.21) Aκ : x 7→
∑

r=y−⇀y+∈R

κrxy−(ωy+ − ωy−)

and ψ : PS → PC defined as

(1.22) ψ : c 7→
∑
y∈C

cyωy.

Note that Y and Aκ are linear.
Finally, we define

(1.23) S = Span {y+ − y− : y− → y+ ∈ R}.
The positive stoichiometric compatibility class of a c ∈ PS is the set PS ∩ (S + c).

1.B.4. The kernel of Aκ. The following proposition specify the form of the
kernel of Aκ.

Proposition 1.5. Let {S, C,R, κ} be a weakly reversible determinist CRN
with mass action kinetic. Let {Λ1, . . . ,Λℓ} be its linkage classes. Then the kernel
of Aκ has a basis {χ1, . . . , χℓ}, and for all 1 ≤ i ≤ ℓ,

(1.24) suppχi = Λi and χi ∈ (R+)
C .

The original result, that can be found in Feinberg [25], states that the vectors
of the basis of Ker Aκ are supported by the strong terminal linkage classes (see
Feinberg [25] for the definition of terminal linkage classes), but with a CRN weakly
reversible, the linkage classes and terminal linkage classes are identical.

The following proof of the proposition is a condensed version of the proof found
in the Appendix of [29].

Proof. First, lets show that if χ ∈ Ker Aκ, then |χ| ∈ Ker Aκ. Let χ ∈
Ker Aκ. For y0 ∈ C, looking at the coordinates in y0 of Aκ(χ), we have:

(1.25)
∑

r=y0⇀y+∈R

κrχy0
=

∑
r=y−⇀y0∈R

κrχy− .

Hence, for all y0 ∈ C,

(1.26)
∑

r=y0⇀y+∈R

κr |χy0 | ≤
∑

r=y−⇀y0∈R

κr
∣∣χy−

∣∣ ,
and then summing on the y0 ∈ C, we get:∑

y0∈C

∑
r=y0⇀y+∈R

κr |χy0
| ≤

∑
y0∈C

∑
r=y−⇀y0∈R

κr
∣∣χy−

∣∣ ,
but this inequality is in fact an equality (it is just a different partition on the set
of reactions), and for all y0 ∈ C, inequality (1.26) is an equality, and Aκ(|χ|) = 0.

We can now make the assumption that every χ ∈ Ker Aκ we use has non
negative coefficients.

Using Relation (1.25), we can show that for χ ∈ Ker Aκ, χ non negative, if
y, y′ ∈ C are in the same linkage class and χ(y) = 0, then χ(y′) = 0 (and therefore
χ is zero on all the linkage class of y). This specific result is closely linked to the
weak reversibility of the CRN, and therefore of each linkage class.

Setting Li = Span Λi, we have RC = L1 ⊕ . . .⊕ Ll and for all 1 ≤ i ≤ ℓ, Li is
invariant under Aκ (i.e. if x ∈ Li, Aκ(x) ∈ Li). We can therefore find a basis of
Ker Aκ adapted to the direct sum.

Let 1 ≤ i ≤ ℓ. Seeing that
∑

y∈Λi
ωy ∈ (Im Aκ)

⊥ ∩ Li, we know that

dim((Im Aκ) ∩ Li) < dim(Li),
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and since Li is invariant under Aκ, we have

dim((Ker Aκ) ∩ Li) = dimLi − dim((Im Aκ) ∩ Li) > 0,

and therefore Ker Aκ ∩Li ̸= {0}. The basis of Ker Aκ contains at least one vector
for each linkage class.

Remains to show that it contains only one by linkage class, i.e. that for 1 ≤ i ≤
ℓ, if χ, χ′ ∈ Ker Ak ∩ Li , then χ = αχ′ for some α ∈ R, which is straightforward
using the the previous statements. □

1.B.5. Another definition of the deficiency. At this state of the proof,
we can show that the deficiency can be understood as the dimension of a linear
space. This proves that the deficiency is always a non negative integer. Note that
the following proposition only holds when the CRN is weakly reversible, when both
terminal linkage classes and linkage classes are identical.

Proposition 1.6. Recall that the deficiency of a CRN is defined (see Sec-
tion 2.2) as

δ = |C| − dim(S)− ℓ

where ℓ is the number of linkage classes of the CRN.
If the CRN is weakly reversible, the following Relation holds:

(1.27) δ = dim(Ker Y ∩ Im Aκ).

Proof. For this proof, we need to introduce the equivalent of the set S in the
space of the complexes:

(1.28) T
def.
= Span

{
ωy+ − ωy− , y− ⇀ y+ ∈ R

}
where (ωy) is the canonical basis of RC .

Straightforwardly, Im Aκ ⊂ T . We want to show that when the CRN is weakly
reversible, Im Aκ = T . We will proceed by equality of dimension. Proposition 1.5
and the rank theorem gives dim(Im Aκ) = |C|− ℓ. Lets look at the dimension of T .

First, setting for all 1≤i≤ℓ, Ti
def.
= Span

{
ωy+ − ωy− , y− ⇀ y+ ∈ R, y−, y+ ∈ Λi

}
,

it is straightforward to show that

T = T1 ⊕ . . .⊕ Tℓ.

It is therefore sufficient to find the dimension of each Ti. Let 1≤i≤ℓ. If |Λi| = pi
and Λi = {y1, . . . , ypi

}, then the set

(ωy2
− ωy1

, ωy3
− ωy1

, . . . , ωypi
− ωy1

)

is a basis of Ti, and therefore dim(Ti) = pi − 1. Hence,

dim(T ) =

ℓ∑
i=1

dim(Ti) =

ℓ∑
i=1

(pi − 1) = |C| − ℓ,

and Im Aκ = T . To conclude, first we notice that the restriction of Y to T , noted
Y|T , is surjective on S, i.e. that dim(Im Y|T ) = dim(S). We then have :

(Ker Y ∩ Im Aκ) = (Ker Y ∩ T ) = Ker Y|T

and therefore,

dim(Ker Y ∩ Im Aκ) = dim(Ker Y|T ) = dim(T )− s = n− ℓ− s = δ.

The second equation is given by the rank theorem. □
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1.B.6. Existence of fixed points.

Proposition 1.7. If a chemical reaction network has deficiency zero and is
weakly reversible, then for some c ∈ PS , the relation Akψ(c) = 0 holds.

This is not the strongest result. It can be shown that if the CRN has deficiency
zero, a positive equilibrium exists if and only if it is weakly reversible.

Proof. We set ωΛi =
∑

y∈Λi
ωy, and the set

U
def.
= Im Y T + Span (ωΛ1

, . . . , ωΛl
) .

Lets show that U = RC .
The ωΛi

are linearly independent, therefore, dim (Span (ωΛ1
, . . . , ωΛℓ

)) = ℓ.
Using the explicit expression of Aκ, it is straightforward to show that for 1 ≤
i ≤ ℓ, ωΛi ∈ (Im Aκ)

⊥. Therefore, Span (ωΛ1 , . . . , ωΛl
) ⊂ (Im Aκ)

⊥, and using
Proposition 1.5, by equality of their dimensions, we have

(Im Aκ)
⊥ = Span (ωΛ1 , . . . , ωΛl

) .

Using two elementary results of linear algebra and the last Relation, we get

U = (Ker Y )⊥ + (Im Aκ)
⊥ = (Ker Y ∩ Im Aκ)

⊥,

and since the deficiency δ = dim(Ker Y ∩ Im Aκ) is zero, we indeed have U = RC .

Now lets find a c ∈ PS such that Aκψ(c) = 0. The function log on PS (or PC) is
to be understood component wise: for c ∈ PS , log(c) = (log(ci), i ∈ S). For c ∈ PS ,
ψ(c) ∈ PC and

(1.29) log(ψ(c)) = Y T log(c).

Since U = RC , we can find some x ∈ RC and ζ ∈ Rℓ such that

log

(
l∑

i=1

χi

)
= Y Tx−

l∑
i=1

ζiωΛi

where the χi are the vectors of the basis of Ker Aκ, introduced in Proposition 1.5.
Setting c = ex > 0 (component wise) and λi = eζi , and using (1.29) we get:

logψ(c) = Y T log(c) =

l∑
i=1

∑
y∈Λi

[log(⟨χi, ωy⟩) + log(λi)]ωy

= log

(
l∑

i=1

λiχi

)
(χi) being a basis of Ker Aκ, ψ(c) ∈ Ker Aκ and c > 0 by construction, so

we have found an equilibrium. All the calculus with the log function work because
each complex y ∈ C is present in one and only one of the χi, with a positive
coefficient. □

We will see that knowing the existence of one fixed point helps to show the
existence of the ones in other positive stoichiometric compatibility classes.

1.B.7. Fixed points for which Akψ(c) = 0.

Proposition 1.8. We set

Z
def.
= {c ∈ PC : Akψ(c) = 0}.

Each stoichiometric compatibility class meets Z on exactly one state.

First, lets show the following lemma :
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Lemma 1.9. The following equality holds :

Z = {c ∈ PS : log c− log c∗ ∈ S⊥}
where S is defined by Relation (1.23),

Proof of the Lemma. Let c ∈ Z, y− ⇀ y+ ∈ R, and j ∈ {1, . . . , ℓ} such
that y−, y+ ∈ Λj . We have to show that ⟨log(c)− log(c∗), y+ − y−⟩ = 0.

Since ψ(c), ψ(c∗) ∈ Ker Aκ, we can write

ψ(c) =

l∑
i=0

λiχi and ψ(c∗) =

l∑
i=0

µiχi,

for some (λi), (µi) ∈ (R∗
+)

ℓ.
Therefore,〈

log(c)− log(c∗), y+ − y−
〉
=
〈
log(c)− log(c∗), Y (ωy+ − ωy−)

〉
=
〈
Y T log(c)− Y T log(c∗), ωy+ − ωy−

〉
=
〈
logψ(c)− logψ(c∗), ωy+ − ωy−

〉
=
〈
logψ(c), ωy+ − ωy−

〉
−
〈
logψ(c∗), ωy+ − ωy−

〉
= log(λj

〈
χj , ωy−

〉
)− log(λj

〈
χj , ωy+

〉
)− log(µj

〈
χj , ωy−

〉
) + log(µj

〈
χj , ωy+

〉
)

= 0

and therefore Z ⊂ {c ∈ PS : log c− log c∗ ∈ S⊥}.
Let c = c∗eu with u ∈ S⊥. We want to show that Aκψ(c) = 0. Let y0 ∈ C. If

y− ⇀ y0 ∈ R, then ⟨u, y−⟩ = ⟨u, y0⟩ since u ∈ S⊥.

⟨Aκψ(c), ωy0
⟩ =

∑
r=y−⇀y0∈R

krc
y−

−
∑

r=y0⇀y+∈R

κrc
y0

=
∑

r=y−⇀y0∈R

κr(c
∗)y

−
e⟨u,y

−⟩ −
∑

r=y0⇀y+∈R

κr(c
∗)y0e⟨u,y0⟩

= e⟨u,y0⟩ ⟨Aκψ(c
∗), ωy0

⟩
= 0

Which gives the other inclusion. □

Proof of Proposition 1.8. Lets take two equilibria c, c′ ∈ Z in the same
compatibility class: c′ − c ∈ S. We set u, v ∈ S⊥ such that c = c∗eu and c′ = c∗ev.
We have

⟨c∗(eu − ev), u− v⟩ = 0 =
∑
y∈S

c∗y(e
uy − evy )(uy − vy),

and each real of the sum is non negative. Therefore, all of them must be null. Since
c∗ ∈ PS , we must have u = v, which proves the uniqueness.

We now have to show that Z actually meets every stoichiometric compatibility
class. Let b ∈ PS . We want to find u ∈ S⊥ such that c∗eu − b ∈ S. To do so, we
define the function ϕ : x ∈ RS 7→

∑
s∈S c

∗
se

xs − bsxs. Its gradient is given by:

∇ϕ(x) = c∗ex − b

The function ϕ is continuous, and goes to infinity when ∥x∥ → ∞. It is strictly
convex (since the function exponential is strictly convex and y 7→ −y is convex on
R).

Now let ϕ̄ : S⊥ → R be the restriction of ϕ to S⊥. ϕ̄ is still continuous and
convex therefore the following set is compact:

C = {x ∈ S⊥ : ϕ̄(x) ≤ ϕ̄(0)}.
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We can find u ∈ S⊥ such that for all x ∈ S⊥, ϕ̄(u) ≤ ϕ̄(x). Thus, for all γ ∈ S⊥,
and at θ = 0:

0 =
d

dθ
ϕ̄(u+ θγ)

=
d

dθ
ϕ(u+ θγ)

= ∇ϕ(u) · γ

It follows that ∇ϕ(u) is orthogonal to S⊥ and therefore is in S, and c∗eu is the
unique equilibrium in the stoichiometric compatibility class of b. □

1.B.8. Stability of the equilibrium. Let c ∈ Z. We are going to show that
c is stable, using a Lyapunov function. Here, we say that c is stable if it is stable
in its stoichiometric compatibility class only (since a trajectory can only stay in
one stoichiometric class). We will look at the Lyapunov function on c + S. Let
V : PS → R defined as:

V (x) =
∑
s∈S

xs(log xs − log cs − 1) + cs

With an elementary study of the function V , we can see that V is non negative,
and that h(x) = 0 if and only if x = c. Besides, ∇h(x) = log(x)− log(c).

We have to show that if (x(t)) is the trajectory coming from x0 ∈ S + c, then
for all t ≥ 0,

d

dt
h(x(t)) = ⟨∇h(x(t)), f(x(t))⟩ ≤ 0

where f is defined in Relation (1.20). We are going to show that for x ∈ c + S,
we have ∇h(x) · f(x) ≤ 0 with equality only at x = c. We will use the following
inequality: for α, α′ ≥ 0,

eα(α′ − α) ≤ eα
′
− eα

(with equality when α = α′)

⟨∇h(x), f(x)⟩ =
∑

r=y−→y+

κrx
y− 〈

(y+ − y−), (log x− log c)
〉

=
∑

r=y−→y+

κrc
y−
e⟨y

−,log x−log c⟩ 〈(y+ − y−), (log x− log c)
〉

≤
∑

r=y−→y+

κrc
y−

(e⟨y
−,log x−log c⟩ − e⟨y

+,log x−log c⟩)

=

〈 ∑
r=y−→y+

κrc
y−

(ωy+ − ωy−),
∑
y′∈C

e⟨y
′,log x−log c⟩ωy′

〉
= 0

We recognize Aκψ(c) in the first sum of the third equality, which is 0. We have
equality in ⟨∇h(x), f(x)⟩ ≤ 0 if for all y− ⇀ y+ ∈ R, ⟨log x− log c, y+ − y−⟩ = 0,
i.e. if log x − log c ∈ S⊥, and since Z ∩ (S + c) = {c}, this is equivalent to x = c.
This proves the function h is a Lyapunov function, and c is a stable equilibrium.

1.B.9. Stochastic theorem. The proof of Theorem 1.2 is based on Anderson
et al. [7]. It consist only on verifying that the probability measure defined by
Relation (1.9) is an invariant distribution. We check that the probability measure
defined by Relation (1.9) verify for all x ∈ E0,∑

r=y−⇀y+

πE0
(x− y+ + y−)λr(x+ y+ − y−) =

∑
r=y−⇀y+

πE0
(x)λr(x).



38 1. INTRODUCTION

We start from the left side of the equation, and we part the sum according to the
value of the complex y+. We then apply the complex balanced equation verified by
c. Since c verify Aκ(ψ(c)) = 0, for any complex y0,∑

r=y−→y0∈R

κrc
y−

= cy0

∑
r=y0→y+

κr.

For x, x′ ∈ Nm and y ∈ C, x ≥ x′ means that for all i, xi ≥ x′i, and we will use
the notation

x! =

m∏
i=1

xi! and x(y) =
x!

(x− y)!
1{x≥y}.

For x ∈ E0,∑
r=y−⇀y+

πE0(x− y+ + y−)λr(x+ y+ − y−)

=
∑
y0∈C

cx−y0x(y0)

x!

∑
r=y−⇀y0∈R

κrc
y−
1{x−y0+y−≥y−}

=
∑
y0∈C

cx−y0x(y0)

x!
cy01{x≥y0}

∑
r=y0⇀y+∈R

κr

=
∑

r=y−⇀y+

πE0(x)λr(x).
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1. Introduction

This paper investigates the asymptotic properties of Markov processes associ-
ated to chemical reaction networks (CRNs). The state space of these processes is
a subset of Nn, where n≥1 is the number of chemical species. A chemical reaction
is associated to a transition of the associated Markov process (X(t)) of the form,
for x=(xi)∈Nn

x −→ x+

n∑
1

(
y+i −y

−
i

)
ei,

where, for i∈{1, . . . , n}, ei is the ith unit vector of Nn and y+, y−∈Nn that form the
reaction y−⇀y+. The kinetics used classically for CRNs is the law of mass action.
This is expressed by the fact that the above transition has a rate proportional to

x!

(x−y−)!
def.
=

n∏
i=1

xi!

(xi−y−i )!
=

n∏
i=1

xi(xi−1) · · · (xi−y−i +1),

provided that xi≥y−i holds for all i∈{1, . . . , n}, it is 0 otherwise. A chemical reac-
tions requires a minimal number of copies of some chemical species to take place.

An important feature of these processes is that this transition rate exhibit a
polynomial dependence on the state variable. Another important characteristic are
the discontinuities of the dynamics along the boundaries of the state space, like
the condition xi≥y−i , for 1≤i≤n in our example. This is referred to as boundary
effects.

The polynomial property of the reaction rates has the consequence that multiple
timescales may drive, sometimes very fast, the time evolution of CRNs. As it will
be seen, in Section 7 for example, the discontinuities of the kinetics can on their
side slow down significantly the time evolution of some of the components of the
Markov process.

39
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In this paper we focus on the transient behavior of these networks. We study
the situation when the CRN starts from a “large” state and investigate how it goes
back to a neighborhood of the origin. Depending on which component is large, the
timescale to return to 0 can be very different. This can be helpful to study the
property of positive recurrence but, more important perhaps, it gives insights on
the time evolution of these complex Markov processes.

1.1. Lyapunov Criteria for Positive Recurrence Property of CRNs. A
classical and important stability result of dynamical systems associated to a class of
deterministic CRNs has been established in Feinberg [26]. It states that if a CRN is
weakly reversible with deficiency 0 then there is a unique positive equilibrium point
(ci) which is locally stable. See Section 2.A of the Appendix for the definitions.
The dynamical system is defined by Relation (2.15).

In a stochastic context, Anderson et al. [7] have shown that an invariant measure
of the Markov process (X(t)) associated to a weakly reversible with deficiency 0
CRN with n chemical species exists and is expressed as a product of n Poisson
distributions whose parameters are given by the coordinates of the equilibrium of
the associated deterministic CRN.

Outside this class of networks, there are few general results establishing the
positive recurrence of Markov processes associated to CRNs. The use of a Lyapunov
function is a possible tool in this domain. If G is the infinitesimal generator of the
Markov process, it amounts to find an energy function, i.e. a non-negative function
f on the state space S converging to infinity when the norm of the state gets large,
satisfying the Lyapunov condition: there exist K≥0 and γ>0, such that, for any
x∈S,
(2.1) G(f)(x) ≤ −γ,
if ∥x∥≥K. There are several examples of specific CRNs using entropy as a Lyapunov
function, see Anderson et al. [9, 10], Anderson and Kim [8], and Xu et al. [79].
Agazzi and Mattingly [4] use polynomial functions. See also Anderson et al. [6].

Constructing a Lyapunov function is, in general, a tricky problem since the
expression of G(f)(x) involves a summation, depending on x, on, a priori, the whole
state space. It can be easy to derive “local” Lyapunov functions for states x with
some specific coordinates large, for example. The problem is then of having a global
Lyapunov function, i.e. of gluing in some way all these local Lyapunov functions.
The analysis of Agazzi and Mattingly [4] illustrates quite well the difficulty of
constructing a Lyapunov function.

A natural extension of the criterion (2.1) simplifies significantly this problem
in fact. The original version is due to Filonov [30]. It states essentially that if there
exist an energy function f , an integrable stopping time τ and constants K≥0 and
γ>0, such that, for any x∈S, the relation

(2.2) Ex(f(X(τ)))−f(x) ≤ −γEx(τ),

holds if ∥x∥≥K, then (X(t)) is positive recurrent. See Theorem 2.3 for a precise
statement.

As it can be seen, if τ=t1, t1 being the first jump of (X(t)), then, by Dynkin’s
Formula, provided that convenient integrability properties hold, for x∈S,

Ex(f(X(τ)))−f(x) = Ex

(∫ τ

0

G(f)(X(s)) ds

)
= G(f)(x)Ex(τ),

so that Condition (2.2) is in fact the classical criterion (2.1) for this choice of τ .
We can express Condition (2.1) as the fact that, starting from a large state, the

energy of (X(t)) decreases right away, i.e. at the first jump of the process. As we
will see, this property does not hold in general for many examples, especially for
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some interesting CRNs. Condition (2.2) is natural in the sense that if the process,
starts from a large state, it may take some time before its energy decreases. In
some cases considering the instants of the second, or third jump is enough. In
other example, we will have to take instants of jumps with a random index.

With Condition (2.2), roughly speaking, starting from x∈S, the choice of an
instant τ determines, i.e. with a high probability, the type of jump at time τ
and therefore the decay f(X(τ))−f(x). The partitioning of the state space is on
the initial state x to define the convenient stopping time τ on each subset of the
partition. Some intuition may suggest the “correct” variable. Last but not least,
the choice of the function f for Condition (2.2) is not a problem in general, a linear
function is enough, except in Section 7.1 where a polynomial function is used. For
Condition (2.1), the situation is quite different, one has to partition of the state
space for the definition of f , so that the global quantity G(f)(x) is negative. This
may be in some cases a more obscure procedure even if some intuition may also
help. See Agazzi and Mattingly [4].

One of the goals of this paper is of stressing the potential of Criterion (2.2)
to study positive recurrence of CRNs. It has been already used for some specific
choices of τ . The general formulation (2.2) should be considered as a standard tool
in this domain. All positive recurrence results of our paper are established in this
way.

1.2. Scaling Analysis with the Norm of the Initial State. For the study
of the transient behavior of CRNs, we proceed as follows: for a convenient set of
coefficients α=(αi)∈Rn

+ and β∈R and if x is the initial state of (X(t)), it is expressed
as the investigation of the convergence in distribution of the family of the sample
paths (

Xx(t)
) def.
=

(
1

∥x∥αi
Xi

(
t

∥x∥β

)
, i=1, . . . , n

)
,

when the norm of x goes to infinity. In general the large initial states “near” one
of the boundaries of the CRNs are the most challenging ones as it will be seen in
the examples.

The choice of β is important to identify the chemical reactions driving the time
evolution on specific timescales and to establish a corresponding functional limit
theorem for the scaled process.

In general there does not exist the notion of fluid limits, in the sense that the
global convergence in distribution of (Xx(t)) as ∥x∥ goes to infinity does not hold in
general. Several choices are in general possible for α∈Rn

+ and β≥0, and this is not a
simple task as it will be seen. The constant β for the timescale and the coefficients
(αi) for the space variable may depend, for example, on how the sequence of initial
states is going to infinity. Worse, for some sequence of initial states, there does not
seem to exist any such constants (αi) and β for a convergence in distribution result
of at least a subsequence. This is where the general Lyapunov criterion is useful.
For a quick discussion on fluid limits, see Section 4.4.

The main goal of this paper in this domain is of showing, via the analysis of
interesting examples, how a scaling analysis of this type can give insights on the di-
versity of possible time evolutions of CRNs. The proofs of the associated functional
limit theorems use several classical tools of probability theory: stochastic calculus,
averaging principles, time change arguments, hitting time estimates, . . . If they
have been already used in the work of Kurtz and co-authors in a different scaling
framework, their potential seems nevertheless to be generally underestimated in the
literature. This is the reason for which several examples are worked out in detail
in our paper.
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Overview of the Paper. The formal definitions and notations are introduced
in Section 2. Classical results of the literature of CRNs, including the deficiency
zero theorem, are recalled in Section 2.A of the Appendix.

Lyapunov criteria for positive recurrence of Markov processes are presented and
discussed in a general framework in Section 3 .

The scaling with the norm of the initial state is introduced in Section 4. The
scalings used in the literature of CRNs are presented and discussed. The important
feature of this scaling is that, contrary to the existing scalings, it does not change
the reaction rates of the CRN or its associated graph. It is essentially focused on
the time evolution of the CRNs starting from a “large” state.

The rest of the paper is devoted to the investigation of several examples of CRNs
to illustrate the insight that can be obtained on the time evolution of CRNs from
this scaling perspective, and, in addition, of the efficiency of the general Lyapunov
criterion.

Section 5 is devoted to the analysis of some binary CRNs, that are chemical
reaction networks with two chemical species and there are the complexes of reaction
have at most two molecules. Two examples of triangular networks are considered
both of them have the complexes {S1, S2, S1+S2} and, for one of them, also a
sink/source ∅. The proofs in this section are essentially standard, the main motiva-
tion is to show how Filonov’s result can be useful, and also, that even in this simple
setting, there are cases with three regimes corresponding to different timescales and
different functional limit theorems.

For the sake of completeness, in Section 2.C of the Appendix we present some
of the classical technical arguments used, repeatedly, in the proofs of convergence
in distribution of sequence of processes. It includes the proof of functional laws of
large numbers and of an averaging principle.

In Section 2.D of the Appendix, a general result for the stability of triangular
networks with arbitrary complexes at the vertices is shown. This is an analogue of
Theorem 7.6.1 of Feinberg [27] for star networks.

Section 6 is devoted to the analysis of an interesting CRN proposed in Agazzi
and Mattingly [4]. The purpose of this reference is of showing that with a small
modification of the graph structure of a CRN, its associated Markov process can be
either positive recurrent, null recurrent, or transient. The main technical part of the
paper is devoted essentially to the construction of a Lyapunov function satisfying
Condition (2.1) for one graph structure. We show that Condition (2.2) can be in
fact used with a simple function to prove the positive recurrence. Additionally, a
scaling picture for the time evolution of this CRN is also presented.

In Section 7, a thorough analysis of the following CRN, for p≥2,

∅ κ0−⇀↽−
κ1

S1+S2, pS1+S2
κ2−⇀↽−
κ3

pS1+2S2,

is achieved. In the context of a large class of CRNs with two species analyzed
in Agazzi et al. [2], this is an important example introduced and discussed from
the point of view of its stability properties for p=2. It shows how boundary effects
can complicate significantly the verification of a Lyapunov criterion (2.1) with the
entropy function used as an energy function.

The analysis of this, apparently simple, CRN is in fact quite demanding. We
investigate this CRN with the general approach proposed in this paper. The anal-
ysis involves a large set of technical tools. It is a good example of the complexity
of the analysis of some CRNs. We show how Condition (2.2) can be used for posi-
tive recurrence and that a scaling analysis gives an interesting insight for the time
evolution of this CRN.
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Its transient behavior exhibits several unusual scaling properties which we de-
scribe quickly. This is the main motivation of our detailed analysis of Section 7.
Such a behavior is probably not an exception in the context of CRNs. Additionally,
it gives an interesting example of the use of time change arguments to derive scaling
results for multi-timescales models.

The network has a kind of bi-modal behavior due to its boundary conditions.
This property is exhibited via a scaling analysis of this CRN for two classes of initial
states. The corresponding limiting results are:

(a) For an initial state of the form (N, b), with b∈N fixed.
Theorem 2.23 shows that there exists some t∞>0, such that the conver-
gence in distribution of processes

lim
N→+∞

(
X1(Nt)

N
, t<t∞

)
=

(
1− t

t∞
, t<t∞

)
,

holds with

t∞=1
/
κ0

(
eκ2/κ3−1

)
.

(b) If the initial state is of the form (a,N), a<p.
For the convergence in distribution of its occupation measure, see Defini-
tion 2.28, the relation

lim
N→+∞

(
X2(N

p−1t)

N

)
= (V (t))

holds, where (V (t)) is an explosive Markov process on (0, 1] with a multi-
plicative structure, its infinitesimal generator A is given by

A(f)(x) =
r1
xp−1

∫ 1

0

(
f
(
xuδ1

)
−f(x)

)
du, x∈(0, 1],

for any Borelian function f on (0, 1), with δ1=κ3(p−1)!/κ1. This process
is almost surely converging to 0.

In this example, to decrease the norm of the process, one has to use the timescale
(Nt) in (a) and (Np−1t) in (b) and the decay in (a) is linear with respect to time.
This is in contrast with the examples of Sections 5 and 6 where the “right” timescale
is of the form (t/Nβ) with β∈{0, 1/2, 1}. Note also that the limit of the first order
of (a) is a random process, instead of a classical deterministic function solution of
an ODE as it is usually the case.

General Remarks.

(a) Case Study.
If we are stressing the interest of using of Condition (2.2) in a general
situation for CRNs. The analysis of the examples we have chosen, in
Section 7 especially, are, in our view, representative of the challenging
problems to derive limit theorems on the transient behaviors of these net-
works. There are other types of difficulties, like the interaction of more
than two timescales for example, which are not represented. There is a lot
of work ahead !

(b) Weakly Reversible Examples.
It should be noted that several of our examples in Sections 5 and 7 for ex-
ample, are weakly reversible CRNs with deficiency 0, and thus are positive
recurrent by a result of Anderson et al. [7]. See Section 2.A for the defini-
tions. Our main point in this paper is on the interest of using convenient
Lyapunov criteria and scaling ideas to investigate CRNs. We have chosen
simple examples for this purpose. The fact that some of them are weakly
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reversible with deficiency 0 is not really important, their simplicity is, to
avoid additional technical complications essentially.

In the examples of Sections 5, if some chemical reaction are added to
the CRN, then the assumption of the stability result of Anderson et al.
[7] will break down, but the method used here is still valid. It should be
also noted that if the example of Section 7 is positive recurrent by the
deficiency 0 theorem, the scaling properties we prove for this CRN give,
in our view, a quite interesting insight on the time evolution of this CRN.

2. Mathematical Models of CRNs

2.1. General Notations. For z=(zi)∈Nn, we denote

(2.3) ∥z∥def.=

n∑
i=1

|zi|, and ∥z∥∞
def.
= max

1≤i≤n
|zi|.

We define the generalized factorials, for z=(zi)∈Nn and y=(yi)∈C,

(2.4) z!
def.
=

n∏
i=1

zi!, z(y)
def.
=

z!

(z−y)!
=

n∏
i=1

zi!

(zi−yi)!
,

with the convention that z(y)=0, if there exists some i0∈S such that yi0>zi0 .
2.1.1. Markov processes. A real-valued function (x(t)) on Nn is càdlàg if it is

right continuous and it has left-limits everywhere on R+, for t>0, x(t−) denotes
the left limit at t.

If (X(t)) is a càdlàg Markov process on Nn , it is assumed that on the prob-
ability space, there is a semi-group of shift operators (θt) so that the relation
X(t+s)=X(t)◦θs holds almost surely for all t, s≥0. See Chapter I of Sharpe [72]
for a general presentation of this formalism for Markov processes.

We will denote by

(2.5) t1 = inf{s>0 : X(s) ̸= X(s−)},
the first instant of jump of (X(t)) and for n≥1,

tn+1 = inf{s>tn : X(s) ̸= X(s−)} = tn+t1◦θtn ,
the sequence of the instants of successive jumps of the process. The Markov process
is non-explosive if and only if the sequence (tn) is almost surely converging to
infinity. There is no reference to (X(t)) for the notation of the sequence (tn), for
the sake of simplicity, as long as there is no ambiguity.

2.1.2. Random measures. If Λ is a positive Borelian measure on R2
+ and A

is a Borelian subset of R+, A∈B(R+), we will use the following notation for the
differential term

Λ(A,dt) =

∫
1{s∈A}Λ(ds,dt),

i.e. if f is a non-negative Borelian function on R+,∫
R+

f(t)Λ(A,dt) =

∫
R2

+

f(t)1{s∈A}Λ(ds,dt).

2.2. General Definitions for CRNs. We now give the formal definitions
for chemical reaction networks.

Definition 2.1. A chemical reaction network (CRN) with n chemical species,
n≥1, is defined by a triple (S, C,R),

— S={1, . . . , n} is the set of chemical species;
— C, the set of complexes, is a finite subset of Nn;
— R, the set of chemical reactions, is a subset of C2.
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A chemical species j∈S is also represented as Sj . A complex y∈C, y=(yj) is
composed of yj molecules of species j∈S, its size is ∥y∥=y1+ · · ·+yn. It is also
described as

y =

n∑
j=1

yjSj .

The state of the CRN is given by a vector x=(xi, 1≤i≤n)∈Nn, for 1≤i≤n, xi is
the number of copies of chemical species Si. A chemical reaction r=(y−r , y

+
r )∈R

corresponds to the change of state, for x=(xi),

(2.6) x −→ x+y+r −y−r =
(
xi+y

+
r,i−y

−
r,i, 1≤i≤n

)
provided that y−r,i≤xi holds for 1≤i≤n, i.e. there are at least y

−
r,i copies of chemical

species of type i, for all i∈S, otherwise the reaction cannot happen. We define

(2.7) y±max=max
r∈R

∥y±r ∥.

Such a chemical reaction is classically represented as

n∑
i=1

y−r,iSi ⇀

n∑
i=1

y+r,iSi,

A CRN can be seen as an oriented graph, called the reaction graph, whose vertices
are complexes, i.e. in C and whose set of directed edges is R.

The notation ∅ refers to the complex associated to the null vector of Nn, ∅=(0).
For y=(yi)∈C, a chemical reaction of the type (∅, y) represents an external source
creating yi copies of species i, for i=1,. . . , n. A chemical reaction of the type (y, ∅)
consists in removing yi copies of species i, for i=1,. . . , n, provided that there are
sufficiently many copies of each species.

2.3. Markov Processes: Law of Mass Action. A stochastic model of a
CRN is represented by a continuous time Markov jump process (X(t))=(Xi(t), i=1, . . . , n)
with values in Nn. The dynamical behavior of a CRN, i.e. the time evolution of
the number of copies of each of the n chemical species is governed by the law of
mass action. See Voit et al. [76], Lund [56] for surveys on the law of mass action.

For these kinetics, the associated Q-matrix of (X(t)) is defined so that, for
x∈Nn and r=(y−r , y

+
r )∈R, the transition x→x+y+r −y−r occurs at rate

(2.8) κrx
(y−

r ) = κr
x!

(x− y−r )!
= κr

n∏
i=1

xi(xi−1) · · · (xi−yr,i+1),

where κ=(κr, r∈R) is a vector of non-negative numbers, for r∈R, κr is the reaction
rate of r. More formally the functional operator Q(f) associated to its Q-matrix is
defined by, for x∈Nn,

(2.9) Q(f)(x) =
∑
r∈R

κrx
(y−

r )
(
f
(
x+y+r −y−r

)
−f(x)

)
,

for any function f with finite support on Nn.

2.4. A SDE Formulation. The Markov process with Q-matrix defined by
Relation (2.8) can be classically expressed as the solution of a martingale problem.
See Theorem (20.6) in Section IV of Rogers and Williams [69].

We assume that on the probability space we have a set of independent Poisson
point processes Pr, r∈R on R2

+ with intensity measure the Lebesgue measure on
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R2
+. See Kingman [64]. The Markov process has the same distribution as the

solution (X(t))=(Xi(t)) of the SDE,

(2.10) dX(t) =
∑

r=(y−
r ,y+

r )∈R

(
y+r −y−r

)
Pr

((
0, κr

X(t−)!

(X(t−)−y−r )!

)
,dt

)
.

Note that a solution of SDE (2.10) is not, a priori, defined on the entire half-line
since the instants of jumps of the process may converge to some random variable
T∞, the time of explosion. When this variable is finite, a point † is added to the
state space, with the convention X(t)=† for t≥T∞.

The associated filtration is (Ft), where, for t≥0, Ft is the completed σ-field
generated by the random variables

(2.11) Ft
def.
= σ (Pr(A×[0, s)), r∈R, s≤t, A∈B(R+)) .

The notions of stopping times and martingales refer implicitly to this filtration.
Provided that (X(t)) is well defined on [0, T ], T>0, the integration of SDE (2.10)

gives the relation

(2.12) X(t) = X(0)+
∑
r∈R

Mr(t)+
∑
r∈R

κr
(
y+r −y−r

) ∫ t

0

X(s)!

(X(s)−y−r )!
ds

on the time interval [0, T ], where, for r∈R, (Mr(t))=(Mr,i(t)) is a local martingale
defined by

(2.13)

((
y+r −y−r

) ∫ t

0

(
Pr

((
0, κr

X(s−)!

(X(s−)−y−r )!

)
,ds

)
−κr

X(s)!

(X(s)−y−r )!
ds

))
,

and its previsible increasing process is given by, for 1≤i, j≤n,

(2.14) (⟨Mr,i,Mr,j⟩ (t)) =
((
y+r,i−y

−
r,i

) (
y+r,j−y

−
r,j

)
κr

∫ t

0

X(s)!

(X(s)−y−r )!
ds

)
.

For q∈R, q ̸=r, (⟨Mr,i,Mq,j⟩ (t))≡0.

S1+S2 2S1

S2∅

κ12

κ1
κ2

κ0
κ20

Figure 1. Example of a CRN

Example. For the CRN of Figure 1, we have

— S={1, 2}, C={∅, S1+S2, 2S1, S2};
— R={(∅, S2), (S2, ∅), (S2, S1+S2), (S1+S2, 2S1), (2S1, S2)}.

The non-trivial components of the Q-matrix of the associated Markov process
(X(t))=(X1(t), X2(t)) are given by

(x1, x2) −→ (x1, x2)+

{
(0, 1), κ0,

(0,−1), κ20x2,
(x1, x2)+


(1, 0), κ2 x2,

(−2, 1), κ1 x1(x1−1),

(1,−1), κ12 x1x2.
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The associated SDEs for (X1(t), X2(t)) are
dX1(t) = P2((0, κ2X2(t−)),dt)+P12((0, κ12X1X2(t−)),dt)

−2P1((0, κ1X1(t−)(X1(t−)−1)),dt)

dX2(t) = P1((0, κ1X1(t−)(X1(t−)−1)),dt)+P0((0, κ0),dt)

+P1((0, κ1X1(t−)),dt)−P12((0, κ12X1X2(t−)),dt)−P20((0, κ20X2(t−)),dt).

2.5. An Important CRN: The M/M/∞ queue. This is a simple CRN
with an external input and one chemical species,

∅ λ−⇀↽−
µ
S1.

The M/M/∞ queue with input parameter λ≥0 and output parameter µ>0 is a
Markov process (L(t)) on N with transition rates

x −→

{
x+1 λ

x−1 µx.

The invariant distribution of (L(t)) is Poisson with parameter ρ=λ/µ.
This fundamental process can be seen as a kind of discrete Ornstein-Uhlenbeck

process. It has a long history, it has been used in some early mathematical models
of telephone networks at the beginning of the twentieth century, see Erlang [23],
also in stochastic models of natural radioactivity in the 1950’s, see Hammersley
[38] and it is the basic process of mathematical models communication networks
analyzed in the 1970’s, see Kelly [61]. See Chapter 6 of Robert [67].

Technical results on this stochastic process turn out to be useful to investigate
the scaling properties of some CRNs and, as we will see, in the construction of
couplings used in our proofs. See Sections 6 and 2.C.1.2 for example.

2.6. Deterministic Models of CRNs. Early mathematical models of CRNs
are continuous models with state space Rn

+. They have been used in chemical
physics to describe the time evolution of concentrations of the n chemical species
in a large volume, instead of the vector of the number of copies. The process is a
deterministic dynamical system in Rn

+, (x(t))=(xi(t)) expressed as the solution of
the following set of Ordinary Differential Equations (ODEs),

(2.15) ẋ(t) =
∑

r=(y−
r ,y+

r )∈R

κr

(
n∏

i=1

xi(t)
y−
r,i

)(
y+r −y−r

)
,

with also a polynomial dependence of the state variable. This is the original law
of mass action in fact, see the historical reference Guldberg and Waage [35]. See
Relation 2.15. It should be noted that, due to a possible lack of a global Lipschitz
property, a solution of ODE (2.15) may also blow-up, and be defined on a finite
time interval only.

A striking and impressive result in this context is the Deficiency Zero Theorem.
See Section 2.A of the Appendix.

3. Filonov’s Stability Criterion

In this section we formulate a criterion, due to Filonov [30], of positive recur-
rence for continuous time Markov processes associated to CRNs. It is an extension
of the classical Lyapounov criterion, see Corollary 2.4. Our experience is that it is
really useful in the context of CRNs and more practical than the classical criterion.

Definition 2.2. An energy function f on E0 is a non-negative function such
that, for all K>0, the set {x∈E0 : f(x)≤K} is finite.
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By convention the value of an energy function at the point at infinity † is +∞.
The classical energy functions used in a CRN framework can be linear functions or
an entropy function, for x=(xi),

f(x) =

m∑
i=1

aixi, f(x) =

m∑
i=1

(xi lnxi−xi+1).

Theorem 2.3 (Filonov). Let (X(t)) be an irreducible Markov process on E0⊂Nm

associated to a CRN network with Q-matrix (2.8), if there exist

(a) an integrable stopping time τ such that τ≥t1∧η,
for a constant η>0 and t1 is the first jump of (X(t)), Relation (2.5);

(b) an energy function f on E0 and constants K and γ>0 such that the relation

(2.16) Ex (f(X(τ)))−f(x) ≤ −γEx(τ),

holds for all x∈E0 such that f(x)≥K,

then (X(t)) is a positive recurrent Markov process.

A function f satisfying Condition (2.16) is usually referred to as a Lyapunov
function.

A difficulty of the continuous time case is the possibility of explosion, when the
number of jumps if infinite in a finite time interval. It may be seen pathological,
as we will see, due to the kinetics of the law of mass action, it may happen in the
context of CRNs. If there is explosion, the Markov process is of course transient.
Note that if Equation (2.16) holds, τ < T∞ with T∞ the time of explosion (possibly
equal to +∞). A consequence of the theorem is that the process cannot explode
under its assumptions.

The following positive recurrence criterion involving the Q-matrix Q of the
Markov process is quite often used for the stability results of CRNs.

Corollary 2.4. Let (X(t)) be an irreducible Markov process on E0 associated
to a CRN network with Q-matrix Q defined by Relation (2.8), if there exists an
energy function f on S and γ, K>0 such that

(2.17) Q(f)(x)≤−γ, if f(x)≥K,
then (X(t)) is positive recurrent.

Proof. For τ = t1, and x such that f(x)≥K, we have

Ex (f(X(t1))− f(x)) = Ex

(∫ t1

0

Q(f)(X(s)) ds

)
= Q(f)(x)Ex(t1) ≤ −γEx(t1),

then we conclude with Theorem 2.3. □

The classical Condition (2.17) states that if the initial state has a large level
of energy, the next step decreases in average the energy by some fixed positive
quantity. There are various versions of this type of result. One of them evaluates
the expected value of f(X(t0)) at a deterministic function t0(x) of the initial state,
see Proposition 4.5 of [17]. Finding a global Lyapunov function may be cumbersome
in general. It may imply to partition the state space, for the location of X(t0), to
build and to glue piecewise, local, Lyapunov functions. See Agazzi and Mattingly
[4] for a typical example. For this theorem, one has to partition the state space
from the point of view of the initial state, to define τ , instead of the state at time
t0. This is in general much simpler to handle.

Starting from a state x of high energy does not necessarily lead quickly to a
lower energy level, i.e. Q(f)(x) is not necessarily negative. Instead, it may happen
that one may have to wait for some amount of time, the quantity τ , before the
energy can significantly decrease. The “price” to pay for waiting is that the decay
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needed is not anymore some fixed negative quantity, but, as it can be expected, a
negative constant proportional to Ex(τ), the mean value of the waiting time.

For the somewhat specific condition τ≥t1∧η, it should be noted that, at least
some condition is required, since the trivial τ≡0 would work otherwise. In practice,
it is quite natural that the “convenient” stopping time τ should be greater than t1,
the first instant when there is a change of state for the Markov process. There are,
however, situations when it is enough to consider a deterministic stopping time τ ,
when scaling limits of sample paths are used. Some of our examples below exhibit
this feature.

(a) If τ≡η>0.
Condition (2.16) is just the classical Foster-Lyapunov condition for the dis-
crete Markov chain (Mn)=(X(nη)), i.e. the process (X(t)) on the discrete
timescale n 7→nη,

(2.18) Ex(f(M1))−f(x) ≤ −γη, for x∈S0 such that f(x)>K.

See Hairer [37], Bramson [17], and Meyn and Tweedie [58].
(b) If τ=t1.

Condition (2.16) is equivalent to condition (2.17), see the proof of corol-
lary 2.4. Most of stability analyses of CRN networks use this condition.

Proof of Theorem 2.3. The proof uses essentially the same arguments as
in the proof of Theorem 8.6 of [67]. The only specific difficulty lies in the fact
that, a priori, the Markov process can be explosive. Define the sequence of induced
stopping times (sn) by induction, by s1=τ and

(2.19) sn+1 = sn+τ◦θsn .

By using the strong Markov property of (X(t)), see Theorem (9.4), Section III.9
of Rogers and Williams [68], (sn) is a non-decreasing sequence of stopping times.
From our assumption on τ , we get that (sn) is almost surely an increasing sequence,
i.e. sn<sn+1 for all n≥1.

We define

TK = inf{s≥0 : f(X(s)) ≤ K}, and ν def.
= inf{n≥0 : f(X(sn)) ≤ K},

then, clearly TK≤sν . Let, for n≥1,

Zn
def.
= f(X(sn)) + γsn,

then, with Relation (2.16) and the strong Markov property of (X(t)) for the stop-
ping time sn, we obtain the relation

(2.20) E (Zn+1 | Fsn) = Zn+EX(sn) (f(X(τ))+γτ)−f(X(sn)) ≤ Zn,

on the event {ν>n}.
The process (Zn∧ν) is therefore a non-negative super-martingale, in particular

it is converging almost surely to a finite limit.
First, lets show that ν is almost surely finite. The almost sure convergence

of (Zn∧ν) gives that, almost surely on the event {ν=+∞}, the sequence (sn) is
converging to a finite limit. In particular the increments (sn+1−sn) are less than
η/2 after some finite index n0. Our assumption, τ≥t1∧η implies therefore that, for
n>n0,

(2.21) sn+1≥sn+t1◦θsn ,

and, by induction, sn≥tn−n0◦θsn0
holds for n>n0.
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Since X(sn)=X(un), where un≤sn is the last jump instant of (X(t)) before sn,
we have un<un+1 by Relation (2.21). Hence, almost surely, on the event {ν=+∞},
the Markov process (X(t)) explodes in finite time, so that

lim sup
n→+∞

f(X(un)) = lim sup
n→+∞

f(X(sn)) = +∞.

Since (Zn∧ν) is converging almost surely to a finite limit, this implies that the
random variable ν is almost surely finite.

By integrating Relation (2.20) we get that

γEx(sn∧ν) ≤ Ex (Zn∧ν) ≤ Ex(Z0) = f(x),

the monotone convergence theorem gives the relation

E(TK) ≤ E(sν) ≤
f(x)

γ
,

we conclude with Proposition 2.32 of the appendix. The theorem is proved. □

4. Scaling Methods

The scaling approaches presented in this section aim at providing a first order
description of the time evolution of a CRN, to investigate its transient behavior in
particular.

4.1. Deterministic CRNs as a Scaled Version of Stochastic CRNs. It
is possible to see the set of ODEs (2.15) with the parameters (κr) as a first order
approximation of a scaled stochastic model of a CRN with the same triple (S, C,R)
but with a set of scaled reaction rates

(2.22)
(
κNr , r∈R

)
=

(
κr

N∥y−
r ∥−1

, r∈R
)
.

We denote by (XN (t))=(XN
i (t)) the associated Markov jump process.

This ad-hoc scaling is not homogeneous in the sense that it does not correspond
to a uniform change of timescale. The timescale of reaction r∈R is “slowed down”

by a factor 1/N∥y−
r ∥−1. In this manner, provided that all its coordinates are of

the order of N , the rate of any chemical reaction is of the same order, O(1) with
respect to N . Consequently, this scaling removes an important feature of CRNs,
multi-timescales, i.e. that some reactions may be change a subset of coordinates of
(X(t)) on a much faster timescale.

The following proposition is a well-known result of the CRN literature for the
scaling assumption of Relation (2.22). See Mozgunov et al. [60] for example.

Proposition 2.5. If (XN (t)) is the Markov process with Q-matrix given by
Relation (2.8) with the reaction rates given by Relations (2.22) and if the sequence
of initial states is such that

lim
N→+∞

(
XN

i (0)

N

)
= x0=(x0,i)∈Rm

+ ,

then the convergence in distribution

lim
N→+∞

(
XN

i (t)

N
, t∈(0, t∞)

)
= (xi(t), t∈(0, t∞)),

holds, where (xi(t)) is the solution of the set of ODEs (2.15) starting at (x0) and
t∞ is its blow-up instant,

t∞
def.
= lim

K→+∞
inf{t:∥x(t)∥∞≥K},

with the convention that inf ∅=+∞.
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Proof. We give a quick proof of this classical result. For K≥1, define

HN
K = inf

{
t>0:∥XN (t)∥∞≥KN

}
and tK = inf {t>0:∥x(t)∥∞≥K} ,

and (
X

N

K(t)
)

def.
=

(
XN

i (t∧HN
K )

N

)
.

On the time interval (0, HN
K ), there are at least CKN jumps of the process (XN (t)),

with CK=⌊(K−∥x0∥)/y+max⌋. See Definition (2.7). The maximal jump rate of the

process on (0, HN
K ) is bounded by λN with λ=∥κ∥∞Ky−

max |R|. Hence,

lim
N→+∞

P
(
HN

K≤t
)
= 0,

holds for any t<CK/λ.
We now use the SDE formulation of Section 2.4 of the appendix to represent

the Markov process (XN (t)). Relation (2.10) gives the identity

(2.23) X
N
(t)=X

N
(0)+

∑
r∈R

Mr(t∧HN
K )

N

+κr
(
y+r −y−r

) ∫ t∧HN
K

0

XN (s)!

N∥y−
r ∥(XN (s)− y−r )!

ds,

where (Mr(t))=((Mr,i(t))), r∈R, is the set of martingales defined by Relation (2.13).
Relation (2.14) gives, for 1≤i≤m,〈∑

r∈R

Mr,i

N

〉
(t∧HN

K ) =
∑
r∈R

⟨Mr,i⟩
N2

(t∧HN
K )

=
1

N

∑
r∈R

(
y+r,i−y

−
r,i

)2
κr

∫ t∧HN
K

0

X(s)!

N∥y−
r ∥(X(s)−y−r )!

ds

≤ 1

N

∑
r∈R

(
y+r,i−y

−
r,i

)2
κrK

∥y−
r ∥t,

with Doob’s Inequality, we get that (Mr,i(t∧HN
K )/N) is converging in distribution

to 0, for all 1≤i≤m. By using the criterion of modulus of continuity, see Billingsley

[14], it is easy to show that the sequence of processes (X
N

K(t)) is tight for the
convergence in distribution.

For t<tK , with high probability we have HN
K≥t, hence by using Relation (2.23),

we obtain that any limiting point of (X
N

K(t), t<tK) satisfies the set of ODEs (2.15).
In particular the sequence (∥XN (t)∥, t<tK) is converging in distribution to the
process (∥x(t)∥, t<tK). The proposition is proved. □

4.2. Alternative Scalings of Reaction Rates. Kurtz and co-authors have
also investigated several examples of CRNs with analogous scaling methods. In
this approach, some reaction rates may be sped-up with some power of the scaling
parameter N and the state variables are scaled accordingly. The difference with the
classical scaling is that the transition rates do not have necessarily the same order
of magnitude in N . The initial motivation was of fitting the parameters of these
scaling models with biological data obtained from experiments. Several examples
of CRNs are investigated in this setting, the limit theorems derived depend, of
course, on the scaling in N chosen for the vector of reaction rates (κr). See for
example Ball et al. [11], Kang and Kurtz [46], and Kim et al. [50].
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4.3. Scaling with the Norm of the Initial State. The main scaling ap-
proach considered in this paper is with respect to the size of the initial state. The
topology and the vector κ of reaction rates are unchanged. With a convenient
change of timescales it may give a first order description of the time evolution of
the CRN starting from a “large” state.

This scaling is in fact related to Theorem 2.3, we start by a reformulation of it.

Proposition 2.6. Let (X(t)) be a Markov process associated to a CRN network
with Q-matrix defined by Relation (2.8), if there are an energy function f on E0,
constants ε and η>0, and an integrable stopping time τ≥t1∧η such that the relations

lim sup
x∈E0

f(x)→+∞

Ex(f(X(τ)))

f(x)
≤ 1−ε and C0

def.
= lim sup

x∈E0

f(x)→+∞

Ex(τ)

f(x)
< +∞

hold, then the Markov process (X(t)) is positive recurrent.

Proof. One can find K>0 such that if x∈E0 satisfies f(x)≥K then

Ex(f(X(τ)))−f(x) ≤ −ε
2
f(x) ≤ − ε

4C0
Ex(τ),

Theorem 2.3 concludes the proof. □

Starting from a large x, we can interpret τ in Proposition 2.6 as the time “back”
in direction of the origin. If we take f as the norm ∥·∥, the above proposition
suggests the introduction of the scaled processes, for x∈E0,(

Xx(t)
) def.
=

(
X (tg(x))

∥x∥
, t≥0

)
,

where g is a positive function on S such that g(x)≤C0∥x∥, x∈S, for some C0>0.
The function g is deterministic function related to the order of magnitude of τ
starting from x.

Assume that, as ∥x∥ goes to infinity, the family of processes (Xx(t)) converges
in distribution to some deterministic process (x(t)). The dynamical system (x(t)),
with an initial point on the unit sphere of Rm

+ provides a first order description of
the Markov process. Such limiting result may be complicated to obtain, because
of polynomial reaction rates and of boundary behaviors already mentioned. There
are in general different timescales involved and, for this reason, there is rarely
“one” function g for example. Still, it gives a method to investigate the qualitative
behavior of these complicated Markov processes.

There is an interesting, global, scaling of this kind. Assuming that ∥x∥, the
norm of the initial state is large, the rate of the fastest reaction is at most of the

order of ∥x∥y−
max , y−max is the size of the largest complex initiating a reaction, see

Relation (2.7). For this reason, when looking at the scaled process, the timescale

t 7→t/∥x∥y−
max−1 is quite natural.

Proposition 2.7. If (XN (t)) is the Markov process associated to a CRN net-
work (S, C,R) with parameters (κr) and whose initial state is such that

lim
N→+∞

(
XN

i (0)

N

)
= x0=(x0,i)∈Rm

+ ,

then there exists t∞>0, such that when N goes to infinity the family of processes(
X

N
(t)
)

def.
=

(
1

N
X
(
t
/
Ny−

max−1
)
, t<t∞

)
,
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is converging in distribution to (ℓ(t), t<t∞), the solution of the ODE

(2.24) dℓ(t) =
∑

r∈R,∥y−
r ∥=y−

max

κrℓ(t)
y−
r (y+r −y−r )

on (0, t∞), with ℓ(0) = x0.

This scaling has the effect of considering the same CRN but with a set of
reactions reduced to {r=(y−r , y

+
r )∈R:∥y−r ∥=y−max}.

Proof. We proceed in an analogous way as in the proof of Proposition 2.5.
The SDE formulation of Section 2.4 of the appendix to represent the Markov process
(XN (t)) is used. Relation (2.10) gives for t≥0,

(2.25) X
N
(t) = X

N
(0) +

∑
r∈R

M
N

r (t)

+
∑
r∈R

κr
(
y+r −y−r

) ∫ t

0

XN (s/Ny−
max−1)!

Ny−
max(XN (s/Ny−

max−1)−y−r )!
ds,

where, for r∈R, (M
N

r (t)) is a martingale. Stopping the process at HN
K as in the

proof of Proposition 2.5, we remark that for r=(y−r , y
+
r )∈R such that ∥y−r ∥<y−max,

XN (t)!

Ny−
max(XN (t)−y−r )!

≤ Ky−
max−1

N
,

so that the corresponding terms in Relation (2.25) vanish, as processes, when N
gets large. We can show easily that taking t∞ small enough,

lim
N→+∞

P
(
HN

K≤t
)
= 0,

which allows us to conclude. □

4.4. Analogies with Queueing Networks. This context is reminiscent of
an analogous situation for queueing networks at the beginning of the 1990’s. A
queueing network can be described as a finite set of processing units among which
several flows of requests are circulating. A request requires the processing capacity
of a subset of nodes for some amount of time before leaving the network. An im-
portant difference with CRN is that the jump rates are depending at most linearly
on the state and quite often they are in fact bounded, for Jackson networks for
example. Several large classes of queueing networks having product form invari-
ant distributions were identified, like Jackson networks or loss networks, see Kelly
[48]. Outside these classes, little is known, even on the existence of equilibrium
distributions.

In the early 1990s, several simple queueing networks were shown to be, sur-
prisingly, unstable. See, for example, the pioneering papers Rybko and Stolyar [70]
and Bramson [16]. The limits of scaled models when the norm of the initial state is
getting large, sometimes referred to as fluid limits, have been used for example in
the mathematical analysis of Rybko and Stolyar [70]. See Bramson [17] and Chap-
ter 9 of Robert [67], and references therein, for a general presentation. Scaling ideas
have mainly been used to prove positive recurrence properties rather than investi-
gating a first order description of these networks. Chen and Mandelbaum [66] for
Jackson networks is an exception in this domain. The Markov processes associated
to these queueing networks can be described as behaving locally as random walks
in several subsets of Nm. For this reason, there is essentially one relevant time
scale t→Nt, with N=∥X(0)∥, contrary to CRNs where there may be several, very
different, timescales.
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Because of the diversity of relevant timescales in general, a stability analysis
using fluid limits, as it can be done for some stochastic models of queueing networks,
seems to have a limited interest in practice in the context of CRNs.

It should be noted that for a class of queueing networks, loss networks, a
different type of scaling is of interest. It consists in speeding-up the rates of external
arrivals by a (large) factor N , and to study the asymptotic behavior of the process
scaled by 1/N on the normal timescale. The motivation of this scaling is of having
a first order description of the time evolution of the network. The stability property
is clear, the associated Markov process being reversible. See Kelly [61].

5. Binary CRN Networks

In this section, we investigate simple examples of CRNs with complexes whose
size is at most 2.

Definition 2.8. A CRN network (S, C,R) with n chemical species is binary
if any complex y∈C is composed of at most two molecules, i.e. ∥y∥≤2.

The set of complexes can be represented as C=J0∪J1∪J2, where, for i∈{0, 1, 2},
the subset Ji is the set of complexes of size i, note that Ji can be empty. If y∈J1,
with a slight abuse of notation, it will be represented as y=Sy for some Sy∈S.
Similarly, y=S1

y + S2
y , for S

1
y , S

2
y∈S when y∈J2.

Proposition 2.9. If (X(t)) is the Markov process associated to a binary CRN
network then, almost surely, it is not explosive. Furthermore, for T>0, the family
of random variables in R+

(X∗
x(T ), x∈Nn \ {0}) def.

=

(
1

∥x∥
sup
s≤T

∥X(s)∥, X(0)=x∈Nn \ {0}
)

is uniformly integrable.

Proof. The SDEs associated to the CRN are given by

dX(t) =
∑
r∈R

(y+r −y−r )Pr

((
0, κr

Xr!

(Xr−y−r )!

)
,dt

)
,

with our convention that Pr, r∈R, are independent Poisson processes on R2
+ with

intensity measure ds⊗dt on R2
+. See Section 2.4 of the appendix. The binary

condition implies that for r∈R with y−r ∈J2, then
∥y+r ∥−∥y−r ∥ ≤ 0.

If |R| denotes the cardinality of R, it is not difficult to construct a coupling so that
∥X(t)∥≤Z(t) holds, where (Z(t)) is the solution of the SDE

dZ(t) = 2P ((0, ∥κ∥∞|R|Z(t−)) ,dt) ,

with Z(0)=∥X(0)∥=∥x∥. The process (Z(t)) is simply a pure birth branching
process with rate ∥κ∥∞|R|. It is almost surely non-explosive. For 0≤t≤T , we have

Z(t) = ∥x∥+MZ(t) + 2∥κ∥∞|R|
∫ t

0

Z(s) ds,

where (MZ(t)) is a martingale, with

⟨MZ⟩ (t) = 4∥κ∥∞|R|
∫ t

0

Z(s) ds.

It is easily seen that E(Z(t))=∥x∥ exp(2∥κ∥∞|R|t). If

Z∗
x(t)

def.
= sup

s≤t

(
Z(s)

∥x∥

)
,
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then,

1

9
Z∗
x(t)

2 ≤ 1+
1

∥x∥2
sup
s≤T

|MZ(s)|2+4T (∥κ∥∞|R|)2
∫ t

0

Z∗
x(s)

2 ds.

Doob’s Inequality gives the inequality

E
(
sup
s≤T

|MZ(s)|2
)

≤ 4E(MZ(T )
2)

= 16∥κ∥∞|R|
∫ T

0

E(Z(s)) ds ≤ 32∥κ∥∞|R|T∥x∥e2∥κ∥∞|R|T .

and, with Gronwall’s Inequality, we obtain

sup
x∈S,x ̸=0

E
(
X∗

x(T )
2
)
≤ sup

x∈S,x ̸=0
E
(
Z∗
x(T )

2
)
< +∞.

The family of random variable (X∗
x(T )) is uniformly integrable. The proposition is

proved. □

Proposition 2.10. If (X(t)) is the Markov process associated to a binary CRN
network then the family of random variables(

X(t)
) def.
=

(
1

∥x∥
X(t/∥x∥)

)
,

is tight when x=X(0)∈Nn \ {0} goes to infinity and any of its limiting point (ℓ(t))
is a continuous process satisfying the ODE

(2.26) ℓ̇(t) =
∑
r∈R

y−
r ∈J2

κrℓs
y
−
r ,1

(t)ℓs
y
−
r ,2

(t)(y+r −y−r ).

Proof. This is a simple consequence of Proposition 2.7. □

The timescale (t/∥x∥) and the space scale 1/∥x∥ are valid for all binary CRNs
from the point of view of tightness properties. It does not mean that they are the
only ones, or the most meaningful. As it will be seen in Section 5.1, depending on
the type of initial state, it may happen that the timescales (t/

√
∥x∥) or (t) and

the space scales 1/
√
∥x∥ or 1 are appropriate for the analysis of the asymptotic

behavior of the time evolution of the CRN. The timescale (t/∥x∥) is well-suited
when there are complexes of size two and when the associated chemical species are
all in “large” number, of the order of ∥x∥. Otherwise, it may be too slow to change
the state of the CRN, so that a faster timescale has to be used.

5.1. Triangular Binary Networks. We now consider a binary CRN with
two chemical species, m=2, and three distinct complexes Ci, i=1, 2, 3, of size ≤2
and the set of routes is

R={(C1, C2), (C2, C3), (C3, C1)}.

The purpose of this section is essentially pedagogical, to show, in a simple setting,
how the ideas of Sections 3 and 4 can be used in practice, on stability and scaling
properties.

As a side result, in Section 2.D of the appendix, a proof of the positive recur-
rence of a general class of triangle topologies is given: an arbitrary set of chemical
species, an arbitrary set of three complexes, i.e. whose sizes are general, and a set of
reactions R containing the three ones from above. Proposition 2.34 of the appendix
for triangle topologies can be seen as the analogue of Theorem 7.6.1 of Feinberg
[27] for star networks. To the best of our knowledge there are few such stability
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results with arbitrary complexes. We have not been able to generalize this proof to
a CRN with more than three complexes.

S2 S1+S2

S1

κ2

κ12κ1

(a) Triangle T1

S2 S1+S2

S1∅

κ2

κ02

κ01

κ12κ1

(b) Triangle T2

Figure 2. Triangular CRNs

Note that the CRN T1 of Figure 2 is weakly reversible, with deficiency zero,
hence Anderson et al. [7] shows that its associated Markov process is positive re-
current with invariant distribution

(2.27) π(x, y)
def.
=

1

Z

ρx1
x!

ρy2
y!
, (x, y)∈S,

where S⊂N2 is the state space, S=N2\{(0, 0), (1, 0)}, Z is the normalization con-
stant and ρ1=κ2/κ12, ρ2=κ1/κ12.

The stability analysis of this CRN is revisited by using the criterion of Theo-
rem 2.3 and one of its consequences. This is, of course, not a new result for T1,
but this analysis can be done without extra-cost when each chemical species has,
in addition, an external source, as in the CRN T2 of Figure 2. This CRN is not
anymore weakly reversible, the results of [7] cannot be applied.

The associated Markov process is denoted by (XN (t))=(XN
1 (t), XN

2 (t)). We
denote by xN=(xN1 , x

N
2 ) the initial state, which is of norm N , N=xN1 +xN2 , it is

assumed that

(2.28) lim
N→+∞

(
xN1
N
,
xN2
N

)
= (α1, 1−α1),

with α1∈[0, 1].
The scalings consider three types of regions of N2 for the initial state: when the

order of magnitude of the two coordinates are respectively of the order of (N,N),

(O(
√
N), N), or (N,O(1)). It is shown that starting from a “large” state, three

timescales play a role depending on the asymptotic behavior of the initial state:

(a) t 7→ t/N , when both components of the initial state are of the order of N ,
i.e. when 0<α1<1;

(b) t 7→ t/
√
N , when α1=0 and xN1 is at most of the order of

√
N .

(c) t 7→ t, when α1=1 and xN2 is bounded by some constant K.

The boundary effects mentioned in Section 2 play a role in case c), the second
coordinate remains in the neighborhood of the origin essentially.

For each of the three regimes, the scaled norm of the state is decreasing to 0,
which is helpful to prove positive recurrence. The limit results show additionally
that the orders of magnitude in N of both coordinates do not change. In other
words the space scale is natural and not the consequence of a specific choice of the
timescale. The following proposition gives a formal statement of these assertions.

Proposition 2.11 (Scaling Analysis). Under the assumptions (2.28) on the
initial state of the CRN T1 of Figure 2,
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(a) if α1>0, then for the convergence in distribution,

(2.29) lim
N→+∞

(
XN

1 (t/N)

N
,
XN

2 (t/N)

N

)
= (xa,1(t), xa,2(t)),

where (xa,1(t), xa,2(t))=(α1, (1− α1) exp(−κ12α1t)).
(b) If α1=0 and

lim
N→+∞

xN1√
N

= β∈R+,

then, for the convergence in distribution

(2.30) lim
N→+∞

(
XN

1 (t/
√
N)√

N
,
XN

2 (t/
√
N)

N

)
= (xb,1(t), xb,2(t)),

where (xb,1(t), xb,2(t)) is the solution of the ODE

(2.31) ẋb,1(t) = κ2xb,2(t), ẋb,2(t) = −κ12xb,1(t)xb,2(t),
with (xb,1(0), xb,2(0))=(β, 1).

(c) If the initial state is xN=(N, k), for k∈N, then, for the convergence in
distribution,

(2.32) lim
N→+∞

(
XN

1 (t)

N

)
= (xc,1(t))

def.
=
(
e−κ1t

)
.

Proof. See Section 2.C.1 of the appendix. □

Stability Properties. We consider the CRN T2 of Figure 2, with external inputs
for both species. Here theorem 2.31 doesn’t apply, since the CRN is not weakly
reversible. We want to show a stability result on this CRN. It is not difficult to
see that the results of Proposition 2.11 holds in this case too since on a finite time
interval the number of external arrivals is almost surely finite and independent of
N .

Proposition 2.12. The Markov process associated to the CRN T2 of Figure 2
is positive recurrent.

Proof. Theorem 2.3 is used. We have to define the stopping time depending
on the initial state. Proposition 2.11 does not give a full partitioning of the possible
“large” initial states, some additional work has to be done. We ignore the external
arrivals, it is easily seen that similar arguments can be used. With high probability,
the stopping times chosen are smaller than the instant of the first external arrival.
There are three cases.

(1) The initial state is such that

lim
N→+∞

xN1√
N

≥ 1 and xN2 ≥ 1.

We take tN1 , the instant of the first jump of (XN (t)). Elementary calcula-
tions give the relation

lim sup
N→+∞

ExN (∥XN (tN1 )∥)− ∥xN∥ ≤ − κ12
κ12 + κ1

, and lim
N→+∞

√
NE

(
tN1
)
= 0.

(2) The initial state is xN=(N, 0).
Let, for k0∈N, τk0 be the instant when the (k0+1)th element S1 is trans-
formed into an S2. The norm of the process decreases when some of these
molecules of S2 disappear with reaction S1+S2⇀S1. The probability for
a molecule of S2 to be destroyed before a new transformation of S1 into
S2 is lower bounded by p=κ12/(κ1+κ12), therefore in average there are
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more than pk0 molecules of S2 killed before τk0
. The reaction S2⇀S1+S2

could also create some molecules during the time interval [0, τk0
]. Its rate

being bounded by κ2k0, and noting that E(τk0)≤k0/(κ1(N−k0)), it is not
difficult to show that there exists a constant C0 such that the relation

E
(
∥XN (τk0)∥

)
≤ N−k0p+k0

C0

N−k0
,

holds.
(3) The initial state is xN=(xN1 , N) with,

lim
N→+∞

xN1√
N

≤ 1.

We will use the result (b) of Proposition 2.11 and its proof in the appendix
(for the convergence of the averages), to obtain the convergence

lim
N→+∞

1

N
ExN (∥X(1/

√
N)∥) = xb,2(1)<1.

We only have to use Theorem 2.3 to conclude the proof of the proposition. □

6. Agazzi and Mattingly’s CRN

In this section, we study the chemical reaction network introduced by Agazzi
and Mattingly [4],

(2.33) ∅ κ1−⇀ S1+S2, S2
κ2−⇀ ∅, pS1+qS2

κ3−⇀ (q+1)S2
κ4−⇀ qS2,

for p, q∈N, p>2 and q≥2. In Agazzi and Mattingly [4], the constants considered
are p=5 and q=2.

The purpose of this reference is of showing that with a small modification of the
topology of this CRN, its associated Markov process can be positive recurrent, null
recurrent, or transient. The main technical part of the paper is devoted essentially
to the construction of a Lyapunov function satisfying Condition (2.1).

The continuous time Markov jump process (X(t))=(X1(t), X2(t)) associated to
CRN (2.33) has a Q-matrix given by, for x∈N2,

x −→ x+


e1+e2 κ1,

−pe1+e2 κ3x
(p)
1 x

(q)
2 ,

−e2 κ2x2+κ4x
(q+1)
2 ,

where e1, e2 are the unit vectors of N2. This process is clearly irreducible on N2,
and non explosive since ∅⇀S1+S2 is the only reaction increasing the total number
of molecules. See the proof of Proposition 2.9 for example. The fact that only
this reaction increases the norm of the state suggests that the proof of the positive
recurrence should not be an issue.

To prove this positive recurrence, see the proposition below, Agazzi and Mat-
tingly [4] use several energy functions on N2, which are polynomial functions in x1
and x2. The main technical difficulty is of gluing these functions in order to have a
global Lyapunov function for which the classical Forster-Lyapunov theorem can be
used. Note that there are also interesting null recurrence and transience properties
in this reference.

Proposition 2.13. If p>2 and q≥2, then the Markov process associated to the
CRN (2.33) is positive recurrent.

Proof. Theorem 2.3 is used with a simple energy function, the norm ∥x∥=x1+x2
of the state x=(x1, x2)∈N2. If the norm of the initial state is large enough, then
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the expected value of the norm of the process taken at a convenient stopping time
will be smaller, so that Condition (2.16) of Theorem 2.3 holds.

Step 1. As before, for n≥1, tn denotes the instant of the nth jump.

Ex (∥X(t1)∥−∥x∥) =
(
2κ1−κ2x2−(p−1)κ3x

(p)
1 x

(q)
2 −κ4x(q+1)

2

)
Ex [t1] ,

and, clearly, Ex(t1)≤1/κ1.
If either x2≥K1=1+2κ1/κ2 or q≤x2<K1 and x1≥K2=1+2κ1/((p−1)κ3q!), then

Ex (∥X(t1)∥−∥x∥) ≤ −γEx(t1),

for some γ>0. Condition (2.16) holds for this set of initial states.

Step 2. Now we consider initial states of the form xN0 =(N, b) with b<q and
N large. The third and fourth reactions cannot occur until the instant

τ1
def.
= inf{t>0 : X2(t)≥q}.

Until time τ1, the process (X2(t)) has the sample path (L(t)) of anM/M/∞ queue,
see Section 2.3, with arrival rate κ1 and service rate κ2. At time τ1 the state of the
process has the same distribution as the random variable

(N+Nκ0(0, τ1), q),

where Nκ0
is a Poisson process with rate κ0. Clearly τ1 is integrable as well as

the random variable Nκ0
(0, τ1). We have also X1(τ1∧t)=N+N 1

κ1
([0, t∧τ1]), so

E(N,b)[X1(τ1)] ≤ N+κ1C1, for some constant C1.

To summarize, starting from the initial state xN0 =(N, b) with b<q, the quanti-
ties ExN

0
(τ1) and ExN

0
(X1(τ1))−N are bounded by a constant. We are thus left to

study the following case.

Step 3. The initial state is xN0 =(N, q) with N large.
As long as X2(t)≥q, the third reaction is active, p copies of S1 are removed and

a copy of S2 is created. Initially its rate is of the order of Np, the fastest reaction
rate by far. We define ν as the number of jumps before another reaction takes
place.

ν
def.
= inf{n ≥ 1 : X(tn)−X(tn−1)̸=(−p, 1)},

P(ν>k) =
k−1∏
i=0

(
1− κ1+κ2(q+i)+κ4(q+i)

(q+1)

κ3(N−pi)(p)(q+i)(q)+κ1+κ2(q+i)+κ4(q+i)(q+1)

)
,

with the convention that q(q+1)=0. For i≥1,

κ1+κ2(q+i)+κ4(q+i)
(q+1)

κ3(N−pi)(p)(q+i)(q)+κ1+κ2(q+i)+κ4(q+i)(q+1)

≤ (κ1+κ2(q+i))(q+i)
−(q+1)+κ4

κ3(N−pi)(p)/i+(κ1+κ2(q+i))(q+i)−(q+1)+κ4
≤ iC0

(N−pi)(p)+iC0
,

for some apropriate constant C0>0. Hence, if we fix 0<δ<1/2p,

ExN
0
(ν) ≥ δNP(ν>δN) ≥ δN

(
1− δNC0

(N−p⌊δN⌋)(p)+δNC0

)⌊δN⌋

,

so that, since p>2,

(2.34) lim inf
N→+∞

1

N
ExN

0
(ν) ≥ δ.
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We define τ2=tν , obviously

ExN
0
(τ2) ≤

1

κ1
,

and we have

ExN
0
(∥X(τ2)∥−∥xN0 ∥) ≤ (1−p)ExN

0
(ν)+2 ≤ −γN,

for some γ>0 if N is sufficiently large, using Relation (2.34). Consequently is easy
to see that there is a convenient constant K such that Condition (2.16) holds for
this set of initial states and the stopping time τ2, and also for the initial states of
Step 2 and the stopping time τ1+τ2◦θτ1 . The proposition is proved. □

A Scaling Picture. The key argument of the proof of the positive recurrence
is somewhat hidden behind an estimate of the expected value of the hitting time ν
in Step 3. It is not difficult to figure out that, starting from the state (N, q), the
“right” timescale is t7→t/Np+q−1. In this section we sketch a scaling argument to
describe in more detail how the norm of the state goes to 0. It could also give an
alternative way to handle Step 3.

Define the Markov jump process (ZN (t)) = (ZN
1 (t), ZN

2 (t)) corresponding to
the last two reactions of the CRN network (2.33). Its Q-matrix is given by, for
z∈N2,

(2.35) z −→ z+

{
−pe1+e2 κ3z

(p)
1 z

(q)
2 ,

−e2 κ4z
(q+1)
2 ,

with initial state (N, q). The scaling results of this section are obtained for this
process. It is not difficult to show that they also hold for the CRN network (2.33)
since the discarded reactions are on a much slower timescale.

Define the Markov jump process (YN (t)) = (Y N
1 (t), Y N

2 (t)) whose Q-matrix is
given by, for y∈N2,

y −→ y+

{
−pe1+e2 κ3y

(p)
1 ,

−e2 κ4(y2−q),

with the same initial state. If p≥2, with the same arguments as in the proof of
Proposition 2.11 (see Section 2.C.1 of the appendix), it is not difficult to show the
convergence in distribution

(2.36) lim
N→+∞

(
1

N

(
Y N
1 , Y N

2

)( t

Np−1

))
= (y1(t), y2(t))

def.
=

(
1

p−1
√
p(p−1)κ3t+1

,
1−y1(t)

p

)
From this convergence we obtain that for any η∈(0, 1/p), the hitting time HN

Y (η)
of ⌊ηN⌋ by (Y N

2 (t)) is such that (Np−1HN
Y (η)) converges in distribution to some

constant.
For t≥0, define the stopping time

τNt = inf

{
s>0 :

∫ s

0

1

Y N
2 (u)(q)

du ≥ t

}
,

and (Z̃N (t))=(Y N (τNt )), then it is easy to check that (Z̃N (t)) is a Markov process
whose Q-matrix is given by Relation (2.35). See Section III.21 of Rogers and

Williams [68] for example. Consequently, (Z̃N (t)) has the same distribution as
(ZN (t)).
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Proposition 2.14. If p, q≥2, (XN (0))=(⌊δN⌋, ⌊(1−δ)N/p⌋), for some δ∈(0, 1),
then for the convergence in distribution

lim
N→+∞

(
1

N
XN

(
t

Np+q−1

))
= (x1(t), x2(t))=

((
y1,

1−y1
p

)(
ϕ−1(t)

))
,

with

(y1(t)) =

(
δ

p−1
√
p(p−1)δp−1κ3t+1

)
and ϕ(t)

def.
=

∫ t

0

pq

(1−y1(s))q
ds.

Proof. As mentioned above, from this initial state and this timescale, the
processes (ZN (t)) and (XN (t)) have the same asymptotic behavior for values of the
order of N . The proof uses the convergence (2.36) and the time-change argument
described above. □

The above proposition shows that on a convenient timescale, both coordinates
of (XN (t)) are of the order of N . The scaled version of the first one is converging
to 0, while the second component is increasing.

If Y N (0)=(⌊δN⌋, ⌊(1−δ)N/p⌋), for some δ>0, let

HN = inf{t>0 : Y N
1 (t) ≤ p

√
N}.

By writing the evolution of (Y N (t)) in terms of an SDE like Relation (2.4), one
easily obtains,

E(Y N
1 (HN∧t)) = ⌊δN⌋−pκ3 E

(∫ HN∧t

0

Y N
1 (s)(p) ds

)

≤ ⌊δN⌋−pκ3
(

p
√
N
)(p)

E
(
HN∧t

)
,

hence, by using the monotone convergence theorem, we obtain that

E
(
HN

)
≤ ⌊δN⌋
pκ3(

p
√
N)(p)

, hence, sup
N
E
(
HN

K

)
< +∞,

since p≥2. It is easily seen that the same property holds for (XN
1 (t)).

To finish the description of the return path to (0, 0), we can assume therefore

that XN (0)=(⌊ p
√
N⌋, N). It is not difficult to see that the reaction (q+1)S2

κ4−⇀ qS2

is driving the evolution as long as (XN
2 (t)) is “large” since (XN

1 (t)) cannot grow
significantly on the corresponding timescale. More formally, also with the same
arguments as in Section 2.11, the convergence in distribution

lim
N→+∞

(
1

N

(
XN

1 , X
N
2

)( t

Nq

))
=

(
0,

1
q
√
1+κ4qt

)
holds.

7. A CRN with Slow and Fast Timescales

In this section, the positive recurrence and scaling properties of the following
interesting CRN are investigated

(2.37) ∅ κ0−⇀↽−
κ1

S1+S2, pS1+S2
κ2−⇀↽−
κ3

pS1+2S2,

with p≥2. This is an important reference example introduced and discussed from
the point of view of its stability properties in Agazzi et al. [2] for p=2. It shows how
boundary effects can complicate the verification of a Lyapunov criterion. In [2], the
energy function used for the entropy function. We show how Condition 2.2 can be
used for positive recurrence and that a scaling analysis gives an interesting insight
for the time evolution of this CRN.
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This CRN exhibits several distinctive features of chemical reaction networks. It
provides an important example of a non-trivial CRN for which the results and ideas
of Section 4 and Section 3 can be used together with time change arguments, and
all of that within a (quite) limited technical framework. For this reason, we have
chosen to develop completely the technical arguments used. The results obtained
are interesting in their own right in fact.

Section 7.1 investigates the positive recurrence properties. It is an occasion to
have an other look at the choice of a Lyapunov function in view of Condition 2.16
of Theorem 2.3. Section 7.2 considers the limiting behavior of the sample paths of
the CRN with a large initial state close to one of the axes. As it can be expected,
in both sections boundary effects play a very important role: the second reaction
cannot occur if there are less than p copies of S1, and if the number of copies of S2

is zero, only external arrivals change the state of the CRN.
The Markov process (X(t)) = (X1(t), X2(t)) associated to this CRN has a

Q-matrix Q given by, for x∈N2,

x −→ x+

{
e1+e2 κ0,

−e1−e2 κ1x1x2,
x −→ x+

{
e2 κ2x

(p)
1 x2,

−e2 κ3x
(p)
1 x

(2)
2 ,

where e1, e2 are the unit vectors of N2.
By using the SDE formulation of Section 2.4 of the appendix, the associated

Markov process can be represented by the solution (X(t))=(X1(t), X2(t)) of the
SDE

(2.38)


dX1(t) = PX,0((0, κ0),dt)−PX,1((0, κ1X1X2(t−)),dt),

dX2(t) = PX,0((0, κ0),dt)−PX,1((0, κ1X1X2(t−)),dt)

+PX,2

((
0, κ2X

(p)
1 X2(t−)

)
,dt
)

−PX,3

((
0, κ3X

(p)
1 X

(2)
2 (t−)

)
,dt
)
,

where PX,i, i∈{0, 1, 2, 3}, are fixed independent Poisson processes on R2
+ with inten-

sity measure ds⊗dt. A notation of this kind PA or PA,i will be used for several A in
the following, with the same assumptions on the distribution and the independence
properties.
A slow return to 0. The reactions of the second linkage class of this CRN need p
copies of S1 to be active. If the initial state is (0, N), copies of S1 are created at rate
κ0, but they are removed quickly at a rate greater than κ1N . The first instant when
p copies of S1 are present has an average of the order of Np−1. See Lemma 2.16.
At that instant, the number of S2 species is N+p, and the second coordinate can
then decrease, quickly in fact. The network exhibits a kind of bi-modal behavior
due to this boundary condition.

Starting from the initial state x=(0, N), the time to decrease (X2(t)) by an
amount of the order of N has thus an average of the order of ∥N∥p−1. When
p>2 and if we take the usual norm ∥ · ∥ as a Lyapunov function, this results is at
odds with one of the conditions of positive recurrence criterion of Proposition 2.6.
This problem could in fact be fixed at the cost of some annoying technicalities.
Our approach will be of taking another simple, and somewhat natural, Lyapunov
function. See Section 7.1. An initial state of the form (N, 0) leads also to another
interesting boundary behavior.

7.1. Positive Recurrence.

Proposition 2.15. The Markov process (X(t)) is positive recurrent.

Theorem 2.3 is used to prove this property. The proof is not difficult but it
has to be handled with some care. We will introduce two auxiliary processes with
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which the process (XN (t)) can be decomposed. One describes the process when
the first coordinate is below p and the other when the second coordinate is greater
or equal to 1. This representation gives a more formal description of the bi-modal
behavior mentioned above. Additionally, it will turn out to be helpful to establish
the scaling properties of this CRN in Section 7.2. For x=(x1, x2)∈N2, we introduce

(2.39) fp(x)=x1+x
p
2,

fp will be our Lyapunov function. The strategy is of analyzing separately the two
boundary behaviors. The first one is essentially associated with the initial state
(0, N) which we have already seen. The other case is for an initial state of the form
(N, 0), the problem here is of having the second coordinate positive sufficiently
often so that reaction S1+S2 ⇀ ∅ can decrease significantly the first coordinate.

7.1.1. Large Initial State along the Horizontal Axis. In this section it is assumed
that the initial state is x(0)=(x01, b), where b∈N is fixed and x01 is “large”. Without
loss of generality one can assume b>0, otherwise nothing happens until an external
arrival.

As long as the second coordinate of (X(t)) is non-null the transitions associated
to PX,i, i=2, 3 occur at a fast rate. When (X2(t)) is 0, only one chemical reaction
may happen, external arrivals and at a “slow” rate κ0.

We define by induction the non-increasing sequence (Tk) as follows, T0=0, and

Tk+1 = inf{t>Tk : X1(t)−X1(t−)=−1}.

The variables (Tk) are stopping times for the underlying filtration (Ft) defined as
in the appendix, see Relation (2.11).

For t>0, by using the fact that the Poisson process PX,i, i=1, 2, 3 are inde-
pendent and (X2(t)) is greater than 1 until T1 at least, we have

P(T1≥t) ≤ E
(
exp

(
−κ1x01

∫ t

0

X2(s) ds

))
≤ exp

(
−κ1x01t

)
,

hence E(T1)≤1/(κ1x
0
1). Similarly, with the strong Markov property, for 1≤k<x01,

E(Tk+1−Tk)≤
1

κ0
+

1

κ1(x01−k)
,

the additional term 1/κ0 comes from the fact that X2(Tk) can be zero, so that one
has to wait for an exponential time with parameter κ0 to restart the CRN.

For n0≥1, we have seen that the random variable Tn0
is stochastically bounded

by the sum of 2n0 i.i.d. exponentially distributed random variables with some
positive rate, hence

C0
def.
= sup

x0
1>n0

Ex0
1
(Tn0) < +∞

Let E1 be the event when PX,1 has a jump before PX,0 in SDE (2.38), then

P(Ec
1)≤

κ0
κ1x01+κ0

.

Similarly, for k≥2, Ek is a subset of the event Ek−1 for which PX,1 has a jump before
PX,0 after the first time after Tk when (X2(t)) is greater than 1, then

(2.40) Px0
1
(Ec

k)≤
k−1∑
i=0

κ0
κ1(x01−i)+κ0

≤ κ0k

κ1(x01−k)+κ0
.

Let s1 be the first instant of jump of PX,0((0, κ0)×(0, t]). From t=0, as long as
the point process PX,0, does not jump in SDE (2.38), that is, on the time interval
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[0, s1], up to a change of time scale t 7→X1X2(t), the process (X1(t), X2(t)) has the
same sequence of visited states as the solution (Y (t)) of the SDE

(2.41)


dY1(t) = −PX,1((0, κ1),dt),

dY2(t) = −PX,1((0, κ1)),dt)

+PY,2

((
0, κ2Y1(t−)(p)−1

)
,dt
)

−PY,3

((
0, κ3Y

(p)−1
1 (Y2(t−)−1)+

)
,dt
)
,

with the same initial state and the slight abuse of notation y(p)−1=y(p)/y. In par-
ticular if u1 is the first instant when (Y1(t)) has a downward jump, an independent
exponential random variable with parameter κ1, then the relation Y2(u1)=X2(T1)
holds on the event {T1≤s1}.

From t=0, as long as the first coordinate of (Y1(t)) does not change, the second
component (Y2(t)) has the same distribution as (Lb((x

0
1)

(p)−1t)), where (Lb(t)) is
a birth and death process with birth rate κ2 and death rate κ3(x−1) in state x≥1
and initial state b. It is easily seen that it is a positive recurrent Markov process
and that (E(Lb(t)

p)) is a bounded function. Consequently,

(2.42) sup
x(0)

E (X2(T1)
p) ≤ C1<+∞,

by induction, the same result holds for Tn0
for a convenient constant C1.

Note that if X2(T1−)=1, the next reaction happening after T1 will be ∅⇀ S1+
S2, and therefore the jump downward of X1 will be canceled. A decrease at time T1
of (XN

1 (t)) is sustainable if it happens when X2(T1−) ≥ 2 i.e. if Lb((x1)
(p)−1u1)̸=0.

It is not difficult to construct a coupling with (L0(t)), a birth and death process
starting at 0, such that Lb(t)≥L0(t) holds for all t≥0. The convergence of (L0(t))
to equilibrium gives the existence of K0≥0 and η0>0 such that if x01≥K0 then
P(L0((x1)

(p)−1u1)>0)≥η0.
We can gather these results, and the stochastic bound on Tn0

, to get the rela-
tions

Ex(0)(fp(X(Tn0
)))−fp(x(0)) ≤ −n0η0Px(0)(En0

)

+ Ex(0)

(
PX,0

(
(0, κ0)×(0, Tn0

]1{Ec
n0
}
))

+ E (X2(Tn0
)p)−bp

≤ −η0n0 + n0η0Px(0)(Ec
n0
)+κ0C0+C1.

One first choose n0 so that n0>3(κ0C0+C1)/η0 and then with Relation (2.40),
K1≥K0 such that n0η0PK1

(Ec
k)<(κ0C0+C1). We obtain therefore that if x01>K1,

then

(2.43) Ex(0) (fp (X(Tn0))−fp(x(0))) ≤ −δ,

for some δ>0 and sup(Ex(0)(Tn0
) : x1≥K)<+∞. Relation (2.43) shows that Condi-

tion (2.16) of Theorem (2.3) is satisfied for our Lyapunov function fp and stopping
time Tn0

for the initial state of the form (x01, b).
7.1.2. Initial State with a Large Second Component. In this section it is as-

sumed that the initial state is x(0)=(a, x02) with a<p and x02 is large. We note
that, as long as (X1(t)) is strictly below p, the two coordinates experience the same
jumps, the quantity (X2(t)−X1(t)) does not change. For this reason, for x≥0 and
k≤p − 1, we introduce a process (Z(k, x, t)) which will be used to express (X(t))
when its first coordinate is less than p−1. It is the solution of the SDE

(2.44) dZ(k, x02, t) = Nκ0
(dt)−PZ((0, κ1Z(k, x

0
2, t−)(x02−k+Z(k, x02, t−)))),dt),

with Z(k, x02, 0)=k and PZ is a Poisson process on R2
+.
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Setting for z < p

TZ(z, x
0
2)

def.
= inf{t>0 : Z(z, x02, t)=p},

if X(0)=(0, x02), then it is easily seen that the relation

(X(t∧TZ(0, x02)))
dist.
= (Z(0, x02, t∧TZ(0, x02)), x02+Z(0, x02, t∧TZ(0, x02)))

holds by checking the jump rates.
We define, for x=(x1, x2)∈N2,

λ(x) = κ0+κ1x1x2+κ2x
(p)
1 x2+κ3x

(p)
1 x

(2)
2 ,

it is the total jump rate of (X(t)) in state x.

Lemma 2.16. For x01≥κ0/(κ1p),

lim sup
x0
2→+∞

E(TZ(0, x02))
(x02)

p−1
≤ C2,

for some constant C2.

Proof. A simple coupling shows that the process (Z(0, x, t) stopped at time
TZ(0, x) is lower bounded by a birth and death process (U(t)) starting at 0 with, in
state x, a birth rate κ0 and a death rate a1=κ1p(x+ p). Denote by H the hitting
time of p by (U(t)), then it is easily seen, that, for 0<k<p,

(Ek(H)−Ek+1(H)) =
a1
κ0

(Ek−1(H)−Ek(H)) +
1

κ0
,

with E0(H)−E1(H)=1/κ0.In particular E(TZ(0, x))≤E0(H). We derive the desired
inequality directly from this relation. □

(a) If x1≥p.
Define

C1
def.
= sup

x2≥1

(
(x2+p)

(p)−(x2)
(p)

xp−1
2

)
< +∞

and

τ1
def.
= inf{t>0 : ∆X1(t)+∆X2(t) ̸= −1},

where ∆Xi(t)=Xi(t)−Xi(t−), for i∈{1, 2} and t≥0. The variable τ1 is the
first instant when a reaction other than pS1+2S2 ⇀ pS1+S2 occurs.

For 1≤k0<x2, then

Px(0)(X2(τ1) ≤ x2−k0 − 1) ≥
k0∏
i=0

κ3x
(p)
1 (x2−i)(2)

λ((x1, x2−i))
≥ pk0

def.
=

k0∏
i=0

κ3p
(p)(x2−i)(2)

λ((p, x2−i))

and there exists Kk0≥k0 such that if x2≥Kk0 , then

(x2−k0)(p)−(x2)
(p) ≤ −k0

2
xp−1
2 and pk0

≥ 1

2
,

from these relations, we obtain the inequality

(2.45) Ex(0) (fp (X(τ1))−fp(x)) ≤ 1+
(
(x2−k0)(p)−x(p)2

)
pk0+

(
(x2+1)(p)−x(p)2

)
≤
(
−k0

4
+1+C1

)
xp−1
2 .

We choose k0=⌈4(3+2C1)⌉, hence, for x2≥Kk0
the relation

Ex(0) (fp (X(τ1))−fp(x)) ≤ −2xp−1
2 .

holds, and note that E(τ1)≤1/κ0.
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(b) If x1≤p−1.
Define

τ0 = inf{t>0 : X1(t)≥p},
When x1 = 0, the variable τ0 has the same distribution as TZ(0, x2),
otherwise it is easily seen that Ex(0)[τ0] ≤ E[TZ(0, x2)]. Lemma 2.16 gives
therefore a constant C2 > 0 so that

sup
x2≥Kk0

(
Ex(τ0)

xp−1
2

)
< C2.

The state of the process at time τ0 is X(τ0)=(p, x2+(p−x1)), in particular

Ex(0) (fp(X(τ0))−fp(x)) ≤ p+C1x
p−1
2 ,

and at that instant, we are in case a).

The convenient stopping time is defined as τ2
def.
= τ0+τ1(θτ0). With k0

and Kk0 as before, if x2≥Kk0 , by using Relation (2.45), we obtain the
inequality

Ex [f(X(τ2))− f(x)] ≤ p+C1x
p−1
2 +E(p,x2+(p−x1)) [f(X(τ1))− f(x)]

≤ p+C1x
p−1
2 +

(
−k0

4
+1+C1

)
(x2 + (p− x1))

p−1 ≤ −xp−1
2

holds.

Proof of Proposition 2.15. Theorem 2.3 can be used as a consequence of
a), b), and Relation (2.43). □

7.2. A Scaling Picture. We investigate the scaling properties of (XN (t))
when the initial state is of the form (N, 0) or (0, N) essentially. In the first case, an
averaging principle is proved on a convenient timescale. A time change argument
is an important ingredient to derive the main limiting result. In the second case,
the time evolution of the second coordinate of the process is non-trivial only on
“small” time intervals but with a “large” number of jumps, of the order of N .
This accumulation of jumps has the consequence that the convergence of the scaled
process cannot hold with the classical Skorohod topology on D(R+). There are
better suited topologies to handle this kind of situation. To keep the presentation
simple, we have chosen to work with the weaker topology in the space of random
measures, for the occupation measures of the sequence of scaled processes.

7.2.1. Horizontal Axis. For N≥1, the initial state is (xN1 , b), b∈N is fixed, it is
assumed that

(2.46) lim
N→+∞

xN1
N

= α1>0.

When the process (X2(t)) hits 0, it happens only for a jump of PX,1, all reactions
but one are inactive. One has to wait for a jump of Nκ0 to restart the activity of
the CRN.

We introduce the process (YN (t))=(Y N
1 (t), Y N

2 (t)), solution of the SDE,

(2.47)


dY N

1 (t) = Nκ0
(dt)−1{Y N

2 (t−)>1}PY,1((0, κ1Y
N
1 Y N

2 (t−)),dt),

dY N
2 (t) = Nκ0

(dt)−1{Y N
2 (t−)>1}PY,1((0, κ1Y

N
1 Y N

2 (t−)),dt)

+PY,2

((
0, κ2(Y

N
1 )(p)Y N

2 (t−)
)
,dt
)

−PY,3

((
0, κ3(Y

N
1 )(p)Y N

2 (t−)(2)
)
,dt
)
,

with initial condition (Y N
1 (0), Y N

2 (0))=(xN1 , b).
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The process (YN (t)) behaves as (X(t)) except that its second coordinate cannot
be 0 because the associated transition is excluded. In state (x, 1) for (X(t)), if the
Poisson process PX,1 “rings” in Relation (2.38), the state becomes (x−1, 0). It stays
in this state for a duration which is exponentially distributed with parameter κ0
after which the state of (X(t)) is back to (x, 1). These time intervals during which
(X2(t)) is 0 are, in some sense, “wiped out” to give (YN (t)). This can be expressed
rigorously via a time change argument. See Chapter 6 of Ethier and Kurtz [24] for
example.

Now the strategy to obtain a scaling result for (XN
1 (t) is of establishing a limit

result for (YN (t)) and, with an appropriate change of timescale, express the process
(XN

1 (t)) as a “nice” functional of (YN (t)).
Define (

Y
N

1 (t)
)
=

(
Y N
1 (t)

N

)
and ⟨µN , f⟩

def.
=

∫ +∞

0

f(s, Y N
2 (s)) ds,

if f is a function on R+×N with compact support, µN is the occupation measure
associated to (Y N

2 (t)). See Kurtz [55].

Proposition 2.17. The sequence (µN , (Y
N

1 (t))) is converging in distribution
to a limit (µ∞, (y∞(t)) defined by

⟨µ∞, f⟩ =
∫
R+×N

f(s, x)πY (dx) ds,

if f∈Cc(R+×N), the function (y∞(t)) is given by

(2.48) y∞(t) = α1 exp

(
−κ1κ2

κ3
t

)
for t≥0,

and πY is the distribution on N\{0} defined by, for x≥1,

πY (x) =
1

x!

(
κ2
κ3

)x
1

eκ2/κ3−1
.

Proof. The proof is quite standard. Because of the term Y N
1 (t)(p) in the SDE

of the process (Y N
2 (t)), the only (small) difficulty is to take care of the fact that

(Y N
1 (t)) has to be of the order of N , otherwise (Y N

2 (t)) may not be a “fast” process.
We give a sketch of this part of the proof.

Let a, b∈R+ such that 0<a<α1<b, and

SN = inf
{
t>0, X

N

1 (t)̸∈(a, b)
}
.

Let (L(t)) a birth and death process on N, when in state y≥1, its birth rate is
βy and the death rate is δy(y−1), with β=(κ0+κ2b

p) and δ=κ3a
p. Its invariant

distribution is a Poisson distribution with parameter β/δ conditioned to be greater
or equal to 1.

If N is sufficiently large, we can construct a coupling of (Y N
2 (t)) and (L(t)),

with L(0)=Y N
2 (0) and such that the relation

Y N
2 (t)≤L(Npt)

holds for t∈[0, SN ).
For t>0,

Y N
1 (t)

N
≥ xN1

N
−κ1

∫ t

0

Y N
1 (s)Y N

2 (s) ds−MN
Y (t),

where (MN
Y (t)) is the martingale given by(

1

N

∫ t

0

1{Y N
2 (s−)>1}

[
PY,1((0, κ1Y

N
1 (s−)Y N

2 (s−)),ds)−κ1Y N
1 (s)Y N

2 (s)) ds
])

,
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we have

(2.49)
Y N
1 (t∧SN )

N
≥ xN1

N
−κ1b

∫ t

0

L(Nps),ds+MN
Y (t∧SN ),

and 〈
MN

Y

〉
(t∧SN ) ≤ b

N

∫ t

0

L(Nps) ds.

By the ergodic theorem applied to (L(t)), almost surely

lim
N→+∞

∫ t

0

L(Nps) ds = lim
N→+∞

∫ t

0

E(L(Nps)) ds

= lim
N→+∞

1

Np

∫ Npt

0

L(s),ds =
β

δ

t

1− exp(−β/δ)
.

We deduce that (MN
Y (t), t ≤ η) is converging in distribution to 0 by Doob’s In-

equality and, with Relation (2.49), that there exists η>0 such that

(2.50) lim
N→+∞

P(SN>η) = 1.

For ε>0 and K>0,

E(µN ([0, η]×[K,+∞])) ≤ E

(∫ η∧SN

0

1{Y N
2 (s)≥K} ds

)
+ηP(SN ≤ η)

≤ E
(∫ η

0

1{L(Nps)≥K}

)
+ηP(SN ≤ η),

again with the ergodic theorem and Relation (2.50), there exists some N0 and
K>0 such that E(µN ([0, η]×[K,+∞]))≤ε. Lemma 1.3 of Kurtz [55] shows that the
sequence of random measures (µN ) on R+×N restricted to [0, η]×N is tight.

From there and in the same way as in Section 2.C.1.2, it is not difficult to
conclude the proof of the proposition, on [0, η] and extend by induction this result
on the time interval [0, kη], for any k≥1. □

Let N be a Poisson process on R3
+, independent of the Poisson processes (PY,i),

whose intensity measure is ds⊗dt⊗κ0 exp(−κ0a) da. Recall that such a point pro-
cess has the same distribution as ∑

n≥0

δ(sn,tn,En),

where (sn) and (tn) are independent Poisson processes on R+ with rate 1 indepen-
dent of the i.i.d. sequence (En) of exponential random variables with parameter
κ0. See Chapter 1 of [67].

Definition 2.18 (Time Change). Define the process (AN (t)) by

AN (t)
def.
=

(
t+

∫
[0,t]×R+

a1{Y N
2 (s−)=1}N ((0, κ1Y

N
1 (s−)Y N

2 (s−)),ds,da)

)
,

and its associated inverse function as

BN (t)
def.
= inf {s > 0 : AN (s) ≥ t} .

The instants of jump of (AN (t)) correspond to the case when (Y N
2 (t)) could

switch from 1 to 0 for the dynamic of (XN
2 (t)) and the size of the jump is the

duration of time when (XN
2 (t)) stays at 0, its distribution is exponential with

parameter κ0.
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The process (AN (t)) gives in fact the correct timescale to construct the process

(XN (t)) with the process (YN (t)). We define the process (X̃N (t)) on N2 by, for
t≥0,

(2.51)


X̃N (AN (t)) = YN (t),(
X̃N

1 (u), X̃N
2 (u)

)
=
(
Y N
1 (t−)−1, 0

)
, u∈[AN (t−), AN (t)).

If t is a jump instant of (AN (t)), the process does not change on the time interval

[AN (t−), AN (t)). In this way, (X̃N (t)) is defined on R+.

Lemma 2.19. For t>0, then AN (BN (t))=t if t is not in an interval [AN (u−), AN (u))
for some u>0, and the relation

sup
t≥0

|X̃N (t)−YN (BN (t))| ≤ 1

holds.

Proof. This is easily seen by an induction on the time intervals [AN (sn), AN (sn+1)),
n≥0, where (sn) is the sequence on instants of jump of (AN (t)), with the convention
that s0=0. □

Proposition 2.20. The processes (XN (t)) and (X̃N (t)) have the same distri-
bution.

Proof. The proof is standard. The Markov property of (X̃N (t)) is a conse-
quence of the Markov property of (YN (t)) and the strong Markov property of the

Poisson process N . It is easily checked that the Q-matrices of (XN (t)) and (X̃N (t))
are the same. □

Proposition 2.21. For the convergence in distribution,

(2.52) lim
N→+∞

(
AN (t)

N

)
= (a(t))

def.
=

(
α1

1

κ0(eκ2/κ3 − 1)

(
1− exp

(
−κ1κ2

κ3
t

)))
.

Proof. Let T > 0. By using the fact that, for 0≤u≤T , the relation

Y N
1 (u)≤xN1 +PY,1((0, κ0)×(0, T ])

holds, the sequence of processes(
1

N

∫ t

0

κ1
κ0
1{Y N

2 (u)=1}Y
N
1 (u) du

)
is thus tight by the criterion of modulus of continuity. See Theorem 7.3 of Billingsley
[14] for example. Proposition 2.17 shows that its limiting point is necessarily (a(t)).

We note that the process

(MA,N (t)) =

(
1

N

(
AN (t)− t− κ1

κ0

∫ t

0

1{Y N
2 (u)=1}Y

N
1 (u) du

))
,

it is a square integrable martingale whose predictable increasing process is

(⟨MA,N ⟩ (t)) =
(

κ1
κ0N

∫ t

0

1{Y N
2 (u)=1}

Y N
1 (u)

N
du

)
.

The martingale is vanishing as N gets large by Doob’s Inequality. The proposition
is proved. □
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Proposition 2.17 establishes a limit result for the sequence of processes (Y N
1 (t)/N).

In our construction of (XN
1 (t)), time intervals, whose lengths have an exponen-

tial distribution, are inserted. During these time intervals the coordinates do not
change. To have a non-trivial limit result for (XN

1 (t)/N), the timescale of the
process has clearly to be sped-up. It turns out that the convenient timescale for
this is (Nt), this is a consequence of the convergence in distribution of (AN (t)/N)
established in Proposition 2.21.

Proposition 2.22. For the convergence in distribution, the relation

(2.53) lim
N→+∞

(
BN (Nt), t<t∞

)
= (a−1(t))

=

(
− κ3
κ1κ2

ln

(
α1−κ0(eκ2/κ3−1)t

α1

)
, t<t∞

)
,

holds, where (a(t)) is defined in Proposition 2.21 and

t∞ =
α1

κ0(exp(κ2/κ3)−1)
.

Proof. Note that both (AN (t)) and (BN (t)) are non-decreasing processes and
that the relation AN (BN (t))≥t holds for all t≥0.

We are establishing the tightness property with the criterion of the modulus of
continuity. The constants ε>0, η>0 are fixed. For 0<T<t∞ we can choose K>0
sufficiently large so that a(K)>T and we define

hK= inf
s≤K

(a(s+η)−a(s)) ,

clearly hK>0. By definition of (BN (t)), we have

P(BN (NT )≥K) = P
(
AN (K)

N
≤ T

)
.

The convergence of Proposition 2.21 shows that there exists N0 such that if N≥N0,
the right-hand side of the last relation is less that ε and that

(2.54) P
(

sup
0≤u≤K

∣∣∣∣AN (u+η)−AN (u)

N
−(a(u+η)−a(u))

∣∣∣∣ ≥ hK
2

)
≤ ε

holds.
For η>0, and 0≤s≤t≤T , if BN (Nt)−BN (Ns)≥η holds, then

AN (BN (Ns)+η)−AN (BN (Ns)) ≤ N(t−s)
and if δ≤hK/4, for N≥N0,

P

 sup
0≤s≤t≤T
t−s≤δ0

|BN (Nt)−BN (Ns)| ≥η


≤ ε+P

(
inf

0≤u≤K

(
AN (u+η)

N
−AN (u)

N

)
≤ hK

4

)
≤ 2ε,

by Relation (2.54). The sequence of processes (BN (Nt)) is therefore tight and any
of its limiting points is a continuous process. The convergence of Proposition 2.21
shows that a limiting point has the same finite marginals as the right-hand side of
Relation (2.53). The proposition is proved. □

Theorem 2.23. If (XN (t))=(XN
1 (t), XN

2 (t)) is the Markov process associated
to the CRN (2.37) whose initial state is (xN1 , b)∈N2, b∈N and

lim
N→+∞

xN1 /N = α1>0,
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then, the convergence in distribution

lim
N→+∞

(
XN

1 (Nt)

N
, t<t∞

)
=

(
1− t

t∞
, t<t∞

)
.

holds, with t∞=α1/(κ0(exp(κ2/κ3)−1)).

Proof. Proposition 2.17 and 2.22 show that the sequence of processes((
YN (t)

N
, t>0

)
, (BN (Nt), t<t∞)

)
is converging in distribution to ((y∞(t)), (a−1(t), t<t∞)). Consequently, the relation

lim
N→+∞

(
YN (BN (Nt))

N
, t<t∞

)
=
(
y∞
(
a−1(t)

)
, t<t∞

)
holds for the convergence in distribution. We conclude the proof of the proposition
by using Lemma 2.19. □

7.2.2. Vertical Axis. For N≥1, the initial state is xN (0)=(a, xN2 ), it is assumed
that a<p and

(2.55) lim
N→+∞

xN2
N

= 1.

As seen in Section 7.1.2 when the first coordinate is strictly less than p, with a
second coordinate of the order of N , it takes an amount of time of the order of
Np−1 for the process (XN

1 (t)) to hit p. See Lemma 2.16. In a second, short phase,
a decrease of the second coordinate takes place before returning below p. We now
establish two limiting results

Lemma 2.24. If (Z(z,N, t)) is the solution of the SDE (2.44) with initial state
z<p, and TZ(z,N) is its hitting time of p then, the sequence (TZ(z,N)/Np−1)
converges in distribution to an exponential random variable with parameter

(2.56) r1
def.
=

κ0
(p−1)!

(
κ0
κ1

)p−1

.

Proof. The proof is standard. It can be done by induction on p≥2 with the
help of the strong Markov property of (Z(z,N, t)) for example. □

We now study the phase during which (XN
1 (t)) is greater or equal to p. Define

(TN
k ) the non-decreasing sequence of stopping time as follows, TN

0 =0 and, for k≥0,

(2.57) TN
k+1 = inf{t≥TN

k : XN
1 (t)=p−1, XN

1 (t−) = p}.

Proposition 2.25 (Decay of (XN
2 (t))). Under Assumption 2.55 for the initial

condition, for the convergence in distribution

lim
N→+∞

(
XN

2 (TN
1 )

XN
2 (0)

,
TN
1

XN
2 (0)p−1

)
dist.
=
(
Uδ1 , E1

)
,

where U is a uniform random variable on [0, 1], independent of E1 an exponential
random variable with parameter r1 defined by Relation (2.56), and

(2.58) δ1
def.
=

κ3(p−1)!

κ1
.

Proof. Let HN be the hitting time of p for (XN
1 (t)), HN has the same dis-

tribution as TZ(k, x
N
2 ). Its asymptotic behavior is given by Lemma 2.24. Since

the reactions pS1+S2⇌pS1+2S2 are inactive on the time interval [0, HN ], we have

XN
2 (HN )=xN2 +p−a def.

= xτ2 . Let τN such that HN+τN is the first instant when
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(XN
1 (t)) returns to p−1. With the strong Markov property the time origin is trans-

lated to HN , it is enough to study the asymptotic behavior of XN
2 (τN ) starting

from xτ2 .
It is not difficult to see that, with high probability external arrivals do not

play a role during the time interval [0, τN ) simply because the other reaction rates
are of the order of N or N2. We will ignore them. We can therefore assume that
XN

1 (s) = p until τN . In the same way it is easily seen that the sequence of random
variables (NτN ) is tight.

After time 0, the transition x→x−e2 occurs until time τ1,N when one of the
other reactions happens. Since we are interested at the final value XN

2 (τ1,N ), mod-
ulo a time change, it is equivalent to look at the Markov process with Q-matrix

x −→ x+


−e1−e2 κ1,

e2 κ2(p−1)!,

−e2 κ3(p−1)!(x2−1)+,

When x→x−e1−e2 or x→x+e2 occurs, i.e. after an exponentially random variable
F1 with parameter κ1+κ2(p−1)!, the state of (X2(t)) at this instant is

XN
2 (τ1,N−)

dist.
=

xτ
2∑

i=1

1{Ei≥F1},

where (Ei) is an i.i.d. sequence of exponential random variables with parameter
κ3(p−1)!, and

∣∣XN
2 (τ1,N )−XN

2 (τ1,N−)
∣∣ ≤ 1. For the convergence in distribution,

lim
N→+∞

XN
2 (τ1,N )

XN
2 (0)

= exp (−κ3(p−1)!F1) .

The transition x→x−e1−e2 occurs at time τ1,N with probability 1−q1, with

q1=
κ2(p−1)!

κ1+κ2(p−1)!
,

and in this case τN=τ1,N . Otherwise, there is a new cycle of length τ2,N and that

lim
N→+∞

XN
2 (τ1,N )+τ2,N )

XN
2 (0)

= exp (−κ3(p−1)!(F1+F2)) ,

where (Fi) is an i.i.d. sequence with the same distribution as F1. By induction we
obtain the convergence in distribution

lim
N→+∞

XN
2 (τN )

XN
2 (0)

= exp

(
−κ3(p−1)!

G∑
1

Fi

)
,

where G is a random variable independent of (Fi) with a geometric distribution
with parameter q1, P(G≥n)=qn−1

1 for n≥1. Trivial calculations gives the desired
representation. □

In view of the last result it is natural to expect that the convergence of the
scaled process (XN

2 (t/Np−1)/N to a Markov process with jumps. The only problem
is that, as we have seen in the last proof, the jumps downward of the limit process
are due to a large number of small jumps downwards, of the order of N , on the time
interval of length τN of the previous proof. Event if τN is arbitrarily small when
N gets large, there cannot be convergence in the sense of the classical J1-Skorohod
topology. There are topologies on the space of càdlàg functions D(R+) for which
convergence in distribution may hold in such a context. See Jakubowski [44] for
example. For the sake of simplicity, we present a convergence result formulated for
a weaker topology expressed in terms of occupation measures.
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We now introduce a Markov process on (0, 1] as the plausible candidate for a
limiting point of (XN

2 (t/XN
2 (0)p−1)/N .

Definition 2.26. The infinitesimal generator A of a Markov process (U(t))
on (0, 1] is defined by, for f∈Cc((0, 1]),

(2.59) A(f)(x) =
r1
xp−1

E
(
f
(
xV δ1

)
−f(x)

)
, x∈(0, 1],

where r1, δ1 are constants defined by Relations (2.56) and (2.58), and V is a uni-
form random variable on [0, 1].

Analytically the operator A can be expressed as

A(f)(x) =
r1
xp−1

∫ 1

0

(
f
(
xuδ1

)
−f(x)

)
du, x∈(0, 1].

Proposition 2.27. If (U(t)) is a Markov process on (0, 1] with infinitesimal
generator A, then, with probability 1, it is an explosive process converging to 0.

Proof. Assume that U(0)=α∈(0, 1]. By induction, the sequence of states
visited by the process has the same distribution as (Vn) with, for n≥0,

Vn
def.
= α exp

(
−δ1

n∑
i=1

Ei

)
,

where (Ei) is an i.i.d. sequence of exponentially distributed random variables with
parameter 1. The sequence of instants jumps has the same distribution as(

tVn
) def.
=

(
n∑

i=1

(Vi−1)
p−1ϕi

r1

)
,

where (ϕi) is an i.i.d. sequence of exponentially distributed random variables with
parameter 1, independent of (Ei). It is easily seen that (Vn) converges to 0 almost
surely and that the sequence (E(tVn )) has a finite limit. The proposition is proved.

□

Definition 2.28 (Scaled occupation measure of (XN
2 (t))). For N≥1, ΛN is

the random measure on R+×(0, 1] defined by, for f∈Cc(R+×(0, 1]),

(2.60) ⟨ΛN , f⟩ =
1

Np−1

∫ +∞

0

f

(
s

Np−1
,
XN

2 (s)

N

)
ds.

We can now state our main scaling result for large initial states near the vertical
axis.

Theorem 2.29. If (XN (t)) is the Markov process associated to the CRN (2.37)
whose initial state is (a, xN2 )∈N2, a≤p−1, and such that

lim
N→+∞

xN2 /N = α>0,

then the sequence (ΛN ) defined by Relation (2.60) converges in distribution to Λ,
the occupation measure of (U(t)) a Markov process with infinitesimal generator A
starting at α, i.e. for f∈Cc(R+×(0, 1]),

⟨Λ, f⟩ =
∫ +∞

0

f(s, U(s)) ds.

Proof. Without loss of generality, due to the multiplicative properties of the
convergence, see Proposition 2.25, we can take α=1 and assume that XN

2 (0)=N .
Recall that the Laplace transform of a random measure G on R+×(0, 1] is given by

LG(f)
def.
= E (exp (−⟨G, f⟩)) ,
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for a non-negative function f∈Cc(R+×(0, 1]). See Section 3 of Dawson [21].
To prove the convergence in distribution of (ΛN ) to Λ, it is enough to show

that the convergence

lim
N→+∞

LΛN
(f) = LΛ(f),

holds for all non-negative functions f∈Cc(R+×(0, 1]). See Theorem 3.2.6 of [21] for
example.

If f∈Cc(R+×(0, 1]), its support is included in some [0, T ]×(η, 1], for η>0 and
T>0.

Let (TN
k ) the sequence of stopping times defined by Relation (2.57). The

Laplace transform of ΛN at f is given by

(2.61) LΛN
(f) = E

exp

−
∑
k≥0

∫ TN
k+1/N

p−1

TN
k /Np−1

f

(
s,
XN

2

(
TN
k

)
XN

2 (0)

)
ds

 .

Let (tVk , Vk) be the sequence of couples of instants of jumps and its value of the
Markov process (V (t)), as defined in the proof of Proposition 2.27. For ε>0, there
exists some n0 such that

P

(
α

n0∏
i=1

Vi ≥
η

2

)
≤ ε/2,

holds, and, consequently,

(2.62)

∣∣∣∣∣LΛ(f)− E

(
exp

(
−

n0−1∑
k=0

∫ tVk+1

tVk

f (s, Vk) ds

))∣∣∣∣∣ ≤ ε.

Proposition 2.25 shows that, for the convergence in distribution,

lim
N→+∞

(
XN

2 (TN
k+1)

XN
2 (TN

k )
,
TN
k+1−TN

k

XN
2 (TN

k )p−1
, k≥0

)
=
(
U δ1
k , Ek, k≥0

)
,

where (Uk) and (Ek) are i.i.d. independent sequence of random variables whose
respective distributions are uniform on [0, 1], and exponential with parameter r1.
Hence, there exists N0 such that if N≥N0, then
(2.63)

∣∣∣∣∣LΛN
(f)− E

(
exp

(
−

n0−1∑
k=0

∫ TN
k+1/N

p−1

TN
k /Np−1

f

(
s,
XN

2

(
TN
k

)
XN

2 (0)

)
ds

))∣∣∣∣∣ ≤ 2ε,

P

(
XN

2 (TN
k+1)

XN
2 (TN

k )
≤1,∀k∈{0, . . . , n0}

)
≥ 1−ε

Define, for n>0,

(INn )
def.
=

(
n−1∑
k=0

∫ TN
k+1/N

p−1

TN
k /Np−1

f

(
s,
XN

2

(
TN
k

)
XN

2 (0)

)
ds

)
In views of Relations (2.62) and (2.63), all we have to do is to prove, for every n>0,
the convergence in law of (INn ) to

In
def.
=

∫ tVn

0

f (s, V (s)) ds =

n−1∑
k=0

∫ tVk+1

tVk

f (s, Vk) ds,

as N gets large.
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We will prove by induction on n>0, the convergence in distribution

lim
N→+∞

(
INn ,

∣∣∣∣∣ln
(
XN

2

(
TN
n

)
XN

2 (0)

)∣∣∣∣∣ , TN
n

XN
2 (0)p−1

)

=

(∫ tVn

0

f (s, V (s)) ds, |ln (Vn)| , tVn

)
.

We will show the convergence of the Laplace transform of the three random variables
taken at (a, b, c), for a, b, c>0.

For n = 1, this is direct consequence of Proposition 2.25. If it holds for n≥1,
the strong Markov property of (XN (t)) for the stopping time TN

n gives the relation

HN (a, b, c)
def.
= E

(
exp

(
−aINn+1−b

∣∣∣∣∣ln
(
XN

2

(
TN
n+1

)
XN

2 (0)

)∣∣∣∣∣−c TN
n+1

XN
2 (0)p−1

)∣∣∣∣∣FTN
n

)

= exp

(
−aINn −b

∣∣∣∣∣ln
(
XN

2

(
TN
n

)
XN

2 (0)

)∣∣∣∣∣−c TN
n

XN
2 (0)p−1

)

×ΨN

(
XN

2

(
TN
n

)
XN

2 (0)
,

TN
n

XN
2 (0)p−1

)
,

where, for x>0 and u>0, ΨN (x, u) is defined as

E(p−1,⌊Nx⌋)

(
exp

(
−a
∫ TN

1 /XN
2 (0)p−1

0

f (s+u, x) ds−b

∣∣∣∣∣ln
(
XN

2

(
TN
1

)
XN

2 (0)

)∣∣∣∣∣−c TN
1

XN
2 (0)p−1

))
.

Proposition 2.25, and the fact that the sequence (NτN ) is tight in the proof of this
proposition, gives the convergence

lim
N→+∞

ΨN (x, u)

= Ex

(
exp

(
−a
∫ En+1

0

f (s+u, x)

)
ds−b

∣∣ln (Uδ
n+1

)∣∣−cEn+1

)
,

where Un+1 is a uniform random variable on [0, 1], independent of En+1 an ex-
ponential random variable with parameter r1. With the induction hypothesis for
n, Lebesgue’s Theorem and the strong Markov property of (U(t)), we obtain the
convergence

lim
N→+∞

E(HN (a, b, c)) = E

[
exp

(
−aIn−b |lnVn| −ctVn

)
× exp

(
−a
∫ tVn+1

tVn

f (s, x) ds−b
∣∣∣∣ln(Vn+1

Vn

)∣∣∣∣−c (tVn+1−tVn
))]

= E
(
exp

(
−aIn+1−b |lnVn+1| −ctVn+1

))
.

The theorem is proved. □

2.A. Classical Stability Results

Deterministic CRNs have been introduced in Section 2.6. We state the classical
results of Feinberg [26] and Horn and Jackson [42] on the stability properties of
deterministic CRNs. See Feinberg [27] for a broader picture of stability results for
CRNs. See also Gunawardena [36] for a quick, comprehensive, overview of these
results.

We briefly recall some definitions on CRNs.
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(a) A linkage class is a connected component of the reaction graph. The
quantity ℓ denotes the number of linkage classes.

(b) The CRN is weakly reversible if every connected component of its reaction
graph is strongly connected.

(c) The Stoichiometric space S is the vector subspace of Rm generated by
y+r −y+r , r∈R, its dimension is denoted by s.

(d) The deficiency δ of the CRN is |C−ℓ−s|, where C is the total number of
complexes.

The main theorem can now be stated.

Theorem 2.30 (Feinberg (1979)). Let (S, C,R) be a chemical reaction network
with deterministic mass action kinetics, if it is weakly reversible and with zero
deficiency, δ=0, then there is exactly one equilibrium for the dynamical system
defined by Relation (2.15). Furthermore, this equilibrium is locally asymptotically
stable.

Proposition 2.5 shows that a deterministic CRN can be seen as an asymptotic
stochastic CRN provided that the reaction rates are scaled conveniently as in Re-
lations (2.22). The interesting result of Anderson et al. [7] show that the invariant
distribution of a class of stochastic CRNs can be expressed with the equilibrium of
a deterministic CRN.

Theorem 2.31. Let (X(t)) be the Markov process associated to a stochastic
chemical reaction network, irreducible on E0⊂Nn, whose Q-matrix is given by Re-
lation (2.9) then, under the assumptions of deficiency zero theorem, Theorem 2.30,
if c=(ci) is the equilibrium point of the dynamical system (2.15), then the positive
measure on E0 defined by

(2.64) π(x) =

n∏
i=1

cxi
i

xi!

is an invariant measure of (X(t)).

The proof consists in plugging a product formula in the invariant measure equa-
tions. It has been used to other classes of CRNs in subsequent works in Cappelletti
and Wiuf [19] and Cappelletti and Joshi [18] and Jia et al. [45] and references
therein. An interesting feature of this class of CRN is that the existence and
uniqueness of an invariant distribution is essentially expressed in terms of the topo-
logical structure of the graph R and not on its associated weights (κr) as long as
they are all positive.

2.B. Stability Results

The notations of Section 3 are used in this section. If F a subset of the state
space E0, the hitting time of F is denoted as TF ,

TF = inf{s ≥ 0 : X(s) ∈ F}.

The following proposition is a variation of Proposition 8.5 of Robert [67]. It is
included for the sake of self-containedness.

Proposition 2.32. Let (X(t)) be an irreducible on E0, non-explosive, Markov
process associated to a CRN network with Q-matrix defined by Relation (2.8), if
there exists a finite subset F of E0 such that Ex(TF ) is finite for all x∈E0, then
(X(t)) is positive recurrent.
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Proof. Let (sn) be the sequence of stopping times defined by s1=t1+TF ◦θt1
and, for n≥1,

sn+1 = inf {u≥sn+t1◦θsn : X(u)∈F} = sn+t1◦θsn+TF ◦ θsn+t1◦θsn .

and Mn=X(sn). It is easily seen that (Mn) is the sequence of successive visits to
F of the embedded Markov chain (X(tn)). In particular (Mn) is a Markov chain
on the finite space F and it is irreducible since (X(tn)) has this property. The
Markov chain (Mn) is therefore positive recurrent, its unique invariant probability
distribution is denoted as πF . Define the positive measure π on E0 by, if f is a
non-negative function on E0,

⟨π, f⟩ =
∫
E0

f(x)π(dx) =
∑
x∈F

Ex

(∫ s1

0

f(X(u)) du

)
πF (x).

Its mass is

π(E0) =
∑
x∈F

Ex (s1)πF (x) =
∑
x∈F

πF (x)
(
Ex (t1)+EX(t1) (TF )

)
,

since there is only a finite number of possibilities for the first jump of (X(t)) starting
from x, the mass is finite. We can therefore assume that, up to a scaling factor, π
is a probability distribution on E0.

For t≥0, we now show that if X(0)
dist.
= π, then X(t)

dist.
= π. If f is a non-negative

function on E0,

Eπ(f(X(t))) =
∑
x∈E0

π(x)Ex(f(X(t))) =
∑
x∈E0

EπF

(∫ s1

0

1{X(u)=x} du

)
Ex(f(X(t)))

=
∑
x∈E0

∫ +∞

u=0

PπF
(X(u)=x, u < s1)Ex(f(X(t))) du

=

∫ +∞

u=0

EπF

(
f(X(u+ t))1{u<s1}

)
du,

with the Markov property and Fubini’s theorem, hence,

Eπ(f(X(t))) = EπF

(∫ t+s1

t

f(X(u)) du

)
.

We note that, with the strong Markov property,

EπF

(∫ t+s1

s1

f(X(u)) du

)
= EπF

(
EX(s1)

(∫ t

0

f(X(u)) du

))
= EπF

(∫ t

0

f(X(u)) du

)
,

since the distribution of X(s1)=M1 is πF . By gathering these results we finally
obtain that Eπ(f(X(t))) = ⟨π, f⟩. The proposition is proved. □

2.C. Technical Proofs

The proofs of this section, although not difficult, are detailed for the sake
of completeness, and also to show that some ingredients of a scaling analysis are
elementary. For basic results on martingale theory and classical stochastic calculus,
see Rogers and Williams [69].

To investigate scaling properties of stochastic CRNs, we use the formulation
in terms of stochastic differential equations (SDE)introduced in Relation (2.10) of
Section 2 to describe the Markov process.
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2.C.1. Example of Section 5.1. There is only one complex of size 2 and one
chemical reaction with a quadratic reaction rate. The associated Markov process
(XN (t))=(XN

1 (t), XN
2 (t)) can be represented as a solution of the following SDEs,

(2.65)

{
dXN

1 (t) = P2((0, κ2X
N
2 (t−)),dt)−P1((0, κ1X

N
1 (t−)),dt)

dXN
2 (t) = P1((0, κ1X

N
1 (t−)),dt)−P12((0, κ12X

N
1 (t−)XN

2 (t−)),dt),

with XN (0)=(xN1 , x
N
2 ). See Relation (2.10).

We prove the convergence results of of Proposition 2.11. Note that the first
convergence (2.29) is a direct consequence of Proposition 2.10.

2.C.1.1. Proof of the convergence (2.30) in Proposition 2.11. The initial state
is such that

lim
N→+∞

(
xN1√
N
,
xN2
N

)
= (β, 1)

with β≥0, the scaled process is defined in this case as(
X

N
(t)
)

def.
=

(
XN

1 (t/
√
N)√

N
,
XN

2 (t/
√
N)

N

)
.

The integration of Relations of SDE (2.65) gives

(2.66)


X

N

1 (t) =
xN1√
N

+MN
1 (t)+κ2

∫ t

0

X
N

2 (s) ds− κ1√
N

∫ t

0

X
N

1 (s) ds

X
N

2 (t) =
xN2
N

+MN
2 (t)+

κ1
N

∫ t

0

X
N

1 (s) ds−κ12
∫ t

0

X
N

1 (s)X
N

2 (s) ds,

where, for i=1, 2, (MN
i (t)) is a martingale whose increasing process is given by

(2.67)


(〈
MN

1

〉
(t)
)

=
κ2√
N

∫ t

0

X
N

2 (s) ds+
κ1
N

∫ t

0

X
N

1 (s) ds(〈
MN

2

〉
(t)
)

=
κ1
N2

∫ t

0

X
N

1 (s) ds+
κ12
N

∫ t

0

X
N

1 (s)X
N

2 (s) ds.

From there, the method is quite simple, Relation (2.66) and Gronwall’s lemma give
the relation, for T>0 and i∈{1, 2},

sup
N

sup
t≤T

E
(
X

N

i (t)
)
< +∞.

With Relation (2.67) and Doob’s Inequality, we obtain that the relation

lim
N→+∞

E
(
sup
t≤T

|MN
i (t)|

)
= 0

holds. Using again Relation (2.66) and Gronwall’s lemma, we get

sup
N

E
(
sup
t≤T

X
N

i (t)

)
< +∞, i∈{1, 2}.

The next step uses the criterion of the modulus of continuity, see Theorem 7.3
of Billingsley [14]. If (X(t)) is some càdlàg process, δ>0 and T≥0,

ωX(δ) = sup{|X(t)−X(s)| : s, t ≤ T, |t− s| ≤ δ},
then Relation (2.66) gives

(2.68) ω
X

N
1
(δ) ≤ 2 sup

t≤T
|MN

1 (t)|+κ2δ sup
t≤T

X
N

2 (t)+
κ1√
N
δ sup
t≤T

X
N

1 (t).

For ε and η>0, we can fix N0∈N and K>0 such that, for N≥N0 and i∈{1, 2},

P
(
sup
t≤T

|MN
1 (t)|>η/2

)
≤ε, P

(
sup
t≤T

X
N

i (t) ≥ K

)
≤ ε.
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If δ is chosen as min(η
√
N0/(κ1K), η/(κ2K)), by using Relation (2.68), we have,

for all N≥N0,

P
(
ω
X

N
1
(δ) > 3η

)
≤ 3ε.

The sequence (X
N

1 (t)) is tight. With the same argument, it is easily seen that

(X
N

2 (t)) is also tight since the process (XN
1 (t)XN

2 (t), t≤T ) is upper bounded by

K2 with high probability. The sequence of processes (X
N
(t) is therefore tight.

Relation (2.66) gives that any of its limiting point satisfies Relation (2.31). Con-
vergence (2.30) is proved.

2.C.1.2. Proof of the convergence (2.32) in Proposition 2.11.
The initial state is xN=(xN1 , k) for some k ∈ N, and xN1 such that

lim
N→+∞

xN1
N

= 1.

A glance at the equation of XN
2 shows that, if XN

1 is the order of N , then the
process (XN

2 (t)) is an M/M/∞ CRN on a fast timescale. To handle such a setting,
we follow the general method, see Kurtz [55], to establish an averaging principle.

Define, for i = 1, 2,

X
N

i (t)
def.
=

XN
i (t)

N
.

In the same way as in the proof of the convergence (2.30) in Proposition 2.11
in Section 2.C.1.1, Gronwall’s Lemma, it is not difficult to show that the sequence

of processes (X
N

1 (t)) is tight for the convergence in distribution.
We have, for t≥0,

XN
1 (t) ≥

XN
1 (0)∑
i=1

1{Eκ1,i≥t},

where (Eκ1,i) is an i.i.d. sequence of exponential random variables with parameter
κ1. Consequently and using proposition 2.9, for any ε>0 and T>0, there exist
K0>0, η>0 and N0 such that, if N≥N0,

(2.69) P (EN ) ≥ 1−ε, with EN =

{
η ≤ inf

t≤T
X

N

1 (t), sup
t≤T

X
N

1 (t) ≤ K0

}
.

On the event EN , one can construct a coupling such that, for t≤T , XN
2 (t)≤L(Nt),

where (L(t)) is the process associated to an M/M/∞ queue with input rate κ1K0

and output rate κ2η.

(a) Limit of (X1(t)): The integration of the first relation of the SDE (2.65)
gives the identity

(2.70) X
N

1 (t) =
xN1
N

+MN
1 (t)+κ2

∫ t

0

X
N

2 (s) ds−κ1
√
N

∫ t

0

X
N

1 (s) ds,

where (MN
1 (t)) is a martingale whose increasing process is given by

(
〈
MN

1

〉
(t)) =

1

N

(
κ2

∫ t

0

X
N

2 (s) ds+κ1

∫ t

0

X
N

1 (s) ds

)
.

The upper bound of (XN
2 (t)), Lebesgue’s Lemma and the tightness of

(X
N

1 (t)) gives the convergence in distribution to (0) of (
〈
MN

1

〉
(t)) and

therefore, with Doob’s Inequality, of the martingale (MN
1 (t)). The upper
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bound of (XN
2 (t)) and Lebesgue’s Theorem show that the sequence of

processes (∫ t

0

X
N

2 (s) ds

)
converges in distribution to 0. It is then easy to conclude the proof of
convergence (2.30) in Proposition 2.11.

(b) Convergence of the occupation measure of (XN
2 (t)): The upper bound of

(XN
2 ) is enough to show the convergence of (X

N

1 (t)), but we can also have
a convergence result on the species S2, looking at its occupation measure.
Define (µN ) the sequence of random measures defined by, for N≥1 and if f
is a continuous function with compact support on R+×N, f∈Cc (R+×N),

⟨µN , f⟩ =
∫
R+×N

f(s,XN
2 (s)) ds.

To prove the tightness of (µN ), it is enough to show that, for ε′>0,
there exists C>0 such that E(µN ([0, T ]×[0, C]))≥(1−ε′)T . See Lemma 1.3
of Kurtz [55]. For N≥N0 sufficiently large we have for all C>0,

(2.71)

E(µN ([0, T ]×[C,+∞])) ≤
∫ T

0

P(XN
2 (s)≥C) ds ≤ εT +

∫ T

0

P(L(Ns)≥C) ds.

Since, for s>0, (L(Ns)) converges in distribution to L(∞) a random vari-
able with a Poisson distribution, with Lebesgue’s Theorem we obtain the
relation

lim
N→+∞

∫ T

0

P(L(Ns)≥C) ds = TP(L(∞) ≥ C),

and this last term can be made arbitrarily small for some large C. The
sequence (µN ) is therefore tight. We can take a subsequence (Np) such that

((X
Np

1 (t)), µNp
) is converging in distribution to ((x1(t)), µ∞). Lemma 1.4

of Kurtz [55] shows that µ∞ can be represented as

⟨µ∞, f⟩ =
∫
R+×N

f(s, x)πs(dx) ds,

where (πt) is an optional process with value in the space of probability
distribution on N. Note that, almost surely, x1(t)=xc,1(t)= exp(−κ1t)>0
for all t≤T .

Let g be a function on N with finite support, then the second relation
of SDE (2.65) gives

g(X
Np

2 (t)) = g(k)+M
Np

f (t)+κ1

∫ t

0

X
Np

1 (s))∇+(g)(X
Np

2 (s)) ds

+κ12

∫ t

0

X
Np

1 (s)X
Np

2 (s)∇−(g)(X
Np

2 (s)) ds,

where∇±(f)(x)=f(x±1)−f(x), x≥0. From there, by dividing both terms
of this relation by Np and let p go to infinity, with standard arguments,

the martingale (M
Np

f (t)) vanishes and we obtain the relation∫ t

0

∫
N

(
κ1x1(s)∇+(g)(x)+κ12x1(s)x∇−(g)(x)

)
πs(dx) ds = 0,
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or ∫ t

0

x1(s)

∫
N
Ω(g)(x)πs(dx) ds = 0,

where Ω is the infinitesimal generator of anM/M/∞ CRN with input rate
κ1 and output rate κ12. By using the fact that a.s. (x1(t)) is positive and
continuous and the càdlàg property of (πt), we obtain that, almost surely,
for all t≤T , ∫

N
Ω(g)(x)πt(dx) = 0,

for all indicator functions of a finite subset of N. Therefore, almost surely
for all t≤, πt is a Poisson distribution on N with parameter κ1/κ12.

2.D. General Triangular Topologies

In this section, we show that every triangular CRN with general complexes is
stable.

Definition 2.33. A triangular network is a CRN (S, C,R) with

(2.72)


S = {S1, . . . , Sm}
C = {y1, y2, y3},
R = {(y1, y2), (y2, y3), (y3, y1)},

where yℓ, ℓ∈{1, 2, 3} are distinct elements of Nm. The reaction constants are
(κi, 1≤i≤3).

The CRN is represented by the following graph,

y1 y2

y3

κ1

κ2κ3

Figure 3. Triangular CRN

We are going to show the following proposition:

Proposition 2.34. The Markov process associated to a triangular network is
positive recurrent.

By using the deficiency zero theorem, we show that it is enough to investigate
a smaller class of CRNs. After this simplification, we simply have to prove the
positive recurrence property of a one-dimensional Markov process on N, which can
be done using the Foster-Lyapunov criterion, see Corollary 2.17.

2.D.1. Reduction. Let (S, C,R) be a triangular network, the space S is its
stoichiometric subspace, see Section 2.A of the Appendix,

S def.
= Span{y2−y1, y3−y2, y1−y3}.

If (X(t)) is its associated Markov process, with initial state x, it is straightforward
to show that the process is irreducible on (x+S) ∩ Nm,

When dim S=2, the CRN is clearly weakly reversible with deficiency 0, the sto-
chastic version of the deficiency zero theorem, Theorem 2.31 gives that the process
is positive recurrent.



82 2. SCALING OF STOCHASTIC CRN

We are left with the CRN with dim S=1. Consequently, we can find some k1,
k2, k3∈Z∗ such that

(2.73) k1(y2−y1) = k2(y3−y2) = k3(y1−y3)

Since the three complexes differ, we know that yi − yi−1 ̸= 0.
First, we are going to consider the processes that have a kind of mass conser-

vation property.

Lemma 2.35. If there exists ρ∈(0,+∞)m such that for all t≥0,

⟨X(t), ρ⟩ def.
=

m∑
i=1

ρiXi(t) = ⟨x, ρ⟩ ,

then (X(t)) is positive recurrent.

Proof. The process is irreducible in a finite state space, it is positive recurrent.
□

Let u=y2−y1. If we can find coordinates 1 ≤ i, j ≤ m such that ui<0 and uj>0,
then we can find some ρ∈(0,+∞)m such that ⟨u, ρ⟩=0. Relation (2.73) shows that
the process (⟨X(t), ρ⟩) is not changed by its jumps.

We can assume that our CRN is such that u∈Rm
+ or u∈Rm

− . If we have ui=0
for some i∈{1, . . . ,m}, then y1,i = y2,i = y3,i and the number of elements of the
species i is kept constant all along the reactions, therefore Xi(t) = xi for all t ≥ 0.
Up to a change in the rates of the CRN with a fixed parameter, we can remove
the i-th coordinate of the system, without changing the sample paths of the others
components of the process. We can now suppose that ui ̸=0 for all 1≤i≤m.

The complexes can be rewritten as y1, y1+u and y1+(1+k2/k1)u. Every reac-
tion adds or remove an amount of “u”. The evolution of the process is therefore
expressed in the“number of u” in the system. Since k2/k1 is not necessarily an
integer, in order to have an integer valued process, we proceed as follows. With
some arithmetic manipulations, we can find a ∆ ∈ (N \ {0})m and p1, p2, p3∈Z∗

such that

y2 − y1 = p1∆, y3 − y2 = p2∆ and y1 − y3 = p3∆,

with p1+p2+p3=0. The quantity ∆ is the “smallest positive vector” on the line
S∩(N∗)m, and it is invariant by a rotation of indexes of complexes. Up to a rotation
of indexes, we can assume that p1>0 and p1+p2>0, by taking y1 as the complex
with the smallest norm for example.

Now we are left with triangular networks with three complexes of the form y1,
y1+p1∆ and y1+(p1+p2)∆.

Using Proposition 2.38, we can get rid of the y1 in the three complexes. We
only have to show the positive recurrence of the process associated to the CRN of
Figure 4, with p1, (p1+p2)≥1.

∅ p1∆

(p1 + p2)∆

κ1

κ2κ3

Figure 4. Reduced triangular CRN
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2.D.2. A one dimensional process. From now on, (Y (t)) is the Markov
process associated to the CRN of Figure 4, with initial state y. The process (Y (t))
is living in the subset H(y)={y+k∆, k ∈ Z} ∩ Nd, a “line” Ha in Nd,

Ha
def.
= {a+ k∆, k ≥ 0}, with a = y −

⌊
⟨y,∆⟩
⟨∆,∆⟩

⌋
∆.

The quantity a is the vector of H(y) with the smallest norm. The process (Y (t))
lives in Ha, and every state y′ of Ha is entirely determined by the number of ∆
contained in y′−a. We define Φa the function on Ha by

Φa(z) =
⟨z−a,∆⟩
⟨∆,∆⟩

and its inverse function on N,

Ψa(k) = a+k∆.

Setting (N(t)) = (Φa(Y (t))), we have (Ψa(N(t))=(Y (t)) and, using the SDE as-
sociated with (Y (t)), we can show that (N(t)) is a continuous time Markov jump
process on N, with infinitesimal generator Q defined by, for k ∈ N,

(2.74) Q(f)(k) = κ1(f(k+p1)− f(k)) + κ2 (Ψa(k))
(p1∆)

(f(k+p2)−f(k))

+ κ3 (Ψa(k))
((p1+p2)∆)

(f(k − p1−p2)− f(k)),

for any function f with finite support on N. This process still has polynomial rates
in k, since, for y ∈ Nm,

(Ψa(k))
(y)

=

m∏
i=1

(ai + k∆i)!

(ai + k∆i − yi)!
.

Lemma 2.36. The process (N(t)) defined by Equation (2.74) is positive recur-
rent.

Proof. Taking r the greatest common divisor of p1 and p2, then (N(t)) is
clearly irreducible on

rN def.
= {rk, k≥0}.

To show the positive recurrence of (N(t)) we use Corollary 2.4 with the energy
function f0(k)=k.

Let q1=max{p1, p1+p2}, q2=min{p1, p1+p2} and κmin=min{κ1, κ2, κ3}. Since
q1−q2 ≥ 1 and q1≥1, we can show the following inequality:

lim sup
k→+∞

Q(f0)(k)

(Ψa(k))
(q1∆)

≤ −κmin

2
,

and since (Ψa(k))
(q1∆)

goes to infinity when k goes to infinity, there is some K0>0
such that, for k≥K0,

Q(f0)(k) ≤ −1,

which proves the positive recurrence of (N(t)). □

Consequently, (Y (t))=(Ψa(N(t)) is a positive recurrent Markov process. Propo-
sition 2.34 is proved.

Corollary 2.37. The Markov process associated to a weakly reversible CRN
with three complexes is positive recurrent.
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Proof. First, note that if we add some reactions to our triangular CRN, our
proof can still be used. The only CRNs remaining are the ones with the following
graph:

y1 ⇌ y2 ⇌ y3.

Using the same arguments as in our proof, we can reduce the set of CRNs to the
ones with a graph of the type

∅ ⇌ p1∆ ⇌ p2∆ or p1∆ ⇌ ∅ ⇌ p2∆,

for some ∆ ∈ (N − {0})m and p1, p2 ≥ 1, p1 ̸= p2. Here, we can use the same
argument to reduce our process to a process on N, which can be shown to be positive
recurrent using the same arguments as in the proof of Proposition 2.34. □

This proof can be done for three complexes, but the generalization to a CRN
with four or more complexes seems unlikely, at least with our approach.

Proposition 2.38. Let (S = {1, . . . ,m}, C,R) be a CRN, (X(t)) its associated
continuous time Markov jump process starting at x ∈ Nm. For some i ∈ {1, . . .m},
suppose that for every y ∈ C, yi ≥ 1. We define the CRN (S ′, C′,R′) as

S ′ = S
C′ = {y − ei, y ∈ C}
R′ = {(y− − ei)⇀ (y+ − ei), y

− ⇀ y+ ∈ R}.
where ei = (δj=i)1≤j≤m. Let (Y (t)) be the process associated to (S ′, C′,R′) starting
from y = x− ei. If xi ≥ 1, (X(t)) is positive recurrent on Hx ⊂ Nm if and only if
(Y (t)) is positive recurrent on Hx − ei={z − ei, z ∈ Hx}.

Proof. The proof is straightforward, seeing that the embedded Markov chains
of both processes have the same transition rates. Note that if xi<1, none of the re-
actions can happen and the process (X(t)) is constant equal to x, therefore positive
recurrent. □
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1. Introduction

The chemical reaction network (CRN) with m chemical species considered in
this paper is represented as

(3.1) ∅ κ0−⇀ S1
κ1−⇀ S1+S2

κ2−⇀ · · ·
κi−⇀ Si+Si+1

κi+1−−−⇀ Si+1+Si+2
κi+2−−−⇀ · · ·

κm−1−−−⇀ Sm−1+Sm
κm−−⇀ Sm

κm+1−−−⇀ ∅.

The associated Markov process (X(t))=(Xi(t), 1≤i≤m) lives in the state space
Nm. The kinetics considered for these networks is the classical law of mass action.
See Guldberg and Waage [35] and Voit et al. [76] for example. It has the Q-matrix
Q=(q(x, y), x, y∈Nm) defined by, for x∈Nm and 2≤i<m−1,

(3.2)


q(x, x+ ei+1−ei−1) = κixixi−1, q(x, x+ e1) = κ0,

q(x, x+ e2) = κ1x1, q(x, x−em−1) = κmxmxm−1,

q(x, x−em) = κm+1xm,

where (κi)∈(0,+∞)m+2 is the vector of the reaction rates.
Note that the molecules of chemical species S1 are created from an external

input and the chemical species Sm vanish independently of the other chemical
species. See Section 2 for a detailed presentation of the mathematical context of
these CRNs.

We have two important features of this class of CRNs.

(a) Quadratic Rates.
Due to the assumption of the law of mass action, the rate of most of
reactions of Relation (3.1) is a quadratic function of the state. It is a
polynomial function in general.

The polynomial dependence for the reaction rates has the consequence
that different timescales may coexist in the dynamical behavior of CRNs.
In our example, if all coordinates are of the order of N , the rate of the

85
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reaction in the middle of Relation (3.1) is O(N2), for the reaction Sm⇀∅,
it is O(N) and for ∅⇀S1, it is only O(1).

(b) Boundary Behaviors.
The reaction in the middle of Relation (3.1) does not occur if either xi or
xi+1 is null. A molecule of Si may be transformed into a molecule of Si+2

only if there is at least a molecule of Si+1, even if the (i+1)th coordinates
is not changed by the reaction. This is a boundary effect, some reactions
do not occur on the boundary of the state space.

These boundary effects may have a strong impact on the time evolu-
tion of CRNs. For example, for the CRN of Laurence and Robert [52],

∅ −⇀↽− S1+S2, pS1+S2 −⇀↽− pS1+2S2,

it has been shown, Theorem 32, that if p≥2 to investigate the time evo-
lution of the CRN starting from large initial states of the order of N , one
has to speed-up time by a factor Np−1, i.e. consider limit theorems with
the fast timescale t→Np−1t, to get non-trivial time evolution. This is es-
sentially due to the boundary condition that at least p copies of S1 are
required in two reactions.

As we will see the boundary behaviors of the CRNs of this paper have
also an impact on its time evolution, through a phenomenon referred to
as discrete-induced transitions in the literature. See Section 1.2.

Auto-catalytic Reaction Networks.
There are other classical classes of CRNs with a generic related way of transforming
chemical species. The reactions for these networks are

Si+Sj ⇀ 2Si, ∅ −⇀↽− Si, 1≤i̸=j≤m.

See Togashi and Kaneko [74] for example. As it will be seen, they seem to share
some of the properties of the CRNs we are considering in this paper.

1.1. Scaling with the Norm of the Initial State. We will investigate this
class of CRNs via the convergence in distribution of its scaled sample paths. This
may provide an interesting insight on the time evolution of these CRNs. Note that
the deficiency of these CRNs is 1, see Section 2, the classical result of Anderson
et al. [7] cannot be used here, so that even the existence of an invariant distribution
is not known a priori.

Classically, a scaling approach is mainly done via a scaling of reaction rates.
This can be achieved in several ways.

(a) The reaction rates are scaled so that all chemical reactions have a rate of
the same order of magnitude in N , then with a convenient scaling of the
space variable, it can be shown that the scaled Markov process converges
in distribution to a deterministic dynamical system of the type described
above. See Mozgunov et al. [60] and Section 2.3 of Laurence and Robert
[52]. The drawback of this scaling is that the scaled CRN does not really
exhibit anymore different timescales inN since the transitions of the scaled
process are all O(1).

(b) The reference Ball et al. [11] considers several CRNs with given scaled
of reaction rates with some parameter N , a multi-timescale analysis of
several classes of such CRNs is achieved via proofs of averaging principles.
See also Kang and Kurtz [46] and Kang et al. [47].

In the spirit of Laurence and Robert [52], the scaling we consider in this paper
does not change the basic dynamic of the CRN, in particular its reaction rates. It
is assumed that the initial state of the CRN is “large”, its norm is proportional
to some scaling parameter N . We investigate the time evolution of the CRN, in
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particular how such a saturated initial state returns to some neighborhood of the
origin.

If the initial states of two chemical species Si, Si+1 are both of the order of N ,
the rate of the reaction in the middle of Relation (3.1) is of the order of N2 which
is maximal for this class of CRNs. Proposition 3.2 of Section 3 shows that, for any
ε>0, the state of the CRN goes “quickly” to a set SN of states for which the indices
of the coordinates whose value is greater than εN are at distance at least two, the
other coordinates being o(N).

When the number of nodes is odd and the initial state is such that the co-
ordinates with an odd index are of the order of N and all the others are O(1),
Theorem 3.5 shows that (XN (t)/N) is converging in distribution to the solution
(x(t)) of an ODE converging to 0 at infinity. The decay of the state of the CRN
starting from this initial state is therefore observed on the normal time scale. This
is one of the few general results, with respect to m, we have been able to derive.
Nevertheless it turns out that small values of m provide already non-trivial behav-
iors.

In Section 4, the case of the network with three nodes (chemical species), m=3,
is considered. It is shown, see Proposition 3.6, that for a set of initial states the
process (XN (t)/N) converges in distribution to a continuous, but random, process.
The stochastic fluctuations, represented by the martingales in the evolution equa-
tions vanish, as usual, due to the scaling procedure. Nevertheless there remains
a random, discrete, component in the limit. This is due a boundary behavior of
the kinetics. This case provides an example of a CRN whose first order is not the
solution of a set of deterministic ODEs.

1.2. A Scaling Picture with Discontinuous Stochastic Processes. A
CRN with four chemical species is investigated in Sections 6 and 7. A class of
initial states gives rise to a more complex behavior than what we have observed
when m=3. We did not try a complete (cumbersome) classification of initial states
from this point of view as it has been done for m=3, but we do believe that this is
the interesting class of initial states.

Recall that N is the scaling parameter of the initial state. The initial states
considered are of the type (0, N, 0, 0), with the convention that ”0”, resp. “N”,
means O(1), resp. O(N). We show that the process lives in the subset of the state

space of elements of the type (0, N, 0,
√
N) and that the decay of the norm of the

state occurs on the timescale (
√
Nt). More important, this decay is in fact based

on a Discrete-Induced Transitions phenomenon (DIT) which we now describe.

∅ S1 S1+S2 S2+S3 S3+S4 S4 ∅
κ0 κ1 κ2 κ3 κ4 κ5

Figure 1. CRN with 4 chemical species

Discrete-Induced Transitions (DIT). One of the early references to this
phenomenon is Togashi and Kaneko [74] where the term has been coined apparently.
In the context of auto-catalytic CRNs (see above) with few nodes, it is observed,
via numerical experiments, that a limited number of molecules of one chemical
species can switch the entire bio-chemical state of a system. It is characterized by
the fact that the state variable alternates between two subsets of the state spaces.
From a biological point of view, the role of this set of molecules can be seen as a
“switch” which can block or activate a set of chemical reactions. See also Togashi
and Kaneko [73] and Saito and Kaneko [71]. The mathematical characterization
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of this phenomenon has mainly been done with the analysis of the associated in-
variant measure. Intuitively the DIT phenomenon should be expressed by the fact
that the invariant distribution is concentrated on at least two subsets of the state
space, a bi-modal distribution. See Bibbona et al. [13], Hoessly and Mazza [41]
and Gallinger and Popovic [33]. Note however that it does not give a dynamical
picture of this phenomenon, such as an estimation of the sojourn time in a subset of
states before visiting another subset. This is associated to the metastability prop-
erty of statistical physics. See Bovier and Hollander [15]. A related phenomenon
has also been analyzed in del Sole [22].

Returning to our CRN with four chemical species and the initial state of the
type (0, N, 0,

√
N), it turns out that the growth of the fourth coordinate (X4(t))

occurs only during time intervals whose duration are O(1/
√
N) and during them

there is a large number of positive jumps of this process, of the order of
√
N . Recall

that this phenomenon is only due to the law of mass action which drives the kinetics
of the CRN. This is where boundary effects have a significant impact.

The switch effect occurs during these small time intervals, the occurrence of
them is driven by the isolated instants of creation of particles of chemical species
S3. The duration of these time intervals vanishes in the limit, so we do not have a
metastability-related phenomenon as discussed in the literature. Nevertheless they
play a critical role in the kinetics of the system, since this is at these instants, and
only there, that the second coordinate (X2(t)) can decrease.

AIMD Processes. The asymptotic behavior of (X4(t)/
√
N) can be described

in terms of jump processes belonging to a class of AIMD processes on R+. These
processes exhibit an exponential decay between jumps or a negative jump pro-
portional to the current value of the state (Multiplicative Decrease) and, for the
increasing part, positive jumps depending on the current state or a linear growth
(Additive Increase). There are two classes of AIMD processes in our analysis, their
infinitesimal generators Ω0 and Ω1 are given by, for bounded function f∈C1(R+)
and v≥0,

Ω0(f)(v) = − 1

γ
vf ′(v) +

∫ +∞

0

(
f
(√

v2+2βs
)
−f(v)

)
e−s ds,(3.3)

Ω1(f)(v) =
1

γ
f ′(v)+v

∫ 1

0

(
f
(
vuβ

)
−f (v)

)
du,(3.4)

for some constants β, γ>0.
AIMD processes play also an important role in several classes of stochastic

models, in mathematical finance, see Bertoin and Yor [12] and Yor [80] for an
overview, communication networks Guillemin et al. [34], or genomics Cowan and
Chiu [20]. An analogous multiplicative property has also been observed in other
CRNs. See Section 8 of Laurence and Robert [52] for example. On the normal
timescale, the main convergence result is given by the following theorem.

Theorem. If XN (0)=(0, N, 1, vN ), with (vN/
√
N) converging to v≥0, then

for the convergence in distribution for the M1-Skorohod topology and also the S-
topology,

lim
N→+∞

(
XN

2 (t)

N
,
XN

4 (t)√
N

)
= (1, V (κ0t)),

where (V (t)) is the Markov process on R+ whose infinitesimal generator Ω0 is given
by, for f∈C1

c (R+) and x∈R+,

Ω0(f)(x) = −κ5
κ0
xf ′(x) +

∫ +∞

0

(
f

(√
x2+2

κ3
κ4
s

)
−f(x)

)
e−s ds
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The limit of the scaled process is not only random, as in Section 4.1 for m=3,
but also discontinuous. The fact that the limit is a jump process is in fact a
consequence of the large number of positive jumps during small time intervals.
The M1-Skorohod topology and the S-topology are weaker than the classical J1-
Skorohod topology which does not allow accumulation of jumps. See the discussion
in Section 6.

The convergence result of (X2(t)/N) to (1) implies that the normal timescale
is too slow to observe a decay of the norm. See Laurence and Robert [52] for a
discussion of this phenomenon. We prove the following convergence in distribution,
it involves a speed-up of the timescale by a factor of

√
N .

Theorem. If X(0)=(0, N, 0, vN ), with (vN/
√
N) converging to v≥0, then the

relation

lim
N→+∞

X2

(√
Nt
)

N
, t<t∞

 =

((
1− t

t∞

)2

, t<t∞

)
holds for the convergence in distribution, with

t∞ =
√
2
κ5
κ20

√
κ4
κ3

Γ

(
κ0
2κ5

)/
Γ

(
κ5+κ0
2κ0

)
,

where Γ is the classical Gamma function.

See Theorem 3.24. The proof of this result relies on several ingredients:

(a) The proof of a limit result, Theorem 3.12, related to AIMD processes
associated to an infinitesimal generator of the type Ω1 of Relation (3.4).
An explicit expression of their invariant distributions, Section 5, is used;

(b) Multiple time-changes. This is an interesting example of the efficiency of
stochastic calculus in such a context;

(c) The proof of a stochastic averaging principle.

We also show that the fourth coordinate of a related process is of the order of
√
N ,

with a limit result for its associated occupation measure, and the values of the first
and third coordinates are essentially 0 or 1 in the limit, from the point of view of
their contribution in the evolution equations.

1.3. Outline of the Paper. Section 2 introduces the class of CRNs investi-
gated, the associated stochastic models and the kinetic equations. Section 3 proves
a scaling result for a CRN with an odd number of nodes and a specific class of
initial states. A scaling analysis of the CRN with three nodes is done in Section 4.
Section 5 introduces and investigates the AIMD processes of interest for our scaling
analysis. Sections 6 and 7 are devoted to the CRN with four nodes and a class of
initial states.

2. Stochastic Model

We first recall the formal definitions for the model of CRN of interest.

Definition 3.1. A chemical reaction network (CRN) with m chemical species,
m≥1, is defined by a triple (S, C,R),

— S={1, . . . ,m} is the set of species;
— the set of complexes, is a finite subset of Nm

C = {0, {e1}, {em}, {ei + ei+1}, 1≤i≤m−1},

where ei is the ith unit vector of Nm.
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— The set of chemical reactions R, is a subset of C2,

R = {(ei+ei+1, ei+1+ei+2), 1≤i<m−2}
∪ {(0, e1), (e1, e1+e2), (em+em−1, em), (em, 0)}

The notation 0 refers to the complex associated to the null vector of Nm, ∅=(0).
A chemical reaction r=(y−r , y

+
r )∈R corresponds to the change of state, for x=(xi)

and y±r =(y±r,i),

x −→ x+y+r −y−r ,

provided that y−r,i≤xi holds for 1≤i≤m, i.e. there are at least y−r,i copies of chemical
species of type i, for all i∈S, otherwise the reaction cannot happen. For the CRNs
considered here, we have y−r,i∈{0, 1} for all r∈R and 1≤i≤m.

The Markov process (X(t)) is clearly irreducible on Nm. Its Q-matrix asso-
ciated to the law of mass action is given by Relation (3.2). For 2≤i<m−1, the
transitions of (X(t)) transform chemical species Si−1 to Si+1 via the action of Si.
As a particle system, the particles arrive at rate κ0 at node 1 or at node 2 at rate
κ1x1 and move on the right by steps of size 2 to finally leave the network at either
node m−1 or m. The boundary effect is that the transformation of a molecule of
Si−1 occurs at a rate proportional to the number of molecules of Si. The parity of
the indices of the nodes plays an important role as it can be expected.

It is easily seen that this CRN is weakly reversible and its deficiency is 1,
see Feinberg [27] for the definitions.

2.1. Definitions and Notations. It is assumed that on the probability space
there are m+2 independent Poisson processes on R2

+, Pi, 0≤i≤m+1, with intensity
ds⊗du and also an independent i.i.d. family of Poisson process Nσ, σ>0, on
R2

+×R+×RN
+ whose intensity measure is

ds⊗dt⊗σ exp(−σa) da⊗Q(db),

where Q is the distribution on RN
+ of an i.i.d. sequence (Ei) of exponential random

variables with parameter κ5.
The underlying filtration used throughout the paper is (Ft), with, for t≥0,

Ft = σ (Pi(A×[0, s)), 0≤i≤m+1,

Nσ(A×[0, s)×B×C), σ>0, A,B∈B(R+), C∈B(RN
+)s≤t

)
.

All stopping time and martingale properties implicitly refer to this filtration. See
Section B.1 of Laurence and Robert [52]. If H is a metric space, Cc(H) denotes
the set of continuous functions on H with compact support and C1

c (R+) the subset
of Cc(R+) of continuously differentiable functions on R+. For T>0 D([0, T ),R)
denotes the set of càdlàg functions on [0, T ), that is right continuous functions with
left limits at all point.

For ρ>0, we will denote by Pois(ρ) the Poisson distribution on N with pa-
rameter ρ. Due to the numerous processes that have to be considered and to
avoid heavy notations, we will use in the text the same notations such as (AN (t)),
(BN (t)), (ZN (t)) for different stochastic processes, or (MN (t)) for a martingale, in
different contexts, essentially in proofs of results. Similarly, several stopping times
are denoted as τN with possibly other indices.

2.2. Stochastic Differential Equations. The goal of this paper is of investi-
gating the transient properties of the sample paths of these CRNs and in particular
to describe, via a functional limit theorem, how the process (X(t)) starting from a
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“large” initial state comes back to a neighborhood of the origin. It is assumed that
the sequence of initial states satisfies the relation,

(3.5) lim
N→+∞

(
XN

i (0)

N

)
= α = (αi)∈Rm

+ .

The scaling parameter N used is such that the norm of the initial state is of the
order of N .

For N≥1, the Markov process (XN (t))=(XN
i (t)) starting from XN (0) with

Q-matrix Q can be represented as the solution of the SDEs, for 1<i<m,

(3.6)



dXN
1 (t) =P0 ((0, κ0) ,dt)−P2

((
0, κ2X

N
1 (t−)XN

2 (t−)
)
,dt
)
,

dXN
2 (t) =P1

((
0, κ1X

N
1 (t−)

)
,dt
)
−P3

((
0, κ3X

N
2 (t−)XN

3 (t−)
)
,dt
)
,

dXN
i (t) =Pi−1

((
0, κi−1X

N
i−2(t−)XN

i−1(t−)
)
,dt
)

−Pi+1

((
0, κi+1X

N
i (t−)XN

i+1(t−)
)
,dt
)
,

dXN
m (t) =Pm−1

((
0, κm−1X

N
m−2(t−)XN

m−1(t−)
)
,dt
)

−Pm+1

((
0, κm+1X

N
m (t−)

)
,dt
)
.

See Rogers and Williams [69] for example.
The scaled process is introduced as

(3.7)
(
XN (t)

)
=
(
X

N

i (t)
)
=

(
XN

i (t)

N

)
.

2.3. The M/M/∞ queue. We finish by recalling the definition of a process
associated to a very simple, but important, CRN,

∅ λ−⇀↽−
µ
S1.

This is the M/M/∞ queue with input parameter λ≥0 and output parameter µ>0.
It is a Markov process (L(t)) on N with transition rates

x −→

{
x+1 λ

x−1 µx.

The invariant distribution of (L(t)) is Poisson with parameter ρ=λ/µ. For t≥0, if
L(0)=0, then L(t) has a Poisson distribution with parameter

ρ(1− e−µt).

If TN is the hitting time of N , TN= inf{t > 0:L(t)≥N}, then the sequence(
ρN

(N−1)!
TN

)
converges in distribution to an exponential random variable. As a consequence, for
p≥1, the convergence in distribution

lim
N→+∞

(
L(Npt)

N

)
= (0)

holds. See Chapter 6 of Robert [67]. This is an important process in the context
of stochastic CRNs, see Laurence and Robert [52].
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3. Scaling Properties

In this section, we investigate some general properties of the asymptotic be-
havior of the sample paths of (X(t)) when the initial state is “large”.

As it will be seen, this is a challenging problem in general. Sections 6 and 7
investigate a specific class of initial states of a network with four nodes for which a
scaling description of the return path to 0 involves, at the normal timescale, jump
processes and not the nice solution of some set of ODES as it is usually the case.

The scaling parameter N can be thought, up to some fixed multiplicative con-
stant, as the norm of the initial state. Our first result of this section, Proposition 3.2,
shows that, for any ε>0, the process goes “quickly” to a set of states for which the
indices of the coordinates whose value is greater than εN are at distance at least
two, the other coordinates being o(N).

The second result, Theorem 3.5, considers the case when the number of nodesm
of the CRN is odd and the initial state is of the order of (α1, 0, α3, 0, . . . , 0, αm)N ,
with αk>0, for k∈{1, 3, . . . ,m}. It is shown that, on the normal timescale, the
scaled process converges in distribution to the solution of a system of ODEs. An
averaging principle is proved to establish this convergence. Its proof uses several
results on the Markov process associated to a series of M/M/∞ queues, Proposi-
tion 3.3 together with a coupling result, Proposition 3.4 for the proof of the tightness
of occupation measures.

The following proposition states essentially that, from this point of view, one
can concentrate the study on asymptotic initial states such that the positive com-
ponents have isolated indices.

Proposition 3.2. Under Condition (3.5), if H0
def.
=
{
x∈Rm

+ : xixi+1 = 0,∀1≤i<m
}
,

then there exists β∈H0 such that, for any η>0, there exists a stopping time τN sat-
isfying the relation

lim
N→+∞

P
(

max
1≤i≤m

( ∣∣∣∣XN
i (τN )

N
− βi

∣∣∣∣) ≥ η

)
= 0,

and the sequence (τN ) is converging in distribution to 0.

In Section 4, there is an analogous result for the CRN with three nodes. We
show that there is a convenient stopping time, possibly depending on N , when the
coordinates are arbitrarily close to the set of states with the “correct” orders of
magnitude.

Proof. Define the scaled process(
X̃N (t)

)
=

(
XN (t/N)

N

)
.

Proposition 13 of Laurence and Robert [52] gives that the sequence of processes

(X̃N (t)) is converging in distribution to (x(t))=(xi(t)) the solution of the system
of ODEs, for 2<i<m,

(3.8)


ẋ1(t)=−κ2x1(t)x2(t), ẋ2(t)=−κ3x2(t)x3(t),
ẋi(t)=κi−1xi−2(t)xi−1(t)−κi+1xi(t)xi+1(t),

˙xm(t)=κm−1xm−2(t)xm−1(t).

We now show that (x(t)) converges to β∈H0 as t gets large.
If at t0>0, maxi |xi(t0)−βi|<η/2, taking τN=t0/N , we have the desired result.

For the convergence of (x(t)) to β∈H0, we proceed by induction on the number of
species. When α1=0, from Relations (3.8) we have (x1(t))≡(0). Otherwise, if α1>0
and α2=0, then, clearly, (x1(t))≡(α1) and (x2(t))≡(0).
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It is therefore enough to consider the case α1>0 and α2>0. We have that
xk(t)>0 for all t>0 and k∈{1, . . . ,m}. Indeed, this is true for k=1, 2 and then, by
induction on k∈{3, . . . ,m}, for all the other indices. Similarly, for all 2 ≤ k<m,
the functions  ∑

i≥0:2i+1≤k

x2i+1(t)

 and

 ∑
i≥1:2i≤k

x2i(t)


are (strictly) decreasing. Again by induction on 1≤i<m, the function (xi(t)) has
therefore a limit βi when t goes to infinity and we also obtain the convergence of
(xm(t)) when t goes to infinity, to a limit βm>0. Relations (3.8) give the identity
βiβi+1=0 for all 1≤i<m. The proposition is proved. □

Proposition 3.3. For p≥1, let (Yi(t)) be a Markov process on Np with Q-
matrix Rλ,µ=(rλ,µ(y, z)) is such that, for y=(yi)∈Np and 1≤i≤p,{

rλ,µ(y, y+e1)=λ, rλ,µ(y, y−ep)=µpyp,

rλ,µ(y, y+ei+1−ei)=µiyi,

where ei is the ith unit vector of Np and µ=(µi, i=1, . . . , p) and λ are positive
constants.

(a) The invariant distribution of (Y (t)) is the product of p Poisson distribu-
tions with respective parameters λ/µi;

(b) If, for N≥1, (Y N
i (t)) is the Markov process with Q-matrix R and initial

state (yNi ) such that the sequence (yNi /N) converges to (0),
— For any ε>0,

(3.9) sup
N≥1

sup
t>ε

E

(
p∑

i=1

Y N
i (Nt)

)
< +∞;

— The relation

lim
N→+∞

(
Y N (Nt)

N

)
= (0)

holds for the convergence in distribution.

Proof. The statement on the invariant distribution is straightforward to prove.
The Markov process can be described as a kind of Ehrenfest model with p

urns. The distribution of the sojourn time of a particle in the ith urn, 1≤i≤p
is exponential with parameter µi, after which it moves to urn i+1. The process
(Y N

i (t)) can be expressed as the sum of two independent processes, (Y N
i,0(t)+Y

N
i,1(t)),

where Y N
i,0(t), resp. Y

N
i,1(t) is the number of initial particles, resp. new particles (i.e.

arrived after time 0), present in the ith urn at time t. The initial state of (Y N
i,1(t))

is (0) in particular.
For 1≤i≤p, we denote by (E0

i,k, k≥1) and (E0
i,k, k≥1) i.i.d. independent se-

quences of exponential random variables with parameter µi. The process of the
total number of initial particles present in the system has the same distribution as p∑

i=1

yN
i∑

k=1

1{E0
i,k+E0

i+1,k+···+E0
p,k≥t}

 .

The two assertions of 2) of the proposition for (Y N
i,0(t) are easily checked.

If (tn) is a Poisson process on R+ with parameter λ, then the arrivals of particles
at the ith urn has the same distribution as (tn+E1,n+E2,n+ · · ·+Ei−1,n), i.e. a
Poisson process with parameter λ. Consequently, the process (Y N

i,1(t)) has the same
distribution as the process of anM/M/∞ queue of Section 2.3, starting empty with
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arrival rate λ and service rate µi. The two assertions of 2) are a consequence of the
properties of this model recalled in Section 2.3.

□

Proposition 3.4 (Coupling). If κ0=0 andm=2p+1 and under Condition (3.5),
if α∈H0 is such that α2i=0 for all 1≤i≤p and α2i+1>0, for all 0≤i≤p, then there
exist η>0 and a coupling of (XN (t))=(XN

k (t), 1≤k≤m) and (Yi(Nt), 1≤i≤p), where
(Y (t)) is a Markov process with Q-matrix Rλ,µ defined in Proposition 3.3, for some
λ>0, with µ=(µi)=κ2i+1η, such that the relation

(3.10)

p∑
k=1

XN
2k(t) ≤

p∑
k=1

Y N
k (Nt)

holds for all t≤TN , with

(3.11) TN = inf
{
t>0 : ∃i∈{1, . . . , p}, XN

2i+1(t)<ηN
}
.

Proof. We fix η=min{α2i+1/2 : 1≤i≤p} and λ>0 such that the relation

XN
1 (0)+XN

3 (0)+ · · ·+XN
2p+1(0) ≤ λN

holds for all N≥1. The condition κ0=0 implies that XN
1 (t)+XN

3 (t)+ · · ·+XN
2p+1(t)

is also bounded by λN for all t>0.
We can represent the process (YN (t))=(Y N

i (t)) as the solution of the following
SDEs, for 2≤i≤p:

dY N
1 (t) = P1((0, κ1λN),dt)− P3((0, κ3ηNY

N
1 (t−)),dt),

dY N
i (t) = P2i−1((0, κ2i−1ηNY

N
i−1(t−)ηN),dt)

−P2i+1((0, κ2i+1ηNY
N
i (t−)),dt).

with (YN (0))=(XN
2i (0))=(xN2i), where the Pi are introduced in the SDE (3.6).

For convenience, the two processes are described in terms of a queueing system,
they are respectively referred to as the X-system for (XN

2i (t), 1≤i≤2p+1) and the
Y -system, for the process (Yi(t), 1≤i≤p). Initially there are xN2i customers in the
ith queue for both systems.

External customers enter the system, at the rate κ1X
N
1 (t) in the X-system,

and κ1λN in the Y -system, therefore more customers enter the Y -system than the
X-system. Furthermore, since we choose η such that X2i+1(t)≥ηN for all 1≤i≤m,
the service rate in every queue of the Y -system is smaller than the service rate in
the X-system, meaning that a customer of the Y -system needs more time to run
through the system than a customer of the X-system. This can be expressed with
the following result: for k ≤ p, for all t ≥ 0,

(3.12) SN
Y,k(t)

def.
=

k∑
i=1

Y N
i (t) ≥

k∑
i=1

XN
2i (t)

def.
= SN

X,k(t).

This can be proven by induction, using simple coupling arguments. The cases
k = 1 is straightforward. Assume that we have the result for k−1, the only Poisson
processes that change (SN

k (t)) are P1 and P2k+1. Note that P1 is more likely for
(SY,k(t)) than (SX,k(t)), so that it preserves Relation (3.12).

For t>0, if Relation (3.12) holds on [0, t) and a jump of P2k+1 occurs at time
t, there are two possible situations:

— If SY,k(t−) ≥ SX,k(t−) + 1, the relation will still be valid after one jump.
— If SY,k(t−) = SX,k(t−), since SY,k−1(t−)≥SX,k−1(t−) by hypothesis of in-

duction we have Yk(t−)≤X2k(t−), along with the fact thatX2k+1(t−)≤ηN ,
we know that

P2k+1((0, κ2k+1X
N
2k(t−)XN

2k+1(t−)),dt) ≥ P2k+1((0, κ2k+1ηNY
N
k (t−)),dt),
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which proves that Relation (3.12) is still true after the jump.

This concludes the proof of Proposition 3.4. □

Theorem 3.5. If m=2p+1 and α∈H0 such that α2i=0 and α2i−1>0, for all
1≤i≤p+1 then, under Condition (3.5), for the convergence in distribution, the re-
lations

lim
N→+∞

(
XN

2i (t)

N
, 1≤i≤p

)
=(0), lim

N→+∞

(
XN

2i+1(t)

N
, 0≤i≤p

)
= (ℓ(t)) = (ℓ2i+1(t))

hold, where (ℓ(t)) is the solution of the system of ODEs, for 1≤i≤p−1,

(3.13)



ℓ̇1(t) = −κ1
κ2
κ3

ℓ1(t)

ℓ3(t)
ℓ1(t),

ℓ̇2i+1(t) = κ1

(
κ2i
κ2i+1

ℓ2i−1(t)

ℓ2i+1(t)
−
κ2(i+1)

κ2i+3

ℓ2i+1(t)

ℓ2i+3(t)

)
ℓ1(t),

ℓ̇2p+1(t) = κ1
κ2p
κ2p+1

ℓ2p−1(t)

ℓ2p+1(t)
ℓ1(t)−κ2p+2ℓ2p+1(t),

with initial point (α2i+1). The function (ℓ(t)) converges to (0) as t goes to infinity.

Hence from the large state (α1, 0, α3, 0, . . . , 0, αm)N , the process (XN (t)) re-
turns on the normal timescale to a neighborhood of the origin along the curve
(ℓ1(t), 0, ℓ3(t), 0, . . . , 0, ℓm(t))N of Rm

+ .

Proof. Since we are interested in the order of magnitude in N of the compo-
nents of the vector (XN

2i+1(t), 0≤i≤p) on a finite time interval, the external arrivals
with rate κ0 do not play any role. Therefore, without a loss of generality, we can as-
sume that κ0=0, in particular (XN

1 (t)+XN
3 (t)+ · · ·+XN

2p+1(t)) is a non-increasing
process by Relations (3.6). The assumptions of Proposition 3.4 are therefore satis-
fied, the notations for TN , η and λ in this proposition and its proof are used.

The proof is achieved in three steps. The main difficulty is controlling that the
coordinates with an even index are O(1) while the others are of the order of N .

Step 1. Tightness of the occupation measure.
Let the stopped occupation measure µN on R+×Np is defined by

⟨µN , f⟩ =
∫ TN

0

f(s, (XN
2i (s), 1≤i≤p)) ds,

for any f∈Cc(R+×Np), where TN is defined by Relation (3.11). We now show
that(µN ) is tight for the convergence in distribution.

The tightness of the sequence of random measures (µN ) follows from Proposi-
tion 3.4, Relation (3.9) of Proposition 3.3 and Lemma 1.3 of Kurtz [55]. Lemma 1.4
of this reference gives that any limiting point of µ∞ of a subsequence (µNk

) can be
expressed as

(3.14) ⟨µ∞, f⟩ =
∫ +∞

0

∫
Np

f(s, x)πs(dx) ds,

for f∈Cc(R+×Np), where (πs) is an optional measure-valued process with values in
the subset of probability distributions on R+×Np.

If f is a continuous function on R+×Np such that |f(t, x)|≤C(t)∥x∥ for a contin-
uous function (C(t)), x=(xi)∈Np and ∥x∥=x1+ · · ·+xp, then, for the convergence
in distribution of processes, the relation

(3.15) lim
k→+∞

(∫ TNk

0

f(s, (XNk
2i (s))) ds

)
=

(∫ +∞

0

∫
Np

f(s, x)πs(dx) ds

)
.
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holds. The only (small) difficulty to show this result is the local behavior of (XN (t))
at t=0. For ε>0, we can show that

(3.16) lim
k→+∞

(∫ TNk

ε

f(s, (XNk
2i (s))) ds

)
=

(∫ +∞

ε

∫
Np

f(s, x)πs(dx) ds

)
.

The proof is standard, by using the convergence of (µNk
), the criterion of the

modulus of continuity, Theorem 7.3 of Billingsley [14], and an equivalent result to
Relation (3.9), which is easily proved:

(3.17) sup
N≥1

sup
t>ε

E

( p∑
i=1

Y N
i (Nt)

)2
 < +∞.

Now we have to show that for η, η′>0, we can find ε>0 and k0≥1 such that for all
k≥k0,

(3.18) P
(∣∣∣∣∫ ε

0

f(s, (XNk
2i (s))) ds

∣∣∣∣ > η

)
< η′.

We use the same notations as in the proof of Proposition 3.3, and

S0
p

def.
= E0

1,1+ · · ·+E0
p,1.

For ε∈(0, 1) and δ>0, we have

E
(∣∣∣∣∫ ε

0

f(s, (XNk
2i (s))) ds

∣∣∣∣) ≤ C

∫ ε

0

E(∥(X2i(s))i∥) ds

≤ CλE(Sp)ε+ C

∫ ε

0

∥(X2i(0))i∥P
(
S0
p ≥ sN

)
ds

≤ CλE(Sp)ε+ C
∥(X2i(0))i∥

δN
E
(
eδS

0
p

)
(1−e−εNδ),

with C=max{C(t), t∈[0, 1]}, which leads to Equation (3.18). By letting ε go to 0,
we obtain Relation (3.15).

Step 2. A lower bound for TN .
For 1≤i<p, let

(DN
i (t))

def.
=

(∫
(0,t]

P2i

((
0, κ2iX

N
2i−1(s−)XN

2i (s−)
)
,ds
))

,

then Di(t) is the number of molecules which have been transformed from S2i−1 into
S2i+1 up to time t. When t<TN , Proposition 3.4 and its proof give the relation

DN
i (t) ≤ DN

Y,i(t)
def.
=

∫
(0,t]

P2i

((
0, κ2iλN∥Y N (Ns−)∥

)
,ds
)
,

Again standard arguments of stochastic calculus and the ergodic theorem for the
Markov process (Y (t)) give the convergence in distribution

lim
N→+∞

(
DN

Y,i(t)

N

)
=

λ2κ2it p∑
j=1

1

µj

 .

If t0 is chosen so that for all 1≤i<p,

t0<
α2i−1

2λ2κ2i
∑p

j=1 1/µj
,

and t0<α2p+1/(2λκ2p+2), then the sequence (P(TN≥t0)) converges to 1.
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The SDEs for (XN (t)) give the relation

(3.19) X
N

2i+1(t) =
xN2i+1

N
+MN

i (t)

+κ2i

∫ t

0

X
N

2i−1(s)X
N
2i (s) ds−κ2(i+1)

∫ t

0

X
N

2i+1(s)X
N
2(i+1)(s) ds,

where (MN
i (t)) is a martingale whose previsible increasing process is

(
〈
MN

i (t)
〉
)

=

(
1

N

(
κ2i

∫ t

0

X
N

2i−1(s)X
N
2i (s) ds+κ2(i+1)

∫ t

0

X
N

2i+1(s)X
N
2(i+1)(s) ds

))
.

On the time interval [0, t0], with Doob’s Inequality, since X
N

2i±1(s)≤λ for s≤t0, the
convergence in distribution (3.15) gives that (MNk

i (t)) is converging in distribution
to (0). The criterion of the modulus of continuity, Theorem 7.3 of Billingsley [14],

with Relation (3.19) shows that the sequence of processes (X
o

N (t))
def.
= (X

N

2i+1(t), 0≤i≤p)
is tight for the convergence in distribution on [0, t0]. Without loss of generality one

can assume that the subsequence (Nk) is such that (µNk
, (X

o

Nk
(t))) is converging

to (µ∞, (ℓ(t))), where µ∞ has the representation (3.14).

Step 3. Identification of µ∞.
In this part the convergence in distribution of processes refers implicitly to the time
interval [0, t0]. Let g a function on Np with finite support on Np. Relations (3.6)

gives the relation, if (Xe
N (t))

def.
= (XN

2i (t), 1≤i≤p),

(3.20) g (Xe
N (t)) = g (Xe

N (0)) +MN
g (t)

+κ1

∫ t

0

N∇e2(g) (X
e
N (s))X

N

1 (s) ds

+

p∑
i=1

κ2i+1

∫ t

0

N∇(e2(i+1)−e2i)(g) (X
e
N (s))X

N

2i+1(s)X
N
2i (s) ds,

where, for 1≤k≤m=2p+1, ek is the kth unit vector of Rm
+ , with the convention

e2(p+1)=0, and, for a∈Rp
+,

∇a(g)(x) = g(x+a)−g(x), x∈Rp
+.

With the same argument as for the martingale (MN
i (t)) above, it is easily seen that

(MNk
g (t)/N) is converging in distribution to the null process. By dividing by N

Relation (3.20), we obtain the relation(∫ t

0

∫
Np

∇e2(f) (u)κ1ℓ
N
1 (s)πs(du) ds

+

∫ t

0

∫
Np

p∑
i=1

∇(e2(i+1)−e2i)(f) (u)κ2i+1ℓ2i+1(s)uiπs(du) ds

)
= (0),

which can be written as(∫ t

0

∫
Np

Rλ(s),µ(s)(f)(u)πs(du) ds

)
= (0),

with, for s≥0, λ(s)=κ1ℓ
N
1 (s) and µ(s)=(µi(s)) and µi(s)=κ2i+1ℓ2i+1(s) for 1≤i≤p.

Step 2 gives that, almost surely for all s≤t0, the relation ℓ2i+1(s)≥η holds. From
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there, Proposition 3.3 and with standard arguments, as Lemma 1.5 of Kurtz [55], see
also Section B.2.2 of Laurence and Robert [52], we obtain that, for h∈Cc([0, t0]×Np),∫

R+×Np

h(s, u)µ∞(ds,du) =

∫ +∞

0

∫
Np

h(s, u)

p∏
i=1

Pois

(
κ1ℓ

N
1 (s)

κ2i+1ℓ2i+1(s)

)
(dui) ds,

where Pois(ρ) is the Poisson distribution with parameter ρ>0.
Relation (3.19) on the subsequence (Nk) gives, as k go to infinity, the relation

ℓ1(t) = α1−
∫ t

0

κ2ℓ1(s)
κ1ℓ1(s)

κ3ℓ3(s)
ds,

ℓ2i+1(t) = α2i+1+

∫ t

0

κ2iℓ2i−1(s)
κ1ℓ1(s)

κ2i+1ℓ2i+1(s)
ds

−
∫ t

0

κ2(i+1)ℓ2i+1(s)
κ1ℓ1(s)

κ2i+3ℓ2i+3(s)
ds, 1≤i≤p−1,

ℓ2p+1(t) = α2p+1+

∫ t

0

κ2pℓ2p−1(s)
κ1ℓ1(s)

κ2p+1ℓ2p+1(s)
ds

−
∫ t

0

κ2p+2ℓ2p+1(s) ds,

holds almost surely for all t∈[0, t0].
The convergence in distribution of (X

e

N (t)) to 0 on [0, t0] is a direct consequence
of b) of Proposition 3.3, Proposition 3.4 and Step 2.

Due to local Lipschitz properties, the solution of the differential system (3.13)
can be defined on a maximal time interval [0, T∞), for some T∞∈R+∪{+∞}. As-
sume that T∞<+∞. For any k=2i+1≤m, 0≤i≤p, by summing-up the i+1 first
ODEs, we obtain that the function (ℓ1(t)+ℓ2(t)+· · ·+ℓk(t)) is non-increasing on
[0, T∞), and, consequently, that (ℓk(t)) has a limit, denoted as ℓ(T∞), when t↗T∞.

The last ODE of Relations (3.13), we have ℓ̇m(t)≥−κm+1ℓm(t), since αm=ℓm(0)>0,
this implies that ℓm(T∞)>0. The same argument applied to the ODE for (ℓ2p−1(t))
gives that ℓ2p−1(T0)>0. By induction we obtain that the relation ℓ2i+1(T∞)>0
holds for all 0≤i≤p. This is a contradiction with that maximal property of T∞. We
conclude that T∞=+∞ and, therefore, that the convergence in distribution we have
obtained holds in fact on R+. The fact that ℓ(∞)=(0) is proved with analogous
arguments. The theorem is proved. □

4. The Three Species CRN

In this section, we discuss in a simple setting the process associated to the CRN,
starting from large initial states from a scaling perspective. As it will be seen, there
are several scaling behaviors depending on the initial state. Proposition 3.6 shows
that a first order limit associated to a class of initial states is a continuous but
random function. This is due also to a boundary behavior of the law of mass
action.

∅ S1 S1+S2 S2+S3 S3 ∅
κ0 κ1 κ2 κ3 κ4

The set of SDEs for this network is

(3.21)


dXN

1 (t)=P0 ((0, κ0) ,dt)−P2

((
0, κ2X

N
1 (t−)XN

2 (t−)
)
,dt
)
,

dXN
2 (t)=P1

((
0, κ1X

N
1 (t−)

)
,dt
)
−P3

((
0, κ3X

N
2 (t−)XN

3 (t−)
)
,dt
)
,

dXN
3 (t) = P2((0, κ2X

N
1 X

N
2 (t−)),dt)−P4((0, κ4X

N
3 (t−)),dt),
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With the convention that N , resp. ∅, stands for a quantity of the order
of N , resp. o(N), Proposition 3.2 shows that the interesting initial states are
I1=(N, ∅, N), I2=(∅, ∅, N), I3=(∅, N, ∅), and I4=(N, ∅, ∅). We will denote I0=(∅, ∅, ∅).

The subset I1 has been taken care of in Theorem 3.5. For an initial state of I2,
with X3(0)∼x3N , on the time interval [0, T ], the first two coordinates remain o(N)
and it is not difficult to see that the process (XN

3 (t)/N) converges in distribution
to x3 exp(−κ4t).

We now discuss the remaining cases, for simplicity we focus on two initial states
(0, N, 0) in I3 and (N, 0, 0) in I4.

4.1. Initial State (0,N,0). The next result shows that the limit of (XN
2 (t)/N)

is a continuous function, but it is random, driven by an M/M/∞ process. Note
that since (L(t)) is converging in distribution to a Poisson random variable with
parameter κ0/κ3, the ergodic theorem gives that (ℓ2(t)) is almost surely converging
to 0.

Proposition 3.6. If (XN (t)) is the solution of (3.21) with initial condition
(0, N, 0), then the convergence in distribution

lim
N→+∞

(
XN

1 (t)

N
,
XN

2 (t)

N
,
XN

3 (t)

N

)
= (0, ℓ2(t)), 0),

holds, with

(ℓ2(t))
def.
=

(
exp

(
−κ3

∫ t

0

L(s) ds

))
,

where (L(t)) has the same distribution as the jump process associated to anM/M/∞
queue with input rate κ0 and service rate κ4.

Proof. We give a sketch of the proof. Some of the arguments used are the
same as in the proof of Theorem 3.5. We fix some T>0 and δ∈(0, 1), and set

TN
2

def.
= inf

{
t>0 : XN

2 (t) ≤ δN
}
,

Define (Y (t))=(Y1(t), Y2(t)) the Markov process on N2 of Proposition 3.3, whose
Q-matrix is Rκ0,(κ2,κ4). If N0 is sufficiently large so that δN0>1, then for N≥N0, in
a similar way as in the proof of Proposition 3.4, there exists a coupling of (XN (t))
and (Y (t)) such that, for t<TN

2 , the relation

XN
1 (t)+XN

3 (t) ≤ Y1(t)+Y2(t).

The SDEs (3.21) give that, for t≥0, the relations

XN
1 (t) ≤ P0((0, κ0), (0, t])(3.22)

XN
2 (t)

N
≤ 1+

MN
1 (t)

N
+
κ1
N

∫ t

0

P0((0, κ0)×(0, s)) ds,(3.23)

XN
2 (t)

N
≥ 1 +

MN
2 (t)

N
− κ3

∫ t

0

XN
2 (s)

N
XN

3 (s) ds,

hold, where (MN
i (t)/N), i=1, 2, is a martingale which is converging in distribution

to 0. For any ε and η>0, the exists N0 such that if N≥N0, then the relation

XN
2 (t∧TN

2 )

N
≥ 1−η − κ3

∫ t∧TN
2

0

XN
2 (s)

N
XN

3 (s) ds

≥ 1−η−κ3
∫ t∧TN

2

0

(1+η)(Y1(s)+Y2(s)) ds ≥ 1−η−κ3
∫ t

0

(1+η)(Y1(s)+Y2(s)) ds,
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holds with probability at least 1−ε. Let

τ = sup

{
t>0 :

∫ t

0

(Y1(s)+Y2(s)) ds ≤
1−δ−η
κ3(1 + η)

}
then

lim
N→+∞

P
(
τ≤TN

2

)
= 1.

With the criterion of the modulus of continuity, it is easily seen that the sequence
(XN

2 (t∧τ∧T )/N) is tight for the convergence in distribution. We can take a sub-
sequence associated to (Nk) converging to some continuous process (x2(t)).

With the same notations as before,

(3.24)
XN

2 (t)

N
= 1 +

MN
3 (t)

N
+κ1

∫ t

0

XN
1 (s)

N
ds− κ3

∫ t

0

XN
2 (s)

N
XN

3 (s) ds,

where (MN
3 (t)/N) is a martingale which is converging in distribution to 0. Rela-

tion (3.22) gives that, for the convergence in distribution,

lim
N→+∞

(∫ t

0

XN
1 (s)

N
ds

)
= (0).

We define (L(t)) as the solution of the SDE

dL(t) = P0 ((0, κ0) ,dt)−P4((0, κ4L(t−)),dt),

Now using that, on the time interval [0, τ∧T ], the process (XN
2 (t)/N) is greater

than δ, so that a species S1 is transformed into a species S3 after a duration of
time stochastically bounded by an exponential distribution with parameter κ2δN .
Hence, the jumps +1 of the process (XN

3 (t)) are “almost” Poisson with rate κ0, so
that (XN

3 (t)) is “close” to (L(t)). This can be stated rigorously as follows. There
are at most P0((0, κ0)×(0, T )) jumps of size 1 for (XN

3 (t)), using Relation (3.23),
one gets that the variable∫ TN

2 ∧T

0

XN
2 (s)

N

∣∣XN
3 (s)−L(s)

∣∣ds
converges in distribution to 0 since the duration between jumps of size +1 or −1
of both processes is converging to 0. By taking the limit in Relation (3.24) along
the sequence (Nk) we get the identity

(x2(t), t ≤ τ∧T ) =
(∫ t

0

x2(s)L(s) ds, t ≤ τ∧T
)
,

which gives the desired convergence of (XN
2 (t)/N) on the time interval [0, τ∧T ] and

the representation of its limit. The procedure is repeated starting at time τ∧T . The
proposition is proved. □

4.2. Initial State (N,0,0). When the initial state is (N, 0, 0), guessing the
time evolution is a little more tricky. One can see that (XN

2 (t)) grows quickly, at
rate κ1N initially, and then (XN

3 (t)) grows at rate κ2X
N
1 (t)XN

2 (t). The problem
is of understanding the correct orders of magnitude of (XN

2 (t), XN
3 (t)) since all

these reactions interact. A (vague) intuition suggests that, quite quickly, (XN
3 (t))

is of the order of N and that (XN
2 (t)) is o(N), so that we are in the case (N, ∅, N)

already studied.
To show that this intuitive picture is “correct”, we can try to use a convenient

scaling such as in the following proposition.
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Proposition 3.7. If the initial state is (N, 0, 0), then, for the convergence in
distribution,

lim
N→+∞

(
XN

1 (t/N2/3)

N
,
XN

2 (t/N2/3)

N1/3
,
XN

3 (t/N2/3)

N2/3
, t ≥ 0

)
= (1, x2(t), x3(t), t ≥ 0)

where (x2(t), x3(t)) is solution of the ODE{
ẋ2(t) = κ1 − κ3x2(t)x3(t)

ẋ3(t) = κ2x2(t).

We skip the proof of this result since the arguments are standard. The solution
of the above ODE is such that, as t goes to infinity, x2(t), resp. x3(t) converges
to 0, resp. +∞, which confirm our intuition. Note that the first coordinate of the
process does not change at all. This is nevertheless not enough to obtain rigorously
the correct orders of magnitude, for the (XN

3 (t)) in particular. This shows that a
scaling analysis, in the sense of deriving the convergence in distribution of scaled
sample paths, is not always the best approach.

Instead, with a combination of coupling arguments and convergence results, in
a formulation similar as the one used in Proposition 3.2, we can prove that at some
instant, deterministic here, the coordinates of the process have the right order of
magnitude.

The following proposition shows that if the initial state is (N, 0, 0), then, at
any time t0>0, the state of the CRN satisfies the conditions of the initial state of
Theorem 3.5. It is in fact immediately in I1.

Proposition 3.8. If (XN (t)) is the solution of (3.21) with initial condition
(N, 0, 0), then for any ε>0 and t0>0, there exists K>0 and η>0 such that

lim inf
N→+∞

P
(
XN

1 (t0)

N
,
XN

3 (t0)

N
∈(η, 1], XN

2 (t0)≤K
)

≥ 1−ε.

Proof. Since we are interested in the order of magnitude of (XN
1 (t)) in N on

finite time intervals, as before, without loss of generality, we can assume that κ0=0.
In the rest of the proof, the first term of the right-hand side of the first relation of
the SDEs (3.21) is removed. It is then easily seen that, in this case, the process
(XN

1 (t)+XN
3 (t)) is non-increasing, in particular XN

3 (t)≤N for all t≥0.
For δ∈(0, 1), we introduce the stochastic process (Y N

1 (t), Y N
2 (t), Y N

3 (t)), as the
solution of the SDE

(3.25)


dY N

1 (t) = −P2((0, κ2Y
N
1 Y N

2 (t−)),dt)

dY N
2 (t) = P1((0, κ1δN),dt)−P3((0, κ3NY

N
2 (t−)),dt)

dY N
3 (t) = P2((0, κ2δNY

N
2 (t−)),dt)−P4((0, κ4Y

N
3 (t−)),dt),

with Y N
1 (0)=N , Y N

2 (0)=Y N
3 (0)=0.

Define

TN
1 = inf{t≥0 : XN

1 (t) ≤ δN}.
By induction on the jumps of the processes (XN (t), YN (t)) on the time inter-
val, it is not difficult to prove that, for any t<TN

1 , the relations XN
1 (t)≥Y N

1 (t),
XN

2 (t)≥Y N
2 (t) and XN

3 (t)≥Y N
3 (t) hold.

The process (Y N
2 (t)) has the same distribution as (L(Nt)) where (L(t)) is the

process of anM/M/∞ queue with arrival rate κ1δ and service rate κ3. Hence, with
the ergodic theorem for positive recurrent Markov processes, we get that, for the
convergence in distribution,

lim
N→+∞

(∫ t

0

f
(
Y N
2 (s)

)
ds

)
=

(〈
Pois

(
κ1δ

κ3

)
, f

〉
t

)
,
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for any function f on N with finite support.
By using the classical approach to the proof of a stochastic averaging principle

as presented in Kurtz [55], see also Section B.2.2 of [52] for an example, we obtain
the following convergence in distribution

lim
N→+∞

(
Y N
1 (t)

N
,
Y N
3 (t)

N

)
=

(
e−κ1κ2δt/κ3 ,

κ1κ2δ
2

κ3κ4

(
1−e−κ4t

))
.

For t0>0, one can choose δ∈(0, 1) sufficiently small so that δ< exp(−κ1κ2δt0/κ3),
the above convergence shows that

(3.26) lim
N→+∞

P
(
TN
1 ≥t0

)
= 1.

This concludes the proof of the lower bounds ofXN
1 (t0)/N andXN

3 (t0)/N . Remains
to show the upper bound of XN

2 (t0).
Define δ′∈(0, 1) sufficiently small so that δ′<κ1κ2δ

2 (1−e−κ4t0) /(κ3κ4), and

TN
3 = inf{t≥0 : XN

3 (t) ≤ δ′N}.

In a similarly way, as for Relation (3.26), we have

(3.27) lim
N→+∞

P
(
TN
3 ≥t0

)
= 1.

We introduce (ZN
2 (t)) the solution of the SDE,

dZN
2 (t) = P1((0, κ1N),dt)−P3((0, κ3δ

′NZN
2 (t−)),dt),

with initial condition ZN
2 (0)=0. As before, the process (ZN

2 (t)) has the same distri-
bution as (L+(Nt)) where (L+(t)) is the process of an M/M/∞ queue with arrival
rate κ1 and service rate κ3δ

′. For any t0>0, Z
N
2 (t0) converges in distribution to a

Poisson distribution Pois(ρ) with parameter ρ
def.
= κ1/(δ

′κ3).
Since XN

1 (t)≤N for all t≥0 and XN
3 (t)≥δ′N for t≤TN

3 , it is easily seen that
XN

2 (t)≤ZN
2 (t) for t≤TN

3 . We conclude the proof of the proposition with Rela-
tion (3.27). □

5. AIMD processes: Invariant Distributions and a Limit Theorem

We introduce two classes of AIMD stochastic processes (Additive Increase Mul-
tiplicative Decrease) in Sections 5.1 and 5.2 which play an important role in the
limit results of Sections 6 and 7 for the CRN with four nodes. Section 5.3 gives
an averaging result where fast processes are AIMD processes, it will be used to
establish the averaging principle of Section 7.

The first of these AIMD processes, (R1(t)), describes the asymptotic behavior of

the fourth coordinate (XN
4 (t)) on the timescale (

√
Nt) when (XN

3 (t)) is 1. The other
one, (R0(t)), is associated to the asymptotic behavior of (XN

4 (t)) on the timescale

(
√
Nt). The asymptotic time evolution of (XN

2 (
√
Nt)/N,XN

4 (
√
Nt)/

√
N) can be

expressed in terms of these AIMD processes.
In the averaging principle proved in Section 7, the fast processes involved are

AIMD processes. For this reason, the asymptotic dynamic of the system is expressed
in terms of functionals of their invariant distributions. Sections 5.1 and 5.1 give
an explicit expression of the invariant distributions of (R1(t)) and (R0(t)).

Section 5.3 establishes an asymptotic result for the time evolution of a particle
system. This is a key ingredient in the proofs of limit theorems of Section 7.

Definition 3.9. For a and b>0, Γ0(a, b) is the distribution on R+ with density

b

Γ(a)
(bx)a−1e−bx, x≥0.
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The function Γ is the classical Gamma function. See Whittaker and Watson
[78]. The Laplace transform of Γ0(a, b) at ξ≥0 is given by(

b

b+ξ

)a

.

The fractional moment of order 1/2 of this distribution is

(3.28)

∫ +∞

0

√
xΓ0(a, b)(dx) =

1√
bΓ(a)

∫ +∞

0

xa−1/2e−x dx =
1√
b

Γ(a+1/2)

Γ(a)
.

5.1. The process (R1(t)). For α and β>0, let N1 be a Poisson point process
on R2×[0, 1] with intensity measure α ds× dt×βaβ−1 da. The point process N1 can

be represented as N1=(un, vn, U
1/β
n ) where (un, vn) is a homogeneous Poisson point

process with rate α, independent of the i.i.d. sequence (Un) of uniformly distributed
random variables on [0, 1].

We now define (R1(t)) as the solution of the SDE

(3.29) dR1(t) = dt+

∫
a∈[0,1]

(a−1)R1(t−)N1((0, R1(t−)],dt, da),

with R1(0)=v≥0.
The asymptotic behavior of (R1(t)) is described in the following proposition.

Proposition 3.10. The process (R1(t)) converges in distribution to the random
variable R1(∞). The distribution of R1(∞)2 is Γ0((β+1)/2, α/2) of Definition 3.9.

The proof of the proposition uses the embedded Markov chain of (R1(t)).

Proof. Let (Rn) be the embedded Markov chain of (R1(t)), if R0=v>0, then

R1 = U1/β (v+τv) ,

where U and τv are independent random variables, U with a uniform distribution
on [0, 1] and τv is such that

(3.30)

∫ τv

0

(v+s) ds = Eα,

where Eα is an exponentially distributed random variable with parameter α, i.e.
for x≥0,

P(τv ≥ x) = exp

(
−α

∫ x

0

(v+s) ds

)
.

We obtain that
R2

1 = U2/β
(
v2+2Eα

)
.

Now if (Ui) and (Eα,i) are independent i.i.d. sequences with the respective distri-
bution of U and Eα,

W1
def.
=

+∞∑
1

2Eα,i

i∏
1

U
2/β
k

= U
2/β
1

(
+∞∑
i=2

2Eα,i

i∏
k=2

U
2/β
k +2Eα,1

)
= U

2/β
1 (W2+2Eα,1) ,

andW2
dist.
= W1. The distribution of

√
W1 is therefore invariant for the Markov chain

(Rn). The variable W1 can be expressed as

W1 =

+∞∑
1

2Eα,i exp(−2ti/β),

where, for i≥1, ti=− ln(U1)− ln(U2)−· · ·− ln(Ui).
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From Proposition 1.11 of Robert [67], the marked point process M=(tn, Eα,n)
is Poisson with intensity du⊗α exp(−αv) dv on R2

+ and, since

W1 =

∫
R2

+

2v exp(−2u/β)M(du,dv),

with Proposition 1.5 of [67] for the Laplace transform of M, we get that, for ξ≥0,

E
(
e−ξW1

)
= exp

(
−
∫
R2

+

(
1−e−2ξv exp(−2u/β)

)
α exp(−αv) dv du

)

= exp

(
−
∫ +∞

0

2ξe−2u/β

α+2ξe−2u/β
du

)
=

(
α

α+2ξ

)β/2

.

The distribution of W1 is Γ0(β/2, α/2), hence with density(α
2

)β/2 xβ/2−1

Γ(β/2)
e−αx/2, x≥0.

If ν1 denotes the invariant distribution of (R1(t)), its representation in terms of the
invariant distribution of the embedded Markov chain gives the relation

(3.31)

∫
R+

f(x)ν1(dx) =
1

E(τ√W1
)
E
(∫ τ√

W1

0

f
(√

W1+s
)
ds

)
,

for any non-negative Borelian function f on R+

We take f(x)= exp(−ξx) for some ξ≥0, Relation (3.30) with v=
√
W1 gives the

relation

E(τ√W1
)

∫
R+

e−ξxν1(dx) =
1

ξ

(
E
((
e−ξ

√
W1

))
− E

(
e
−ξ(

√
W1+τ√

W1
)
))

=
1

ξ

(
E
(
e−ξ

√
W1

)
− E

(
e−ξ(

√
W1+2Eα)

))
,

where Eα is an exponentially distributed random variable with parameter α, inde-
pendent of W1. By using Fubini’s formula, we have

(3.32) E
(
τ√W1

) ∫
R+

e−ξxν1(dx) =
1

ξ

(
E
(
e−ξ

√
W1

)
− E

(
e−ξ(

√
W1+2Eα)

))
=

∫ +∞

0

e−ξuP
(√

W1≤u≤
√
W1+2Eα

)
du,

and, therefore, the density of ν1 at u is proportional to

P
(√

W1≤u≤
√
W1+2Eα

)
= e−αu2/2E

(
eαW1/21{W1≤u2}

)
= C0e

−αu2/2

∫ u2

0

eαw/2xβ/2−1e−αw/2 dw = C1e
−αu2/2uβ ,

where C0 and C1 are multiplicative constants. The proposition is proved. □

5.2. The process (R0(t)). For α>0, let N0 be a Poisson point process on
R×R+ with intensity measure α dt× exp(−a) da, it can be represented as the se-
quence of points (un, En), where (un) is a Poisson process on R+ with rate α
and (En) is an i.i.d. sequence of exponential random variables with parameter 1,
independent of (un).

For γ, β>0, we define (R0(t)), the solution of the SDE

(3.33) dR0(t) = − 1

γ
R0(t) dt+

∫
a∈R+

(√
R0(t−)2+

a

β
−R0(t−)

)
N0(dt, da),



5. AIMD PROCESSES: INVARIANT DISTRIBUTIONS AND A LIMIT THEOREM 105

with R0(0)=v≥0.
It should be noted that the integral expression in the above SDE is just a Dirac

measure, since there is only one “a” when there is a jump in t.

Proposition 3.11. The process (R0(t)) converges in distribution as t goes
to infinity to a random variable R0(∞), such that R0(∞)2 has the distribution
Γ0(αγ/2, β) of Definition 3.9.

Proof. If (W (t))=(R0(t)
2), we obtain easily with a change of variable that

the relation

dW (t) = − 2

γ
W (t) dt+

1

β

∫
a∈R+

aN0(dt, da).

Its unique solution is given by, for t≥0,

W (t) =W (0)e−2t/γ+
1

β

∫ t

0

ae−2(t−s)/γN0(ds,da)

dist.
= W (0)e−2t/γ+

1

β

∫ t

0

ae−2s/γN0(ds,da),

by reversibility and invariance of the Poisson process by translation. We obtain
that (W (t)) converges in distribution to

W∞
def.
=

1

β

∫ +∞

0

ae−2s/γN0(ds,da).

For ξ≥0, by using the representation of the Laplace transform of a Poisson process,
see Proposition 1.5 of Robert [67], we get that

E
(
e−ξW∞

)
= exp

(
−α

∫
R2

+

(
1− exp

(
− ξ

β
ae−2s/γ

))
e−a da ds

)

= exp

(
−α

∫ +∞

0

ξe−2s/γ

β+ξe−2s/γ
ds

)
=

(
β

β+ξ

)αγ/2

.

We conclude that the distribution of W∞ is Γ0(αγ/2, β). □

5.3. A Limiting Result on a Particle System. We investigate the limiting
behavior of the time evolution of a Markov process on N which is described in
terms of a particle system. A process of this type plays an important role in a
time-changed version of the process (UN

4 (t)) in Section 7. A limiting result is
established, Theorem 3.12, it plays a central role in the asymptotic analysis of the
CRN with four nodes in Section 7.

The kinetics are as follows: At time t, we are given G, an exponential random
variable variable with parameter σ, and (Ei) an independent i.i.d. sequence of
exponential random variables with parameter λ.

— Arrivals. A new particle arrives at rate PN (t−), where (PN (t)) is an
adapted càdlàg process.

— Departures. If there are x∈N particles, at rate δx, δ>0, any particle 1≤i≤x
such that Ei≤G is removed.

With the definition of Section 2.1, Nσ is a Poisson marked point process on the
state space R2

+×R+×RN
+ whose intensity measure is

ds⊗dt⊗σ exp(−σa) da⊗Q(db),

where Q is the distribution on RN
+ of an i.i.d. sequence (Ei) of exponential random

variables with parameter λ.
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The process of the number of particles, (KN (t)), is defined as the solution of
the SDE,

(3.34) dKN (t) = P0((0, PN (t−)),dt)

−
∫
(a,b)∈R+×RN

+

S(KN (t−), a, b)N ((0, δKN (t−)] ,dt,da,db) ,

such that KN (0)=wN∈N. For a≥0 and b=(bi)∈RN
+, we denote

(3.35) S(n, a, b)
def.
=

n∑
i=1

1{bi≤a}.

It can be shown, with the criterion of the modulus of continuity, that the pro-
cess (KN (t))=(KN (t)/

√
N) has convenient tightness properties on the timescale

(t/
√
N). Since we are interested in the asymptotic behavior of this process on

the normal timescale, we will investigate the asymptotic behavior of its occupation
measure µN defined by

(3.36) ⟨µN , f⟩ =
∫ T

0

F
(
s,KN (s)

)
ds =

∫ T

0

F

(
s,
KN (s)√

N

)
ds,

for F∈Cc([0, T ]×R+).

Theorem 3.12. If (PN (t)) is a càdlàg adapted process on N such that (PN (t)/N)
is a bounded process converging in distribution to a continuous positive process (p(t))
and (KN (t)) is the solution of SDE (3.34), KN (0)=wN and the sequence (wN/N) is
bounded, then the sequence of occupation measures (µN ) defined by Relation (3.36)
converges in distribution to the measure µ∞ defined by∫ T

0

∫ +∞

0

F (s, x)µ∞(ds,dx) =

∫ T

0

∫ +∞

0

F
(
s,
√
x
)
Γ0

(
σ

2λ
+
1

2
,

δ

2p(s)

)
(dx) ds,

for F∈Cc([0, T ]×R+), where Γ0 is the distribution of Definition 3.9.

Proof. The proof is done in several steps.

Step 1: Tightness properties of (µN ).

By integration of Relation (3.34) and taking the expected value, we obtain that

δ
λ

λ+σ

∫ T

0

E
(
KN (s)2

)
ds ≤ wN

N
+

∫ T

0

E
(
PN (s)

N

)
ds,

hence

(3.37) sup
N≥1

∫ T

0

E
(
KN (s)2

)
ds < +∞.

This Relation will be used frequently in the proof of the different convergence
theorems of Section 7. Relation (3.37), Lemmas 1.3 and 1.4 of Kurtz [55] show that
1) the sequence (µN ) is tight for the convergence in distribution, and 2) if µ∞ is
the limit of some converging subsequence (µNk

), then it can be represented as

⟨µ∞, F ⟩ =
∫
[0,T ]×R+

F (s, x)γs(dx) ds,

for F∈Cc([0, T ]×R+), where (γs) is an optional process with values in probability
distributions on R+.

If f is a bounded continuous function on R+, then for T≥0,

E

(∫ T

0

f
(
KN (s)

)
KN (s)1{KN (s)≥K} ds

)
≤ ∥f∥∞

K

∫ T

0

E
(
KN (s)2

)
ds,
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hence, for the convergence in distribution

lim
N→+∞

∫ T

0

f
(
KN (s)

)
KN (s) ds

=

∫
xf(x)1{s≤T}µ∞(ds,dx) =

∫ T

0

∫ +∞

0

xf(x)γs(dx) ds.

The next steps are devoted to the identification of the limit.

Step 2: Control of martingales.
If f is some continuous bounded function on R+, then, for t≥0, standard stochastic
calculus gives the relation, for t∈[0, T ],

(3.38) f(KN (t)) = f(KN (0)) +MN
f (t)

+

∫ t

0

(
f

(
KN (s)+

1√
N

)
−f
(
KN (s)

))
PN (s) ds

+

∫ t

0

E

f
 1√

N

KN (s)∑
1

1{Ei>G}

∣∣∣∣∣∣Fs

−f
(
KN (s)

) δKN (s) ds,

where (MN
f (t)) is a martingale. The expectation value of the last line is taken on

the random variables G and (Ei). If f is C1 with compact support, its predictable
increasing process (⟨Mf ⟩ (t)) is such that

(3.39) ⟨Mf ⟩ (t) ≤ 4∥f ′∥2∞
∫ t

0

PN (s)

N
ds+ 4δ∥f∥2∞

∫ t

0

KN (s) ds.

With Relations (3.39) and (3.37), we obtain that the sequence (E(
〈
MN

f /
√
N
〉
(T )))

is converging to 0 and, therefore, with Doob’s Inequality, that the martingale
(MN

f (t)/
√
N) converges in distribution to 0.

Step 3: A Technical estimate.
This step is dedicated to the estimation of the height of the negative jumps of
(KN (t)). Let f∈Cc(R+), and define ∆N (f) as∫ T

0

∣∣∣∣∣∣E
f

KN (s)
1

KN (s)

KN (s)∑
1

1{Ei>G}

−f

KN (s)e−λG

∣∣∣∣∣∣Fs

∣∣∣∣∣∣KN (s) ds.

The law of large numbers gives the relation

lim
K0→+∞

sup
x≥0

∣∣∣∣∣f
(
x

1

K0

K0∑
1

1{Ei>G}

)
−f
(
xe−λG

)∣∣∣∣∣ = 0

which holds almost surely, and by Lebesgue’s Theorem in L1. The integrand of
quantity ∆N (f), with the factor KN (s) excluded, is expressed as the sum of two

terms. One with the indicator function of the set {KN (s)≥η}={KN (s)≥η
√
N},

for some small η>0. The last estimate can then be used for this term. The other
term with the set {KN (s)≤η} is negligible since the integrand is the difference of
two expressions which are arbitrarily both close to f(0).

Relation (3.37) and Cauchy-Shwartz’s Inequality give that, for K1>0,

sup
N

P

(∫ T

0

KN (s) ds≥K1

)
≤ T

K1
sup
N

√∫ T

0

E
(
KN (s)2

)
ds.

By combining these results, we obtain that the sequence (∆N (f)) converges in
distribution to 0.
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Step 4: Conclusion
If f∈C1

c , by dividing Relation (3.38) by
√
N , and letting N go to infinity, we obtain

that, almost surely, the relation∫ t

0

∫
R+

p(s)f ′(x)γs(dx) ds+

∫ t

0

∫
R2

+

(
f
(
xe−λa

)
−f (x)

)
δxσe−σa daγs(dx) ds = 0,

holds for all t≥0. Indeed it clearly holds almost surely for a fixed t and, therefore for
all t∈Q, consequently for all t≥0 by continuity. We have established the relation,
almost surely (∫ t

0

〈
Ap(s)(f), γs

〉
ds

)
= (0),

with, for x≥0, a>0

Aa(f)(x) = af ′(x)+δx

∫ 1

0

(
f
(
xuλ/σ

)
−f (x)

)
du.

Note that Aa is the infinitesimal generator of the Markov process (R1(at)), where
(R1(t)) is defined in Section 5.1 with β=σ/λ and α=δ/a. Hence, there exists a
subset Sf of [0, T ], negligible for the Lebesgue’s measure, such that, almost surely,
the relation

〈
Ap(s)(f), γs

〉
=0 holds, for all s∈[0, T ]\Sf . Since the set of C1 functions

with compact support on R+ is separable for the uniform norm, there exists S0 of
[0, T ], negligible for the Lebesgue’s measure such that, almost surely, for any f in
a dense subset of such functions the relation

〈
Ap(s)(f), γs

〉
=0 for all s∈[0, T ]\S0.

Proposition 9.2 of Ethier and Kurtz [24] gives that for s∈[0, T ]\S0, γs is the invariant
distribution of (R1(t)). The proposition is proved. □

6. The Four Species CRN

We investigate the asymptotic behavior of the CRN with four nodes starting
from an initial state of the form (0, N, 0, 0) for some large N . As explained in the
introduction, we did not try a complete classification of initial states from the point
of view of the asymptotic behavior of (XN (t)) as we have done for m=3. We do
believe however that this is the interesting class of initial states, i.e. with a really
unusual asymptotic behavior.

By using Filonov’s Theorem, see Theorem 6 of Laurence and Robert [52], it can
be proved, with some tedious but straightforward technicalities, that the associated
Markov process (X(t)) is positive recurrent. In particular, starting from (0, N, 0, 0)
the second coordinate (XN

2 (t)) will eventually decrease. The goal of this section
and of Section 7 is of characterizing this decay.

Up to now, we have seen that the ordinary timescale was enough to observe
the decay of the norm of the process. See Theorem 3.5 and Sections 4.1 and 4.2.
For this initial state, the situation is significantly different. It turns out that the
convenient timescale is (

√
Nt) and that on this timescale the process lives in a set

of states of the form (a, yN , b, vN ) with a, b∈N and yN and vN are respectively of

the order of N and
√
N .

We analyze the scaling properties of this CRN on the normal timescale in this
section. It is shown that, with a scaling in space, the Markov process converges in
distribution to a jump process under a convenient topology on the space of càdlàg
functions D([0, T ],R4

+). The limiting process is an AIMD process whose invariant
distribution has been investigated in Section 5.2. The asymptotic behavior on the
timescale (

√
Nt) is analyzed in Section 7.

∅ S1 S1+S2 S2+S3 S3+S4 S4 ∅
κ0 κ1 κ2 κ3 κ4 κ5
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The set of SDEs for the state (XN (t))=(XN
i (t)) network is

(3.40)


dXN

1 (t) =P0 ((0, κ0) ,dt)−P2

((
0, κ2X

N
1 X

N
2 (t−)

)
,dt
)
,

dXN
2 (t) =P1

((
0, κ1X

N
1 (t−)

)
,dt
)
−P3

((
0, κ3X

N
2 X

N
3 (t−)

)
,dt
)
,

dXN
3 (t) = P2((0, κ2X

N
1 X

N
2 (t−)),dt)−P4

((
0, κ4X

N
3 X

N
4 (t−)

)
,dt
)
,

dXN
4 (t) = P3((0, κ3X

N
2 X

N
3 (t−)),dt)−P5((0, κ5X

N
4 (t−)),dt).

6.1. Scaling Properties. The rest of this section and Section 7 are devoted to
the asymptotic behavior of (XN (t)) when the initial state is XN (0)=(0, yN , 0, vN ),
with

(3.41) lim
N→+∞

(
yN
N
,
vN√
N

)
= (y, v)∈R2

+, y>0.

The time evolution of the process (XN (t)) is investigated, in a natural way, by a
representation in terms of several steps of a cycle defined in terms of the points
of P0((0, κ0],dt). We give a heuristic description of it for the moment. The cycle
describes, with high probability, the time evolution of the CRN in terms of the
values of (XN

1 (t), XN
3 (t)) with the successive states (0, 0), (1, 0), (0, 1) and (0, 0).

This is not a formal definition but more an (hopefully) insightful picture of an
important aspect of the kinetics of our CRN.

A Heuristic Description of a Cycle.

(a) If the initial state is (0, yN , 0, vN ). Let t1 be the first point of the point
process P0((0, κ0],dt). On the time interval [0, t1), only the last coordinate
(XN

4 (t)) changes, via the SDE

(3.42) dAN (t) = −P5((0, κ5AN (t−)),dt),

with AN (0)=vN .
At time t1 the state of the CRN is (1, yN , 0, X

N
4 (t1)).

(b) If the initial state is (1, yN , 0, vN ), the variable τ1N is the time when the 1
at the first coordinate “moves” to the third coordinate. At this instant,
on the event {t1>τ1N}, the state becomes (0, yN+YN , 1, vN−WN ), where

YN = P1((0, κ1)×(0, τ1N )) and WN =

∫ τ1
N

0

P5((0, κ5X
N
4 (s−)),ds).

It is not difficult to see that the random variable τ1N is of the order of 1/N

and, consequently, that the sequence (YN/N,WN/
√
N) is converging in

distribution to (0, 0). At time τ1N , the process starts at a state “close” to
(0, yN , 1, vN ).

(c) If the initial state is (0, yN , 1, vN ), the second coordinate may decrease
until the time τ2N when the “1” of the third coordinate becomes 0. The
state is at this moment (0, XN

2 (τ2N ), 0, XN
4 (τ2N )) with high probability.

In this approximate description, the possible values for the first and the third
coordinates either 0 or 1. This turns out to be essentially an accurate asymptotic
description of the CRN on the “normal” timescale (t) investigated in this section.

A similar statement for the timescale (
√
Nt) of Section 7 still holds but requires

quite different arguments.
The distribution of the duration of the first step is exponential with parameter

κ0. The decay of (XN
4 (t)) occurs essentially during this step. Step (2) is a (short)

transition, mentioned only to have a straight formulation of the limit results.
The third step is when (XN

2 (t)) decreases and (XN
4 (t)) builds up. As it will

be seen its duration is O(1/
√
N) and the number of jumps of the process during

this step is large, of the order of
√
N . This feature has a significant impact on the
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statements of the scaling results for (XN
2 (t)/N,XN

4 (t)/
√
N) via the topologies used

on the space of càdlàg functions.
With a time change, the third step can be “removed” and a convergence re-

sult holds for the usual Skorohod topology, the J1-topology. See Proposition 3.15.
Otherwise, on the full timescale, the M1-Skorohod topology or the S-topology has
to be used, see Proposition 3.16. See Whitt [77] and Jakubowski [44] for general
presentations of these topologies.

In any of these cases, the limiting process is an AIMD process analyzed in
Section 5.2. See Figure 2. We start with the main limiting result for the third step.

Proposition 3.13. If XN (0)=(0, yN , 1, vN ) satisfy Relation (3.41) and

τ2N
def.
= inf

{
t>0 : XN

3 (t) = 0
}
,

then, under Condition (3.41), the relation

(3.43) lim
N→+∞

(√
Nτ2N ,

XN
2 (τ2N )

N
,
XN

4 (τ2N )√
N

)
= (Hy,v, y, v+κ3yHy,v),

holds for the convergence in distribution, where Hy,v is a non-negative random
variable whose distribution is given by

(3.44) Ey(f(Hy,v)) =

∫ +∞

0

f

(
1

κ3y

(√
v2+2

κ3
κ4
ys− v

))
e−s ds,

for any function f∈Cc(R+).

Proof. Let (Y N
2 (t), Y N

4 (t)) be the solution of the SDEs{
dY N

2 (t) =−P3

((
0, κ3Y

N
2 (t−)

)
,dt
)
,

dY N
4 (t) = P3((0, κ3Y

N
2 (t−)),dt)−P5((0, κ5Y

N
4 (t−)),dt),

with the initial condition (Y N
2 (0), Y N

4 (0))=(N, vN ). Standard stochastic calculus
as in Section 4 gives the convergence in distribution as processes for the uniform
topology

(3.45) lim
N→+∞

(
Y N
2 (t/

√
N)

N
,
Y N
4 (t/

√
N)√

N

)
= (y, v+κ3yt).

We define

τYN = inf

{
t>0 :

∫ t

0

P4

((
0, κ4Y

N
4 (s−)

)
,ds
)
̸=0

}
.

Let E1 be an exponential random variable with parameter 1, independent of P3

and P5. It is easily seen that if HN is the solution of the relation

(3.46) κ4

∫ HN

0

Y N
4 (s) ds = E1

then the relation

(τYN , Y
N
2 (τYN ), Y N

4 (τYN ))
dist.
= (HN , Y

N
2 (HN ), Y N

4 (HN ))

holds. A change of variable in Relation (3.46) gives the identity

κ4

∫ √
NHN

0

Y N
4 (s/

√
N)√

N
ds = E1.

Relation (3.45) shows that the sequence (
√
NHN ) is tight and also that any of its

limiting points H satisfies the relation

κ4

(
vH +

κ3
2
yH2

)
dist.
= E1,
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and therefore the convergence in distribution of this sequence to Hy,v. The relation(√
NHN ,

Y N
2 (HN )

N
,
Y N
4 (HN )√

N

)
=

(
√
NHN ,

Y N
2 (

√
NHN/

√
N)

N
,
Y N
4 (

√
NHN/

√
N)√

N

)
and the convergence (3.45) show that, when N goes to infinity these random vari-
ables converge in distribution to the right-hand side of Relation (3.43).

Until time t1∧τ2N , it is easy to see that (XN
2 (t), XN

4 (t))
dist.
= (Y N

2 (t), Y N
4 (t)). The

proof is concluded by noting that

lim
N→+∞

P
(
t1 < τYN

)
= 0,

since t1 is a exponential random variable with parameter κ0, independent of P3

and P5. □

We complement the last proposition with a technical corollary which describes
the time evolution on the time interval [0, τN2 ) of the process (XN

2 (t), XN
4 (t)). It is

used in the proof of the convergence for the M1-topology of Section 6.3.

Corollary 3.14. With the notations and Assumptions of Proposition 3.13, if
T>0, for the convergence in distribution

lim
N→+∞

(
XN

2 (t/
√
N)

N
,
XN

4 (t/
√
N)√

N
, t≤

√
NτN2

)
= ((y, v+κ3yt), t≤Hy,v).

Proof. This is a consequence of a) the coupling of the proof of Proposi-
tion 3.13, the relation (XN

2 (t), XN
4 (t))=(Y N

2 (t), Y N
4 (t)) holds for t<τN2 ∧ t1, and

b) that Relation (3.45) can be strengthened as

lim
N→+∞

((
Y N
2 (t/

√
N)

N
,
Y N
4 (t/

√
N)√

N

)
,
√
NτN2

)
= ((y, v+κ3yt), Hy,v).

□

We now return to the investigation of the asymptotic behavior of(
XN

2 (t)

N
,
XN

4 (t)√
N

)
,

when the initial state is such that (XN
2 (0), XN

4 (0))=(yN , vN ) and Relation 3.41
holds, and XN

1 (0), XN
3 (0)∈{0, 1}. We first show that, up to a time change, there

is indeed a convergence in distribution for the J1-topology. See Proposition 3.15.
Without a time change, there is a convergence in distribution but for weaker topolo-
gies, the M1-topology and the S-topology. See the discussion in Section 6.3.

6.2. Convergence with a Random Time Change. The time change con-
sidered in this section consists in removing the instants t of step (3) of Definition 6.1,
i.e. when X3(t)̸=0. We introduce, for t≥0,

LN
0 (t) =

∫ t

0

1{XN
3 (s)=0} ds and ℓN0 (t) = inf{s≥0 : LN

0 (s) > t}.

Proposition 3.15. If XN (0)=(0, yN , 1, vN ) satisfy Relation (3.41), then for
the convergence in distribution for the J1-Skorohod topology,

lim
N→+∞

(
XN

2 (ℓN0 (t))

N
,
XN

4 (ℓN0 (t))√
N

)
= (y, Vy(t)),
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Figure 2. CRN with Four Nodes.
Simulation: A snapshot of (XN

4 (t)/
√
N).

Initial state (0, N, 0, 0), κi=1, i=0,. . . ,5 and N=9·106.

where (Vy(t)) is the Markov process on R+ whose infinitesimal generator Ay is
given by, for f∈C1

c (R+) and x∈R+,

Ay(f)(x) = −κ5xf ′(x) + κ0

∫ +∞

0

(
f

(√
x2+2

κ3
κ4
ys

)
−f(x)

)
e−s ds

The process (Vy(t)) is in the class of AIMD processes introduced in Section 5.2.
See Figure 2 for an illustration of a sample path of (Vy(t)).

Proof. The result itself is quite intuitive in view of Proposition 3.13. Some
care is nevertheless necessary in order to deal with formal aspects of the J1-topology.
The proof is direct. One of its simple ingredients is that the convergence

(3.47) lim
N→+∞

(
xN1{aN≤t}+yN1{bN≤t}

)
=
(
x1{a≤t}+y1{b≤t}

)
holds for the J1-topology if the sequences (xN ), (yN ),(aN ),(bN ) converge respec-
tively to x, y, a, b with a ̸=b. Extensions with more terms also hold. See Section VI.1
of Jacod and Shiryaev [43] for example. The proof also use Skorohod’s representa-
tion theorem repeatedly. See Theorem 1.8 of Ethier and Kurtz [24].

We denote by (tn) the non-decreasing sequence of points of P0((0, κ0],dt), with
the convention that t0=0. An important point is that this sequence is not depending
on the scaling parameter N . This property will simplify the proofs of convergence
in distribution of this section. We fix T>0, as usual D([0, T ]) denotes the space of
càdlàg functions on [0, T ], we will have to consider the events, T∈[tn, tn+1), n≥1.

Let (AN
0 (t)) be the solution of SDE (3.42) with AN

0 (0)=vN . A standard argu-
ment gives the convergence in distribution

(3.48) lim
N→+∞

(
AN

0 (t)√
N

, 0≤t<T
)

=
(
ve−κ5t, 0≤t<T

)
,

for the uniform topology on D([0, T ]). By using Skorohod’s representation theorem,
see Theorem 1.8 of Ethier and Kurtz [24], one can assume that there exists a
probability space on which the sequence of processes (AN

0 (t)) are defined and the
convergence (3.48) holds almost surely for the uniform norm.

We use similar notations as in Definition 6.1

τ1N
def.
= inf

{
t>0 : XN

3 (t1+t) = 1
}
, τ2N

def.
= inf

{
t>0 : XN

3 (t1+τ
1
N+t) = 0

}
.
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On the event {t1≤T}, the processes ((yN , A
N
0 (t)), t<t1) has the same distribu-

tion as ((XN
2 (t), XN

4 (t)), t<t1) and, almost surely

lim
N→+∞

AN
0 (t1)√
N

= v
def.
= ve−κ5t1 .

then, by Proposition 3.13, the convergence in distribution

(3.49) lim
N→+∞

(√
Nτ1N ,

√
Nτ2N ,

XN
2 (t1+τ

1
N+τ2N )

N
,
XN

4 (t1+τ
1
N+τ2N )√
N

)
= (0, Hy,v, y, v+κ3yHy,v),

holds, where

(3.50) V1
def.
= v+κ3yHy,v

dist.
=

√
v2+2

κ3
κ4
yE1,

where E1 is an exponentially distributed random variable with parameter 1 by Rela-
tion (3.44). Using again Skorohod’s representation theorem, it can be assumed that,
with a convenient probability space, the convergence (3.49) holds almost surely.

Let vN1 =XN
4 (t1+τ

1
N+τ2N ) and (AN

1 (t)) the solution of (3.42) associated to an
independent Poisson process P5 and with initial point vN1 . The convergence

lim
N→+∞

(
AN

1 (t)√
N

, 0≤t<T
)

=
(
V1e

−κ5t, 0≤t<T
)

holds and, up to a change of probability space, it holds almost surely for the uniform
topology.

Our time change (ℓN0 (t)) “removes” the time interval [t1+τ
1
N , t1+τ

1
N+τ2N ). We

define(
X̃N

2 (t), X̃N
4 (t)

)
= 1{t<t1+τ1

N}
(
yN , A

N
0 (t)

)
+1{t1+τ1

N≤t}
(
XN

2 (t1+τ
1
N+τ2N ), AN

1 (t−t1−τ1N )
)

=
(
yN , A

N
0 (t)

)
+1{t1+τ1

N≤t}
(
XN

2 (t1+τ
1
N+τ2N )−yN , AN

1 (t−t1−τ1N )−AN
0 (t)

)
.

Relation (3.47) gives that, for the J1-topology,

lim
N→+∞

(
X̃N

2 (t)

N
,
X̃N

4 (t)√
N

)
= (y, Vy(t))

def.
=
(
y,1{t<t1}ve

−κ5t+1{t1≤t}V1e
−κ5(t−t1)

)
.

Note that on the event t1≤T<t2, we have(
X̃N

2 (t)

N
,
X̃N

4 (t)√
N

)
dist.
=

(
XN

2 (ℓN0 (t))

N
,
XN

4 (ℓN0 (t))√
N

)
if the second component of (XN (t)) does not increase on [t1, t1+τ

1
N ], i.e. on the

event EN =
{
P1((0, κ1)×[t1, t1+τ

1
N ]) = 0

}
. The probability of EN is arbitrarily

close to 1 as N gets large since (
√
Nτ1N ) converges to 0. Hence if Φ is a bounded

continuous functional on D([0, T ]) endowed with the J1-topology, we obtain the
relation

lim
N→+∞

E
(
Φ

((
XN

2 (ℓN0 (t))

N
,
XN

4 (ℓN0 (t))√
N

))
1{t1≤T<t2}

)
= E

(
Φ ((y, Vy(t)))1{t1≤T<t2}

)
.

note that Vy(t1−)=v and

Vy(t1)−Vy(t1−)=

√
Vy(t1−)2+2

κ3
κ4
yE1−Vy(t1−),
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by Relation (3.50). We conclude that on the event {t1≤T<t2}, the processes(
XN

2 (ℓN0 (t))

N
,
XN

4 (ℓN0 (t))√
N

, t ∈ [0, T ]

)
converge in distribution for the J1-topology to (Vy(t)), which can be expressed as
the solution of the SDE (3.33), with α=κ0, β=κ4/(2κ3y) and γ=1/κ5. Recall that
the points (tn) do not depend on N .

It is straightforward, by induction, to extend this result. For any n, the relation

lim
N→+∞

E
(
Φ

((
XN

2 (ℓN0 (t))

N
,
XN

4 (ℓN0 (t))√
N

))
1{tn≤T<tn+1}

)
= E

(
Φ ((y, Vy(t)))1{tn≤T<tn+1}

)
,

holds.
With the martingale problem formulation associated to the SDE (3.33), it is

not difficult to see that (Vy(t)) is a Markov process with infinitesimal generator Ay.
See Section 4.4 of Ethier and Kurtz [24]. The proposition is proved. □

6.3. Convergence on the Normal Timescale. We can now state con-
vergence results for the processes (XN

2 (t)/N,XN
4 (t)/

√
N) without a time-change.

With the same notations as in the proof of the last proposition, one has to consider,
for example, time intervals of the type [t1+τ

1
N , t1+τ

1
N+τ2N ). By Proposition 3.13,

its width τ2N is converging in distribution to 0, whereas the number of jumps on it is

of the order of
√
N . Because of that, the J1-topology is not a convenient topology

for a convergence result.
We will use another Skorohod topology, the M1-topology, which allows the

accumulation of jumps in a small neighborhood. We will also consider a non-
Skorohod topology, the S-topology. Both topologies have their pros and cons,
see [44]. For the S-topology, tightness criteria are somewhat simpler and the sum
(of processes) is a continuous mapping for this topology, which is not the case for the
M1 and J1-topologies. Unfortunately this is not a metrisable topology and the S
convergence does not imply the convergence in distribution of the finite marginals.
For both topologies, the integration of processes is a continuous functional, which
is a key property to investigate the asymptotic integral equations verified by the
possible limiting points.

Chapter 12 of Whitt [77] contains an in-depth presentation of theM1-Skorohod
topology with many details (and other Skorohod topologies) and Jakubowski [44]
for the S-topology. See also Kern [49] for a quick and nice introduction to the
intricacies of Skorohod topologies.

Proposition 3.16. If XN (0)=(0, yN , 1, vN ) satisfy Relation (3.41), then for
the convergence in distribution for the M1-Skorohod topology and the S-topology,

lim
N→+∞

(
XN

2 (t)

N
,
XN

4 (t)√
N

)
= (y, Vy(t)),

where (Vy(t)) is the Markov process on R+ defined in Proposition 3.15.

Proof. Recall that (tn) is the non-decreasing sequence of points of P0((0, κ0],dt),
as in the proof of Proposition 3.15 they can be considered as “fixed” since they do
not depend on N . We proceed as in the proof of Proposition 3.15 by working on
the events {tn≤T<tn+1}. As before, it is sufficient to consider n=1. As before, the
Skorohod representation theorem is used, implicitly this time, with a convenient
probability space, . . .

We begin with theM1-topology. Compared to the proof of the last proposition,
the same type of arguments are used. We only have to “insert” the time interval
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[t1+τ
1
N , t1+τ

1
N+τ2N ) which will give the jump at time t1. Recall that the M1-

topology is weaker than the J1-topology.

We introduce the processes (X̃N
2 (t), X̃N

4 (t)) defined by

(X̃N
2 (t), X̃N

4 (t)) = (XN
2 (t), XN

4 (t)), t̸∈(t1+τ1N , t1+τ1N+τ2N ]

and, for t≤T , {
X̃N

2 (t)=XN
2 (t1+τ

1
N ) for t∈(t1+τ1N , t1+τ1N+τ2N )

X̃N
2 (t1+τ

1
N+τ2N )=XN

2 (t1+τ
1
N+τ2N )

and

X̃N
4 (t) = XN

4 (t1+τ
1
N )+κ3yN(t−(t1+τ

1
N )) for t∈(t1+τ1N , t1+τ1N+τ2N ).

By using the notations of the last proof, on the time interval [t1+τ
1
N , t1+τ

1
N+τ2N ),

(X̃N
2 (t)) is kept constant equal to XN

2 (t1+τ
1
N ) and (X̃N

4 (t)/
√
N) is a linear inter-

polation between the points

XN
4 (t1+τ

1
N )√

N

dist∼ v = v exp(−κ5t1)

and
XN

4 (t1+τ
1
N )√

N
+κ3y

√
NτN2

dist∼ V1=v + κ3yHy,v,

which correspond to Vy(t1−) and Vy(t1).
By using Corollary 3.14, where the underlying topology is the uniform norm,

and Definition (3.4) of Whitt [77] for the distance forM1 on D([0, T )), on the event

{t1≤T<t2}, the two processes (X̃N
2 (t)/N, X̃N

4 (t)/
√
N) and (XN

2 (t)/N,XN
4 (t)/

√
N)

are arbitrarily close as N goes to infinity.
The classical example (3.1) p. 80 of Whitt [77] and its parametrization (3.4)

show that on the event {t1≤T<t2}, the sequence of processes(
X̃N

2 (t)

N
,
X̃N

4 (t)√
N

)
converges in distribution for the M1-topology to the process (y, Vy(t)).

For the S-topology, for x∈D((0, T )) and η>0, Nη(x) is the number of oscil-
lations of order η for (x(t)) on [0, T ], i.e. for k≥1, Nη(x)≥k holds if there exists
t1<t2< · · ·<t2k, such that |x(t2i)−x(t2i−1)|>η for i∈{1, . . . , k}.

Proposition (3.1) (iii) of Jakubowski [44] shows that if, for any η>0, the se-
quence of random variables(∥∥∥∥XN

2

N

∥∥∥∥
T

,

∥∥∥∥XN
4√
N

∥∥∥∥
T

,
XN

2 (t)

N
,Nη

(
XN

2 (t)

N

)
, Nη

(
XN

4 (t)√
N

))
is tight, then the sequence of processes (XN

2 (t)/N,XN
4 (t)/

√
N) is tight for the S-

topology. This is seen by the same arguments as in the proof of Proposition 3.15 for
the time intervals [0, t1), [t1, t1+τ

N
1 ) and, with Corollary 3.14 for the time interval

[t1+τ
N
1 , t1+τ

N
1 +τN2 ).

Since, by the M1-convergence, the finite marginals of these processes converge
in distribution to the corresponding finite marginals of (y, Vy(t)), Theorem 3.11
of Jakubowski [44] gives the convergence in distribution for the S-topology to
(y, Vy(t))

The proposition is proved.
□
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Figure 3. CRN with Four Nodes. Full simulation.
Initial state (0, N, 0, 0), κi=1, i=0,. . . ,5 and N=9·106.

7. A Stochastic Averaging Principle

Starting from the state (0, yN , 1, vN ) with (yN , vN )∼(yN, v
√
N), Proposition 3.13

shows that, when the value of (XN
3 (t)) switches back to 0, the process (XN

4 (t)) has

increased by an amount of the order of
√
N . This implies that the process (XN

2 (t))

has decreased by an amount also of the order of
√
N at this instant. Recall that

starting from a state for which the third coordinate is 0, it becomes 1 again after a
duration of time stochastically lower bounded by an exponential distribution with
parameter κ0. Hence, to have a decay of the order of N for (XN

2 (t)), one needs

a number of such cycles of the order of
√
N and, therefore, this suggests that the

“correct” timescale to observe a decay of (XN
2 (t)) is (

√
Nt). This is the main result

of this section.
We introduce (UN (t))=(UN

1 (t), UN
2 (t), UN

3 (t), UN
4 (t)), with (UN

1 (t))=(0), and
the other coordinates are the solution of the SDE

(3.51)


dUN

2 (t) =−P3

((
0, κ3U

N
2 U

N
3 (t−)

)
,dt
)
,

dUN
3 (t) = P0 ((0, κ0) ,dt)−P4

((
0, κ4U

N
3 U

N
4 (t−)

)
,dt
)
,

dUN
4 (t) = P3((0, κ3U

N
2 U

N
3 (t−)),dt)−P5((0, κ5U

N
4 (t−)),dt),

with (UN (0))=(0, yN , 1, vN ) and the sequence (yN , vN ) satisfies Relation (3.41).
We first give a heuristic motivation for the introduction of (UN (t)). The dif-

ference between the processes (XN (t)) and (UN (t)) lies in the fact that when there
is a jump of P0 ((0, κ0) ,dt), for UN it is transferred right away to the coordinate
UN
3 and for XN it goes to XN

1 and then to XN
3 at a rate κ2X

N
2 (t) at time t. If

XN
2 (t) is of the order of N , the difference between (XN (t)) and (UN (t)) holds on a

time interval whose duration is of the order of 1/N and the probability that there
is another event that will change the coordinates during that time is of the order
of 1/N . Hence on a time interval [0,

√
NT ], given that the number of jumps of P0

is of the order of
√
N , the two processes should be “close”. Proposition 3.27 at the

end of this section gives a formal assessment of this non-rigorous picture. The limit
results for (XN (t)) will be a consequence of the limit results obtained for (UN (t)).

From now on, we investigate the asymptotic behavior of (UN (t)). The general
strategy is of first considering, via a time change, the time evolution of the process
when the third coordinate is above 1

7.1. Time Evolution when UN
3 is non-zero. We introduce the local time

of the excursions of the process (UN
3 (t)) above 1.

Definition 3.17 (Time Change). For t≥0,

LN
1 (t)

def.
=

∫ t

0

1{UN
3 (s)≥1} ds and ℓN1 (t)

def.
= inf{s>0 : LN

1 (s)>t}.
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Before introducing the formal time change arguments of this section, to moti-
vate the description of the process (UN (t)) on the timescale (ℓN1 (t)), we give a quick
presentation of the dynamics involved.

In view of the SDEs (3.51), if UN
3 is 1 at time t0, it becomes 0 at rate κ4U

N
4 (t0−)

and stays at 0 for an exponentially distributed amount of time with parameter κ0.
When (UN

3 (t)) is 0 on a time interval [t0, t0+a), for some a>0, the process
(UN

2 (t)) does not change and the process (UN
4 (t)) can only decrease. At time

t0, the p=U
N
4 (t0) elements of (UN

4 (t)) can be seen as having lifetimes Eκ5,1, . . . ,
Eκ5,p. These variables are exponentially distributed with parameter κ5. At time
t0+a there remain only those whose lifetime is greater than a.

This suggests quite naturally the following description of our system. Let N
be a Poisson marked point process on R2

+×R+×RN
+ with intensity measure

ds⊗dt⊗κ0 exp(−κ0a) da⊗Q(db),

where Q is the distribution of (Eκ5,i) on RN
+.

The process (ZN (t))=(ZN
2 (t), ZN

3 (t), ZN
4 (t)) is the solution of the SDE

(3.52)



dZN
2 (t)=−P3

((
0, κ3Z

N
2 Z

N
3 (t−)

)
,dt
)
,

dZN
3 (t) = P0 ((0, κ0) ,dt)−1{ZN

3 (t−)≥2}P4

((
0, κ4Z

N
3 Z

N
4 (t−)

)
,dt
)
,

dZN
4 (t) = P3((0, κ3Z

N
2 Z

N
3 (t−)),dt)−P5((0, κ5Z

N
4 (t−)),dt),

−1{ZN
3 (t−)=1}

∫
a,b

S(ZN
4 (t−), a, b)N

((
0, κ4Z

N
4 (t−)

]
,dt,da,db

)
,

where S(·) is defined by Relation (3.35). It turns out that (ZN (t)) has the same
distribution as the time changed process (UN (t)).

Proposition 3.18. For N≥1, if (UN (0))=(ZN (0))=(yN , 1, vN ) then

(ZN (t))
dist.
=
(
UN (ℓN1 (t))

)
,

where (UN (t)), (ZN (t)), and (ℓ1(t)) are respectively defined by Relations (3.51),
(3.52) and Definition (3.17)

Proof. We give a sketch of the proof. It is essentially a consequence of a re-
peated use of the strong Markov property of Poisson processes. If UN (0)=(yN , 1, vN ),
let τNU be the first instant when (UN

3 (t)) hits 0, i.e. the first jump of the counting
process (∫ t

0

1{UN
3 (s)=1}P4

((
0, κ4U

N
4 (s−)

)
,ds
))

.

On the time interval [0, τNU ) (UN (t)) satisfies the SDEs (3.52). If Eκ0 is the
first point of (P0(

(
0, κ0), (τ

N
U , τ

N
U +t]

)
, Eκ0

is an exponential random variable with

parameter κ0 independent of FτN
U
, and on the time interval [τNU , τ

N
U +Eκ0

), the

coordinate (UN
4 (τNU +t)) satisfies the SDE,

dAN (t) = −P5((0, κ5AN (t−)), τNU +dt),

with AN (0)=UN
4 (τNU ). It is easily seen that the process (AN (t)) has the same

distribution as UN
4 (τN

U )∑
i=1

1{Eκ5,i>t}

 ,
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where (Eκ5,i) are i.i.d. exponential random variables with parameter κ5 indepen-
dent of FτN

U
. We have therefore that

U4(ℓ
N
1 (τNU ))−U4(ℓ

N
1 (τNU −)) = U4(τ

N
U +Eκ0

)−U4(τ
N
U )

=

UN
4 (τN

U )∑
i=1

1{Eκ5,i>Eκ0} − UN
4 (τNU ) = −S(UN

4 (τNU ), Eκ0
, (Eκ5,i)),

where S is the function defined by Relation (3.35). One can proceed by induction
on the successive instants of return to 1 from 0 of (UN

3 (t)). The proposition is
proved. □

Note that by considering the process (ZN (t)), we remove the time intervals
where (UN

2 (t)/N) is constant and therefor e no effect on its decay. The relevant
timescale to see the decrease of (ZN

2 (t)/N) is now the normal timescale (t), and we

will see later that ℓN1 (t)=O(
√
N).

Definition 3.19. The occupation measure mN of (ZN
4 (t)/

√
N) is

⟨mN , F ⟩ =
∫ +∞

0

F

(
s,
ZN
4 (s)√
N

)
ds,

for F∈Cc(R2
+).

We can now state a key result of this section.

Theorem 3.20. If (ZN (t)), the solution of the SDEs (3.52) and µN
Z the occu-

pation measure of Definition 3.19 are such that (ZN (0))=(yN , 1, vN ) and (yN , vN )
satisfies Relation (3.41), then, for the convergence in distribution,

lim
N→+∞

((ZN
2 (t)), µN

Z ) = ((z2(t)), µ
∞
Z ) ,

with (z2(t))=(ye−κ3t), and, for any F∈Cc(R2
+),∫

R2
+

F (s, x)µ∞
Z (ds,dx) =

∫
R2

+

F (s,
√
x)Γ0

(
κ0
2κ5

+
1

2
,

κ4
2κ3z2(s)

)
(dx) ds,

where Γ0(·, ·) is the distribution of Definition 3.9.

The proof of this theorem is carried out dividing the time integral according to
the value of ZN

3 (t), recall that it is always above 1.

(a) In the time intervals where ZN
3 (·)=(1), we will show that the limit result

can be deduced from Theorem 3.12 of Section 5.3.
(b) For the time intervals during which ZN

3 (t)≥2, the goal will be of showing
that these intervals do not contribute to the final limit, more precisely
that, for the convergence in distribution,

lim
N→+∞

(∫ +∞

0

1{ZN
3 (s)≥2}F

(
s,
ZN
4 (s)√
N

)
ds

)
= 0,

for some convenient class of functions on R2
+. This is done in the following

way.

If t31 is such that ZN
3 (t31)=2, we define τNZ = inf{t ≥ 0 : ZN

3 (tN3 +t)=1}.
We will show that τNZ = O(1/

√
N),

— first, we show after a time of the order of O(1/
√
N), the process

(ZN
4 (t31+t)) reaches a value the of order

√
N , and stays at this order

of magnitude.
— secondly, since ZN

3 (t) decreases at a rate κ4Z
N
4 (t), we show that

ZN
3 (t) goes back to 1 after a time of the order of O(1/

√
N).
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And to conclude, we only have to notice that these time intervals (t31, t
3
1 +

τNZ ) are in a finite number in [0, T ] for any T ≥ 0, since every time interval
is separated by an exponentially distributed variable with parameter κ0.

The proof will be done by induction, on an “excursion” of ZN
3 (t) over 2. On a first

time interval [t31, t
3
1+τ

N
Z ), and then iterating.

Proof. If (ZN (0))=(yN , 1, vN ), t31, the first instant of jump +1 of (ZN
3 (t))

has an exponential distribution with parameter κ0. Up to time t31 the process
(ZN

2 (t), ZN
4 (t)) has the same distribution as the process (AN (t), BN (t)), the solution

of the SDE,

(3.53)


dAN (t) = −P3 ((0, κ3AN (t−)) ,dt) ,

dBN (t) = P3((0, κ3AN (t−)),dt)−P5((0, κ5BN (t−)),dt),

−
∫
a,b

S(BN (t−), a, b)N ((0, κ4BN (t−)] ,dt,da,db) .

with (AN (0), BN (0))=(yN , vN ).
It is straightforward to show that (AN (t)/N) is converging in distribution to

(y exp(−κ3t)) and that the asymptotic behavior of the occupation measure associ-

ated to (B0
N (t)/

√
N) can be obtained from Theorem 3.12 of Section 5.3. It is not

difficult to see that the additional term due to P5 in the SDE defining (ZN
4 (t)) does

not play a role for this limit result.
If ZN

3 (t31)=2, let τNZ , be the hitting time of 1 of the process (ZN
3 (t+t31)). In

view of the first equation of SDE (3.52), with high probability, we have that, for
any t∈[0, T ], ZN

2 (t)≥δN . To simplify our arguments, since we are dealing with
convergence in distribution, we assume that this relation holds almost surely, it is
not difficult to modify our proof accordingly, at the expense of additional terms. If
(CN (t), DN (t)) is the solution of the SDE,

dCN (t) = P̃0 ((0, κ0) ,dt)−1{CN (t−)>0}P̃4 ((0, κ4(1+CN (t−))DN (t−)) ,dt) ,

dDN (t) = P̃3((0, 2κ3δN),dt)−P̃5((0, κ5DN (t−)),dt),

with CN (0)=1 and DN (0)=0, and where, for i∈{0, 3, 4, 5}, P̃i(ds,dt) is the Poisson
process Pi shifted at t31, i.e. Pi(ds, t

3
1+dt). A simple coupling can be constructed so

that the relations DN (t)≤ZN
4 (t31+t) and Z

N
3 (t)≤CN (t31+t)+1 hold for all 0≤t≤τNZ .

Standard arguments of stochastic calculus, give that, for the convergence in
distribution, the relation

lim
N→+∞

(
DN (t/

√
N)√

N

)
= (2κ3δt)

holds and if τND is the hitting time of ⌈κ3δ
√
N⌉, then

lim sup
N→+∞

√
NE(τND ) < +∞,

and, since
(
CN (τND )−1

)+
is bounded by the number of new arrivals for (CN (t)) on

the time interval [0, τND )

lim sup
N→+∞

√
NE

((
CN (τND )−1

)+)
< +∞.

For T>0, starting from τND , the process (DN (t)) stays above κ3δ
√
N with high

probability on a time interval [τND , τ
N
D +T/

√
N ]. With the same argument as before,

we assume that this relation holds almost surely.
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If τNC is the hitting time of 0 by (CN (τND +t)), then τNZ ≤τND +τNC . The integra-
tion of the SDE for (CN (t)) gives the relation

E
(
CN (τND )

)
+κ0E(τNC ∧t)−κ4κ3δ

√
NE

(∫ τN
C ∧t

0

(1+CN (τND +s)) ds

)
= E

(
CN (τND +τNC ∧t)

)
,

hence, since CN (t)≥1 on the time interval [τND , τ
N
D +τNC ), we obtain(

κ4κ3δ
√
N−κ0

)
E
(
τNC ∧t

)
≤ E

(
CN (τND )

)
≤ 1+E

((
CN (τND )−1

)+)
,

hence

lim sup
N→+∞

√
NE(τNC ) < +∞.

By gathering these results, and since, for t≥0,

ZN
4 (t31+t/

√
N)− ZN

4 (t31)≤P̃3((0, 2κ3δN), [0, t/
√
N ]),

we have finally obtained that

lim sup
N→+∞

√
NE(τNZ ) < +∞, and lim sup

N→+∞

E(ZN
4 (t31 + τNZ )− ZN

4 (t31))√
N

< +∞.

This shows that, if f is a bounded Borelian function on R2
+, the sequences of random

variables(∫ t31+τN
Z

t31

1{ZN
3 (s)≥2}f

(
ZN
2 (s)

N
,
ZN
4 (s)√
N

)
ds

)
and

(∣∣∣∣ZN
2 (t31+τ

N
Z )−ZN

2 (t31)

N

∣∣∣∣)
converge in distribution to 0. We can now apply the convergence result, Theo-
rem 3.12, for the processes (ZN

2 (t), ZN
4 (t)) starting from time t31+τ

N
Z , as if it was

starting from time t31 with ZN
3 (t31)=1, since their first coordinate is of the same

order of magnitude in N , and that the limit result for the occupation measure does
not depend on the initial value of ZN

4 (t31+τ
N
Z ) as long as it is of the order of N at

most.
We conclude the proof of the proposition by induction on the successive jumps

(t3i ) of P0((0, κ0),dt) on the time interval [0, T ]. □

Note that the induction holds because the averaging result of Theorem 3.12 do
not need for ZN

4 (t) to start from a state of the order of
√
N , but only O(N). This

particular property is vital here, since we do not have the control of the process
(ZN

4 (t)/
√
N) over some time interval, but only of its time integrals.

We have seen in the proof that the process (ZN
3 (t)) is identically 1, as long as

we consider time integrals. The following Corollary is easily deduced from Rela-
tions (3.37) and (3.53).

Corollary 3.21. Let F∈C(R2
+) with support on [0, T ]×R+ such that there ex-

ist c1, c2>0 such that for any s, x ∈ R+, F (s, x) ≤ c1+c2x holds for (s, x)∈[0, T ]×R+,
then under the assumptions of Theorem 3.20, the sequence(∫ +∞

0

1{ZN
3 (s)=1}F

(
s,
ZN
4 (s)√
N

)
ds

)
converges in distribution to ⟨µ∞

Z , F ⟩.
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7.2. Time Evolution on the Timescale (
√
Nt). We are now going to ex-

press (UN (t)) in terms of (ZN (t)). Recall that the process (ZN
2 (t), ZN

4 (t)) analyzed
in the last section is just the process (UN

2 (t), UN
4 (t)) with the time intervals during

which (UN
3 (t)) is 0 removed. See Proposition 3.18.

We denote by (ZN (t)) the solution of the SDE (3.52) starting from (yN , 1, vN ).
We define
(3.54)

(HN (t))=

(
t+

∫
(0,t]×R+×RN

+

a1{ZN
3 (s−)=1}N

((
0, κ4Z

N
4 (s−)

]
,ds,da,db

))
,

and the (potential) hitting time of 0 for (ZN
3 (t)) is defined as τN , i.e.

τN = inf

{
t :

∫
(0,t]×R+×RN

+

1{ZN
3 (s−)=1}N ((0, κ4Z

N
4 (s−)],ds,da,db) ̸=0

}
.

Strictly speaking, this is an incorrect presentation for τN since (ZN
3 (t)) never vis-

its 0. This is in fact meant for (UN
3 (t)), as long as the two processes coincide.

Additionally, (aN , bN )∈R+×RN
+ is the mark associated to τN , i.e.

N ((0, κ4Z
N
4 (τN−)], {τN},da,db) = δ(aN ,bN ),

aN and bN=(bN,i) are independent and independent of Fτn , with respective distri-
butions, an exponential law with parameter κ0 and the law of an i.i.d. sequence of
exponential random variables with parameter κ5. We define tN=τN+aN .

We now construct a process (ŨN (t))=(ŨN
2 (t), ŨN

3 (t), ŨN
4 (t)) with initial state

(yN , 1, vN ) and
(3.55)

t<τN , (ŨN
2 ,ŨN

3 ,ŨN
4 )(t)=(ZN

2 ,ZN
3 ,ZN

4 )(t),

τN≤t<tN ,

{
(ŨN

2 ,ŨN
3 )(t)=(ZN

2 (τN−),0),

ŨN
4 (t)=

∑ZN
4 (τN−)

i=1 1{bN,i>t−τN}=ZN
4 (τN−)−S(ZN

4 (τN−),t−τN ,bN),

t=tN , (ŨN
2 ,ŨN

3 ,ŨN
4 )(tN )=(ŨN

2 (tN−),1,ZN
4 (τN−)−S(ZN

4 (τN−),aN ,bN)).

We have constructed the process (ŨN (t)) between two visits of the third coordinate
to 1. We can construct by induction the process on the whole real half-line.

Proposition 3.22. For N≥1, the processes (UN (t)) and (ŨN (t)) defined re-
spectively by Relations (3.51) and (3.55) have the same distribution. Furthermore
the relations(∫ HN (t)

0

1{ŨN
3 (s)≥1} ds

)
= (t) and

(
ŨN
2 (HN (t))

)
=
(
ZN
2 (t)

)
hold.

We have in particular the identity (HN (t))
dist.
= (ℓN1 (t)). See Definition 3.17.

Proof. The proof of the identity in distribution is analogous to the proof of
Proposition 3.18. It relies again on strong Markov properties of Poisson processes
and the representation of the process (AN (t)) used in this proof.

The first relation comes directly from the construction of (ŨN (t)). The last

relation is a consequence of the fact that (ŨN
2 (t)) does not change on the times

intervals where (ŨN
3 (t)) is null. □
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Proposition 3.23. If (ZN (t)) is the solution of the SDEs (3.52) with the initial
condition (yN , 1, vN ) and (yN , vN ) satisfying Relation (3.41) then, for the conver-
gence in distribution,

lim
N→+∞

(
HN (t)√

N

)
=
(
t∞

(
1−e−κ3t/2

))
,

with

(3.56) t∞
def.
=

√
y

√
2κ4

κ5
√
κ3

Γ(κ0/(2κ5))

Γ(κ0/(2κ5)+1/2)
.

Proof. For t≥0,

HN (t)√
N

=
t√
N

+MN (t)+
κ4
κ0

∫ t

0

1{ZN
3 (s−)=1}

ZN
4 (s)√
N

ds,

where (MN (t)) is a martingale whose previsible increasing process is

(⟨MN ⟩ (t)) =
(
2
κ4
κ0

∫ t

0

1{ZN
3 (s−)=1}

ZN
4 (s)

N
ds

)
.

Theorem 3.20 and Doob’s Inequality give that (MN (t)) is converging in distribution

to 0 and, with Corollary 3.21, that (HN (t)/
√
N) converges to(

κ4
κ0

∫ t

0

∫ +∞

0

√
xΓ

(
κ0
2κ5

+
1

2
,

κ4
2κ3z2(s)

)
(dx) ds

)
=

(
κ4
κ0

Γ(κ0/(2κ5)+1)

Γ((κ0)/(2κ5)+1/2)

√
2

√
κ3
κ4

∫ t

0

√
z2(s) ds

)
,

by Relation (3.28), with (z2(t))=(y exp(−κ3t)). The proposition is proved. □

Theorem 3.24. If (UN (t)) is the solution of the SDEs (3.51) with the initial
condition (yN , 1, vN ) and (yN , vN ) satisfying Relation (3.41) then, for the conver-
gence in distribution,

lim
N→+∞

UN
2

(√
Nt
)

N
, t<t∞

 = (u2(t))
def.
=

(
y

(
1− t

t∞

)2

, t<t∞

)
with t∞ is defined in Proposition 3.23.

The quadratic decay can be seen in the simulations of Figure 3 (A).

Proof. For 0≤t<t∞, define

sN (t) = inf{u>0 : HN (u) >
√
Nt},

Proposition 3.23 gives the convergence in distribution

(3.57) lim
N→+∞

(sN (t)) =

(
− 2

κ3
ln

(
1− t

t∞

))
.

We have the identities(
ŨN
2 (

√
Nt)

N

)
=

(
ŨN
2 (HN (sN (t)))

N

)
=

(
ZN
2 ((sN (t)))

N

)
,

the first one is due to the fact that ŨN
2 does not change just after a jump of (HN (t))

and the second holds by Proposition 3.23.
We conclude the proof of the theorem with the convergence in distribution of

Theorem 3.20 and Theorem 3.3 of Ethier and Kurtz [24]. □
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Definition 3.25. The occupation measure µN
U of(

UN
4 (

√
Nt)√
N

)
is
〈
µN
U , F

〉 def.
=

∫ +∞

0

F

(
s,
UN
4 (s

√
N)√

N

)
ds,

for F∈Cc(R2
+).

Theorem 3.26. If (UN (t)) is the solution of the SDEs (3.51) with the initial
condition (yN , 1, vN ) and (yN , vN ) satisfying Relation (3.41), then the sequence
(µN

U ) converges in distribution to µ∞
U defined by, for any F∈Cc([0, t∞)×R+),∫

F (s, x)µ∞
U (ds,dx) =

∫
F (s,

√
x)Γ0

(
κ0
2κ5

,
κ4

2κ3y(1− t/t∞)2

)
(dx) ds,

where t∞ is defined by Relation (3.56) and Γ0 is the distribution of Definition 3.9.

By using Proposition 3.11 of Section 5.2, note that, for 0≤t<t∞,

Γ0

(
κ0
2κ5

,
κ4

2κ3y(1− t/t∞)2

)
is the invariant distribution of the infinitesimal generator Au2(t) of Proposition 3.15,
where (u2(t)) is defined by Theorem 3.24.

Proof. Let f∈Cc([0, t∞)×R+), we have

〈
µN
U , F

〉
=

1√
N

∫ +∞

0

f

(
s√
N
,
UN
4 (s)√
N

)
ds.

For F∈Cc(R+) and S≥0, by using the definition of (ŨN
4 (s)), the relation

(3.58)
1√
N

∫ HN (S)

0

F

(
ŨN
4 (s)√
N

)
ds =

1√
N

∫ S

0

F

(
ZN
4 (s)√
N

)
ds

+
1√
N

∫ S

0

1{ZN
3 (s−)=1}

∫
(a,b)∈R+×RN

+

(∫ a

0

F

(
ZN
4 (s−)−S(ZN

4 (s−), u, b)√
N

)
du

)
×N ((0, κ4Z

N
4 (s−)],ds,da,db),

holds on the event {HN (S)<
√
Nt∞} whose probability is converging to 1 as N gets

large.

Tightness.
For ε>0 and 0≤t0<t∞, with Proposition 3.23, we get that there exists S>0 such
that, for N sufficiently large

P
(
HN (S)√

N
̸∈ [t0, t∞)

)
≤ ε,

hence

E
(〈
µN
U , [0, t0]×[K,+∞]

〉)
=

1√
N

∫ √
Nt0

0

P
(
UN
4 (s) ≥ K

√
N
)
ds

≤ εt0+
1√
N

E

(∫ HN (S)

0

1{UN
4 (s)≥K

√
N} ds

)
.
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With Relation (3.58), we obtain that

1√
N

E

(∫ HN (S)

0

1{UN
4 (s)≥K

√
N} ds

)
≤ 1√

N

∫ S

0

P
(
ZN
4 (s)√
N

≥K
)
ds

+ κ4

∫ S

0

E
(
1{ZN

3 (s−)=1}
ZN
4 (s)√
N

1{ZN
4 (s)≥K

√
N}

)
ds

≤ S√
N

+
1

K

∫ S

0

E

(
1{ZN

3 (s−)=1}

(
ZN
4 (s)√
N

)2
)
ds

holds.
Relations (3.37) and (3.53) show that

lim sup
N→+∞

E

(∫ S

0

1{ZN
3 (s−)=1}

(
ZN
4 (s)√
N

)2

ds

)
< +∞.

Therefore, one can choose K sufficiently large so that the quantity

E
(〈
µN
U , [0, t0]×[K,+∞]

〉)
is arbitrarily small for N sufficiently large. Lemma 1.3 of Kurtz [55] gives the
tightness of the sequence (µN

U ) of random measures on [0, t∞]×R+.

Identification of the Limit.

With the tightness property and since any limiting point can be represented as
in Relation (3.14), it is enough to identify the limit of

1√
N

∫ √
Nt

0

F

(
ŨN
4 (s)√
N

)
ds,

for any t∈[0, t∞). Since, by Proposition 3.23, the process (HN (t)/
√
N) converges in

distribution to a deterministic function, one has to obtain the limit of the sequence(
1√
N

∫ HN (S)

0

F

(
ŨN
4 (s)√
N

)
ds

)
.

The first term of the right-hand side of Relation (3.58) converges clearly in distri-
bution to 0. The second term can be written as JN (S)+MN (S), where, for t≥0,

JN (t)=κ4

∫ t

0

1{ZN
3 (s=1}

× E

(∫ Eκ0

0

F

(
ZN
4 (s)− S(ZN

4 (s), u, (Eκ5,i))√
N

)
du

∣∣∣∣∣Fs

)
ZN
4 (s)√
N

ds.

It is easily checked that (MN (t)) is a martingale whose previsible increasing process
is given by, for t≥0,

⟨M⟩N (t) =
κ4√
N

∫ t

0

1{ZN
3 (s)=1}

×

(
E

(∫ Eκ0

0

F

(
ZN
4 (s)− S(ZN

4 (s), u, (Eκ5,i))√
N

)2

du

∣∣∣∣∣Fs

))
ZN
4 (s)√
N

ds.

Using Corollary (3.21) one can show that there exists some finite constant C0 such
that

E (⟨M⟩N (t)) ≤ C0√
N
,
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the martingale (MN (t)) is converging in distribution to 0.
We are now investigating the asymptotic behavior of (JN (t)).
By using again Corollary 3.21, for T>0 and ε>0, there exist constants 0<d0≤D0

such that

lim sup
N→+∞

E

(∫ T

0

ZN
4 (s)√
N

1{ZN
4 (s)̸∈[d0

√
N,D0

√
N ]} ds

)
≤ ε,

this is due to the fact that the limit of the occupation measure of (ZN
4 (s)/

√
N)

is expressed with a distribution Γ0 of Definition 3.9 and, in particular, without a
mass at 0.

Let z≥1, then

(3.59) E

(∫ Eκ0

0

F

(
z − S(z, u, (Eκ5,i))√

N

)
du

)

=

∫ +∞

0

E

(
F

(
z√
N

1

z

z∑
i=1

1{Eκ5,i>u}

))
P(Eκ0≥u) du,

for η>0 and u≥0, the relation

P

(∣∣∣∣∣1z
z∑

i=1

1{Eκ5,i>u}−e
−κ5u

∣∣∣∣∣ ≥ η

)
≤ 1

zη2

holds. With the uniform continuity of F , we therefore obtain the relation

lim
N→+∞

sup
z∈[d0

√
N,D0

√
N ]

E

(∣∣∣∣∣F
(

z√
N

1

z

z∑
i=1

1{Eκ5,i>u}

)
−F

(
z√
N
e−κ5u

)∣∣∣∣∣
)

= 0.

We have therefore that, for the convergence in distribution, the sequence (JN (t))
has the same asymptotic behavior as(

κ4

∫ t

0

1{ZN
3 (s−)=1}

∫ +∞

0

F

(
ZN
4 (s)√
N

e−κ5u

)
e−κ0u du

ZN
4 (s)√
N

ds

)
.

We can now use Corollary (3.21) and standard calculus to complete the proof of
the theorem. □

We now establish the fact that the process (XN
2 (t)) has indeed the same as-

ymptotic behavior as (UN
2 (t)).

Proposition 3.27. Let (XN (t)) and (UN (t)) be the solutions of the SDEs (3.40)
and (3.51) with initial point (0, yN , 1, vN ) and (yN , vN ) satisfies Relation (3.41),
then the two sequences (

XN
2 (

√
Nt)

N

)
and

(
UN
2 (

√
Nt)

N

)
have the same limit for the convergence in distribution.

Proof. The proof follows the arguments used for the convergence in distribu-
tion of (UN

2 (
√
Nt)/N). Some adjustments are nevertheless necessary but the main

ideas are essentially the same. We sketch the main lines of the proof.
If (XN (t)) is a solution of SDEs (3.40), on the time interval [0,

√
NT ] the

contribution of the Poisson process P1 to the coordinate (XN
2 (t)) is of the order of√

N which is negligible since the order of magnitude considered for (XN
2 (t)) is N .

Therefore, we can take this Poisson process out of the set of SDEs for (XN (t)).
For T>0, it is not difficult to show that, with high probability, the values of

the process (X2(
√
Nt)/N) are in (δ, 3/2) on the time interval [0, T ]. When there is

a new arrival for the chemical species S1, it is transformed into chemical species S3
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at rate at least κ2δN . Hence, with high probability, on the time interval [0,
√
NT ],

the values of the process (XN
1 (t)) are in the set {0, 1}.

A central argument for the convergence of (UN
2 (

√
Nt)/N) is Theorem 3.20. We

define by (Z̃N (t)) the analogue of (ZN (t)), i.e. the time-changed process (XN (t))

with all time intervals where XN
3 is null are removed. The process (Z̃N (t)) satisfies

the analogue of the SDEs (3.52) where the last SDE is replaced by

dZ̃N
4 (t) = P3

(
(0, κ3Z̃

N
2 Z̃

N
3 (t−)),dt

)
−P5

(
(0, κ5Z̃

N
4 (t−)),dt

)
,

−1{Z̃N
3 (t−)=1}

∫
a,b

S

(
Z̃N
4 (t−), a+

c

κ2Z̃N
2 (t−)

, b

)
× Ñ

((
0, κ4Z

N
4 (t−)

]
,dt, da,db,dc

)
,

where Ñ be a Poisson marked point process on R2
+×R+×RN

+×R+× with intensity
measure

ds⊗ dt⊗ κ0e
−κ0a da⊗Q(db)⊗ e−c dc,

where, as before, Q is the distribution of (Ei) on RN
+. The additional variable c

of the Poisson process Ñ in this SDE is due to the fact that when Z̃N
1 (t)=1 and

Z̃N
3 (t)=0 , Z̃1 leaves the state 1 at rate κ2Z̃

N
2 (t−). Because of the assumption on

(Z̃N
2 (t−/N) in (δ, 3/2), a glance at the proof of Theorem 3.12 shows that, even with

this extra term, the limit result of this theorem still holds with the same limits.
The proof is then concluded as in the proof of Proposition 3.23. □
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1. Introduction

A stochastic chemical reaction network (CRN) with n chemical species is de-
scribed as a continuous time Markov process (Xi(t)) on a subset of Nn. The ith
component gives the number of molecules of chemical species Si, 1≤i≤n. Its dy-
namical behavior is given by a finite set of chemical reactions which add or remove
simultaneously a finite number of several chemical species. For example, the reac-
tion

(4.1) k1S1+k2S2
κ−⇀ k3S3

transforms k1 molecules of S1 and k2 molecules of S2 into k3 molecules of S3. The
associated transition of this reaction for the Markov process is

x=(xi) → x+k3e3−k1e1−k2e2,

where ei, 1≤i≤n, is the ith unit vector of Nn. The rate at which the reaction occurs
is assumed to follow the law of mass action, for our example the rate is given by

(4.2) κx
(x1)
1 x

(x2)
2

def.
= κ

x1!

(x1−k1)!
x2!

(x2−k2)!
,

for some positive constant κ. See Section 2.
From a mathematical point of view, there are two important characteristics of

stochastic models of CRNs described with Markov processes.

(a) Polynomial Reaction Rates.
When the coordinates x1 and x2 are large, the reaction rate (4.2) is of
the order of κx1

k1x2
k2 . This implies that some reactions will be much

more likely than others, and therefore will dominate the kinetics of the
CRN, for a while at least. In this case, we will speak of fast processes for
the coordinates involved in these reactions. There are many examples of
such behavior. See Agazzi and Mattingly [4], Ball et al. [11], Togashi and
Kaneko [74] and Sections 6, 7, 8 of Laurence and Robert [52] for example.
This is a major feature of CRNs from a technical point of view. In such a
case, a CRN can be described as driven by a set of interacting fast processes

127
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leading to an investigation of possible stochastic averaging principles or
even more complex multi-timescales behaviors. See Section 1.3.

(b) Boundary Behavior.
This feature is due to a constraint on the state space rather than a property
related to the order of magnitude of transition rates. In state x=(xi)∈Nn,
Reaction (4.1) occurs only if x1≥k1 and x2≥k2. Mathematically, this is
a kind of discontinuity of the kinetics of the CRN. This constraint on
the state space is at the origin of complex behaviors of CRNs. In the
CRN of example (4.1), if we assume that X1(0)=N is large and that the
process (X2(t)) remains in a neighborhood of 0, then the process (X1(t))
will decrease only during the excursions of (X2(t)) above k2. This can
be even more complicated if the dynamic of (X2(t)) depends, via other
chemical reactions, on (X3(t)) for example. For example of such complex
behaviors, see Section 8 of [52] and Laurence and Robert [54].

1.1. k-Unary Chemical Reaction Networks. We now describe the class
of CRNs analyzed in our paper. As it will be seen boundary behaviors play only
a marginal role in the time evolution of these networks. The characteristic (a) on
the polynomial growth is the key feature.

The parameters of the kinetics of these networks are given by the coefficients of
a matrix Rκ=(κij , 0≤i, j≤n)∈Rn+1

+ ×Rn+1
+ , and a vector (ki)∈(N\{0})n of integers.

The only chemical reactions for this class of CRNs are as follows, for 1≤i̸=j≤n,

kiSi
κij−−⇀ kjSj , kiSi

κi0−−⇀ ∅, ∅ κ0i−−⇀ kiSi,

provided that, respectively, κij>0, κi0>0, or κ0i>0. The second reaction, resp. last
reaction, is the spontaneous destruction, resp. creation, of ki molecules of chemical
species Si. The symbol ∅ is the source/sink for chemical species.

For 1≤i≤n, kiSi is the only complex involving the chemical species Si and the
time evolution of the ith coordinate is a jump process whose jumps are ±ki. In state
x=(xk), for i ∈ {1, . . . , n}, the ith coordinate decreases at a rate proportional to

x
(ki)
i and, for 1≤j≤n, κijx(ki)

i is the rate at which ki molecules of Si are transformed
into kj molecules of Sj . These are the kinetics of the law of mass action. See
Section 2.

This class of CRNs has in fact an invariant distribution, see Relation (4.13)
of Section 2.5, given by a product of Poisson distributions. If this is satisfactory,
it should be noted that there are many very different Markov processes with this
property, see [61]. It does not give much insight on the transient characteristics of
the CRNs, in particular on the impact of its different timescales of this CRNs, if
any.

A scaling approach is proposed to investigate the dynamical behavior of these
networks. We quickly review several scalings already used in the literature of sto-
chastic CRNs.

1.2. Scaling Methods for Chemical Reaction Networks. We denote by
N the scaling parameter.

(a) Classical Scaling.
For this scaling the reaction rate κr of a chemical reaction r, is scaled in
N , as κr/N

γ
r for some γr≥0, so that if all coordinates of the associated

Markov process (X(t))=(Xi(t)) are of the order of N , then the transition
rate of any jump of the process is of the order of N . See Mozgunov et
al. [60] or Proposition 2 of Laurence and Robert [52] for example. In
this case, under appropriate conditions, it can be shown that the process
(XN

i (t)/N) is converging in distribution to the solution of an ODE whose
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stability properties have been investigated in the literature of deterministic
CRNs. See Feinberg [26] and Horn and Jackson [42] for example.

This scaling has the effect of somewhat equalizing the kinetics of the
CRNs. There cannot be a subset of chemical reactions dominating at some
moment for a while, since all transition rates are of the order of N .

Kurtz and co-authors have also investigated several examples of CRNs
with related scaling methods. In this approach, some reaction rates may be
sped-up with some power of the scaling parameter and the state variables
are scaled accordingly. There is no requirement that all reactions have
the same order of magnitude. The initial motivation was of fitting the
parameters of these scaling models with biological data obtained from ex-
periments. See for example Ball et al. [11], Kang and Kurtz [46], and Kim
et al. [50] where, for several examples of CRNs, the choice of convenient
scalings of reaction rates is investigated and several limit theorems are
derived.

(b) Scaling with the norm of the initial state.
In this approach the reaction rates κr are fixed so that the topology of the
CRN is preserved by the scaling. The scaling parameter for the Markov
process (X(t)) is N=∥X(0)∥. The approach consists in describing, via
possibly functional limit theorems, how the sample path of the state of
the CRN returns to a neighborhood of the origin. This is a natural way to
investigate positive recurrence properties of the CRNs but, more impor-
tantly, it can provide insight into transient characteristics of CRNs. Up to
now there are few results in the literature in this domain, see Agazzi et al.
[1] and [3], Mielke et al. [59], and McSweeney and Popovic [57]. For the
scaling with ∥X(0)∥, see Laurence and Robert [52] and references therein.

Scaling External Input Rates. The scaling investigated in this paper is as
follows. For all i∈{1, . . . , n} such that κ0i>0, the creation of chemical species Si is
scaled by N , it becomes

∅ Nκ0i−−−⇀ kiSi.

The other reaction rates do not change. Rather than starting from a “large” initial
state, this scaling regime assume heavy traffic conditions at the entrance of the
CRNs. A natural question in this setting is of establishing a limit theorem on the
orders of magnitude in N of the coordinates of (XN (t))=(XN

i (t)). This scaling has
already been considered in Togashi and Kaneko [73] for CRNs and in Ball et al.
[11], and probably in many other examples. A related scaling has also been used
to investigate the transient behavior of Markov processes for stochastic models of
large communication networks in Kelly [62]. See also Kelly [61] for a survey.

A basic example of such a situation is the k-unary CRN with one chemical
species,

∅ λN−−⇀↽−−
µ

k1S1.

It can be easily seen that, under convenient initial conditions, the scaled process

(4.3)

(
XN

1

(
t/N1−1/k1

)
N1/k1

)

converges in distribution to a non-trivial deterministic function, the solution of an
ODE. See Proposition 4.5.
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A Hierarchy of Timescales. We come back to our CRNs under the heavy
traffic assumptions, i.e. with all external input rates scaled by N . Heuristically, if
there is a kind of equilibrium of flows in the network at some moment, due to the
external inputs of the order of N , the input flow through each node should be also
of the same order of N .

The case of the CRN with a single node suggests then that the state variable
of the ith node (XN

i (t)), 1≤i≤n, should be of the order of N1/ki . The convergence
result for the process (4.3) indicates that the “natural” timescale of (Xi(t)) should
be (t/N1−1/ki). In particular, this implies that, at the “normal” timescale (t), all
coordinates (Xi(t)) whose index i∈{1, . . . , n} is such that ki≥2, are fast processes.
The CRN exhibits in fact a hierarchy of timescales: The process associated to
(Xj(t)) is faster than the process (Xi(t)) provided that kj>ki. A limit theorem to
establish the convergence of the scaled process

(4.4)

(
XN

i (t)

N1/ki

)
has to handle this multi-timescales feature and also the interactions with the other
coordinates.

1.3. Literature. A classical way of investigating multi-timescales processes
is via the proof of an averaging principles. Averaging principles have already been
used in various situations to study chemical reaction networks (CRNs). In most of
cases, it involves two timescales: there are a fast process and a slow process. Early
works on the proof of averaging principles are due to Has’minskǐı. See Has’minskĭı
[39, 40]. Chapter 7 of Freidlin and Wentzell [31] considers these questions in terms
of the convergence of Cesaro averages of the fast component. Papanicolaou et al.
[63] has introduced a stochastic calculus approach to these problems, mainly for
diffusion processes. Kurtz [55] has extended this approach to jump processes. For
CRNs, there are numerous proofs of averaging principles in such a setting: Ball
et al. [11], Kang and Kurtz [46], Kim et al. [50], Laurence and Robert [52, 54], . . .

With more than two timescales, limit theorems in a stochastic framework are
quite scarce in the literature. A model with three timescales is investigated in Kang
et al. [47], and a functional central limit result is established. In this reference, it
is assumed that the first order is deterministic. To handle the two fast timescales,
several assumptions on uniform convergence of infinitesimal generators on compact
subsets of the state space are introduced. Large deviations results are derived with
similar assumptions in Popovic [65]. It does not seem that such an approach can
be used in our case.

A stochastic model of a CRN with three timescales is analyzed in Fromion et al.
[32]. The limiting behavior of the occupation measure of the processes associated
to the two fast timescales is investigated. The main difficulty is of identifying
the possible limits. A technical result on conditional probabilities is the major
ingredient to solve this problem. This method do not seem to be possible for
our CRN, mainly because there are too many fast timescales a priori, so that an
analogous result on conditional probabilities is not clear.

1.4. Outline of the Paper. The goal of this paper is of establishing a limit
theorem for the convergence in distribution of the scaled process defined by Rela-
tion (4.4) :

— For the occupation measure of the coordinates of the Markov process whose
indices i∈{1, . . . , n} are such that ki≥2;

— For the vector of the other components, i.e. indices i∈{1, . . . , n} with
ki=1, for the uniform topology.
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See Theorem 4.4 for the full statement. The proof of this result is done in several
steps.

(a) Technical estimates of the “basic” model of a k-unary CRN with one chem-
ical species in Section 3;

(b) Tightness results for the occupation measure by using (a) and linear alge-
bra arguments in Section 4;

(c) Identification of the limit of the sequence of occupation measures. This is
done first by establishing a functional equation for some marginals of the
possible limiting points, Relation (4.40) of Proposition 4.14, and then by
induction on the hierarchy of timescales starting from the fastest timescale.
Relative entropy functions associated to each timescale and convexity ar-
guments are the main ingredients of the proofs. In Section 5 when all ki,
i=1, . . . , n, are greater than 2, and Section 6 for the general case.

2. Stochastic Model

We introduce the formal definitions and notations used throughout the paper.

2.1. The class of k-unary chemical reaction networks.

Definition 4.1 (k-unary CRN). The components of a k-unary chemical reac-
tion network are :

(a) A set of n distinct chemical species S={S1, . . . , Sn}. The set S is also
identified to {1, . . . , n} and ∅ is the source/sink for chemical species, it is
associated to index i=0 in general;

(b) Complexes C are of the form kiSi, i=1, . . . , n, for some ki≥1. We will
have the convention k0=0. Each species is present in exactly one complex.

(c) The rates of chemical reactions are associated to a Q-matrix Rκ=(κij , i, j∈I)
of a jump Markov process on I={0, . . . , n} in the following way: If i, j∈I
are such that κij>0, then there is the reaction{

kiSi
κij−−⇀ kjSj if i̸=0;

∅ κ0jN−−−⇀ kjSj if i=0,

where N is the scaling parameter. These are the only possible reactions.

Note that the process associated to the Q-matrix Rκ is not the process describ-
ing the time evolution of the CRN, it is a jump process on the finite set I. The
state of the CRN is given by (XN (t))=(XN

i (t)), a Markov process with values in
Nn. Since, for i∈{1, . . . , n}, the sizes of jumps of the number of copies of chemical
species i are either ±ki, a natural state space for this process is

(4.5) Sa= {x=(xi)=(a1+m1k1, a2+m2k2, . . . , an+mnkn) : (mi)∈Nn} ,
for any a∈{0, . . . , k1−1}×{0, . . . , k2−1}× · · · ×{0, . . . , kn−1}.

The kinetics of the system are driven by the law of mass action, see Voit et al.
[76], Lund [56] for surveys on the law of mass action and the historical reference
Guldberg and Waage [35]. The associated transitions are thus given by, for x∈Sa,
i, j∈I, i̸=0,

x=(xi) → x+


kjej − kiei, at rate κijx

(ki)
i

kiei, “ κ0iN

−kiei, “ κi0x
(ki)
i .

where ei is the ith unit vector of Nn and, for y, k∈N,

(4.6) y(k) =
y!

(y−k)!
,
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if y≥k and y(k)=0 otherwise.
Such CRNs have a fast input, in the sense that the rates of creations of chem-

ical species are proportional to a (large) scaling factor N , and these are the only
chemical reactions which are sped-up.

∅ 3S1 3S2

2S3 S4

κ01N κ12

κ13 κ23κ30 κ24

κ34

κ43

Figure 1. An example of a k-unary CRN

2.2. Relations with Some Queueing Networks. A k-unary network can
be related to several queueing systems.

(a) When there is one chemical species, this is a generalized M/M/∞ queue.
See Section 3.

(b) Queueing networks referred to as Jackson Networks. They can be de-
scribed simply as follows.
— There are n sites for the location of jobs. If x=(xj)∈Nn, for 1≤j≤n,

xj denotes the number of jobs at the site j.
— One of the jobs at site i leaves at rate µij>0 to go to site j∈{1, . . . , n},

or leave the network at rate µi0

— External jobs arrive at the site i at rate µ0i≥0.
The main difference with our CRNs is that the ith coordinate, i∈{1, . . . , n}
decreases at a fixed rate if it is not 0, instead of a rate proportional to

x
(ki)
i for a k-unary CRN. There is a scaling result with the norm of the

initial state for these networks in Chen and Mandelbaum [66], see Sec-
tion 1.2. The scaling results are quite different, there is only one timescale
for Jackson networks. Nevertheless, as for our CRNs, a linear system plays
an important role in the limit theorems associated to these Markov pro-
cesses. See Relation (4.28) in Proposition 4.9 for k-unary CRNs and, for
Jackson networks, see Proposition 9.6 of Robert [67].

2.3. Notations. Throughout the paper, the following notations will be used.
For a subset A of R, we denote A∗=A\{0} and, for p, q∈N∗, p≤q,

(4.7) I[p,q]
def.
= {0} ∪ {i ≥ 1 : p≤ki≤q},

with the convention that I[p]=I[p,p], and I[p+]=I[p,+∞], so that I=I[1+].

If x∈RI∗

+ and 1≤p≤q, we define x[p,q]=(xi, i∈I∗[p,q]) and x will also be rep-

resented as x=(x[k1], x[k2], . . . , x[kn]) or x=(x[1,q−1], x[q+]), for q≥2, provided that
I∗[1,q−1] and I

∗
[q+] are non-empty. Similarly, if π is a probability distribution on on

RI∗

+ , π[p,q] is the distribution on R
I∗
[p,q]

+ of marginals of π for the coordinates whose
index is in I∗[p,q], i.e. the image of π by the mapping x 7→x[p,q].

For any subset A of I, we denote by Ω(A) the set of irreducible Q-matrices
(xij , i, j∈A) for the state space A. We will assume in this paper that Rκ∈Ω(I),
with a slight abuse of notation we will also write κ∈Ω(I). An A×A-matrix refers
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to a |A|×|A|-matrix, with |A| the cardinality of A. For i∈I∗, we define

(4.8) κ+i =κi0+
∑

j∈I∗\{i}

κij .

We now introduce a natural distance (d(i)) from the origin (the complex ∅) on the
graph of the CRN.

Definition 4.2. We set d(0)=0 and, for 1≤i≤n,

d(i) = min

{
k≥1 : ∃i1, . . . , ik−1∈I∗, κ0,i1 ·

k−2∏
p=1

κipip+1 ·κik−1i>0

}
.

A real-valued function (x(t)) on (R+)
I∗

is càdlàg if it is right continuous and
it has left-limits everywhere on R∗

+, in this case, for t>0, x(t−) denotes the left

limit of (x(t)) at t>0. If H is a subset of Rd, for d≥1, we denote by B(H) the set
of Borelian subset of H, Cc(H) the set of continuous functions on H with compact
support on H and C2

c (H) the subset of class C2-functions and the set on Borelian
probability distributions on H is denoted as P(H).

The convergence in distribution of a sequence of jump processes (UN (t)) in Rd to
a process (U(t)) is understood with respect to the topology of uniform convergence
on compact sets for càdlàg functions. See Chapters 2 and 3 of Billingsley [14] for
example. The convergence in distribution of the associated occupation measures is
the convergence in distribution of the sequence of random measures (µN ) on Rd

+,

defined by, for f∈Cc(Rd+1
+ ),

⟨µN , f⟩ =
∫ T

0

f(s, UN (s)) ds.

See Dawson [21] for the technical aspects related to measure valued processes.

2.4. Stochastic Differential Equations. If P is a positive Borelian measure
on R2

+, and A∈B(R+) is a Borelian subset of R+, we use the following notation,

(4.9) P(A,dt) =

∫
x∈R+

1{x∈A}P(dx, dt).

We will express the time evolution of the k-unary CRN, as a càdlàg process
(XN (t))=(XN

i (t), i=1, . . . , n), solution of the following stochastic differential equa-
tion (SDE). See Laurence and Robert [52]. For i∈I∗, t≥0,

(4.10) dXN
i (t) = kiP0i ((0, κ0iN),dt) +

∑
j∈I∗\{i}

kiPji

((
0, κji(X

N
j (t−))(kj)

)
,dt
)

−
∑

j∈I\{i}

kiPij

((
0, κij(X

N
i (t−))(ki)

)
,dt
)
.

where Pij , i, j ∈ I is a family of independent Poisson point processes on R2
+ with

intensity measure the Lebesgue measure on R2
+. See Kingman [64].

The martingale and stopping time properties will refer to the smallest filtration
(Ft) satisfying the usual hypotheses and such that

{Pij(A×[0, s]) : i∈I, j∈I \ {i}, A∈B(R+), s ≤ t} ⊂ Ft, ∀t≥0.

2.5. Invariant Distribution with Product Form Representation. In
the language of chemical reaction networks, a k-unary CRN is weakly reversible
with one linkage class and its deficiency is 0. See Feinberg [27] for the general
definitions for CRNs.
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The Deterministic CRN.
In a deterministic setting, a dynamical system (uN (t))=(uNi (t)) on Rn

+ is associated
to this CRN

(4.11)
u̇Ni (t)

ki
= Nκ0i +

∑
j∈I∗\{i}

(
uNj (t)

)kj
κji − (uNi (t))ki

∑
j∈I\{i}

κij , i∈I∗.

Classical results of Feinberg [26] and Horn and Jackson [42] show that, in this case,
(uN (t)) has a unique equilibrium point γN=(N1/kiui) which is locally stable, where
u∞=(ui) is the unique positive solution of the system of equations,

(4.12) κ0i +
∑

j∈I∗\{i}

u
kj

j κji = uki
i

∑
j∈I\{i}

κij , i∈I∗.

See Proposition 4.9 of Section 4.1 and Feinberg [27] for a general presentation of
these dynamical systems.

The invariant Measure.
For a=(ai)∈Nn, with ai∈{0, . . . , ki−1} for all 1≤i≤n, the Markov process (XN (t))
is irreducible on the set Sa defined by Relation (4.5). Anderson et al. [7] shows that
the invariant distribution of (XN (t)) on Sa is given by

(4.13) νa(x) =
1

Za

n∏
i=1

(γj,N )xi

xi!
, x∈Sa,

where Za is the normalization constant,

Za =
∑

k=(ki)∈Nn

n∏
i=1

(γi,N )ai+piki

(ai+piki)!
.

and γN=(γi,N )=(N1/kiui), where (ui) is the solution of the system (4.12).

2.6. Timescales. When n=1, the k-unary CRN is

∅ κ01N−−−⇀↽−−−
κ10

kS1,

in state x, the instantaneous mean drift of XN is k(κ01N−κ10x(k)). In view of
Relation (4.6), to have a non-trivial time evolution when N is large, this suggests
that x should be of the order of N1/k. It is not difficult to show that, provided that
the sequence (XN

1 (0)/N1/k) converges, then the sequence of processes(
XN

1 (t/N1−1/k)

N1/k

)
is converging in distribution to (x1(t)) the solution of the ODE

ẋ1(t) = k(κ01−κ10x1(t)k), t≥0.

See Section 3. The natural timescale of the process (XN
1 (t)/N1/k) is (t/N1−1/k). If

k≥2, (XN
1 (t)/N1/k) is then a fast process, and when k=1, (XN

1 (t)/N) can be seen
as a slow process.

For our general k-unary CRN, fast and slow processes define a partition of the
set of indices i∈{1, . . . , n} based on the fact that ki=1 or ki≥2, i.e. I∗=I∗[1]∪I

∗
[2+].

In the same way, if i, j∈I∗, is such that ki>kj , then the process (XN
i (t)/N1/ki) is

“faster” than the process (XN
j (t)/N1/kj ). This leads to a classification of chemical

species according to their natural timescales, i.e. according to the value of ki. This
hierarchy plays an important role in the proofs of convergence in distribution of
this paper.
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2.7. The Convergence Result. With the above remark, the set I∗2+ is the

set of indices of fast processes, the asymptotic evolution of (XN
i (t), i∈I∗[2+]) is de-

scribed only in terms of its occupation measure. For I∗1 , the set of indices associated
to slow processes, this is the convergence in distribution of the sequence of processes

(X
N

i (t), i∈I∗[1]).

Definition 4.3.
(a) The scaled process (X

N
(t)), is defined for N≥1 as

(4.14)
(
XN (t)

)
=
(
X

N

i (t)
)
=

(
XN

i (t)

N1/ki

)
.

The initial state XN (0)=xN=(xNi )∈Nn of the process (XN (t)) is assumed
to satisfy the relation

(4.15) lim
N→+∞

(
xNi
N1/ki

)
= (αi)∈

(
R∗

+

)n
.

(b) The occupation measure ΛN is the random measure on R+×RI∗

+ defined

by, for g∈Cc(R+×(R∗
+)

I∗
),

(4.16) ⟨ΛN , g⟩ =
∫
R+

g
(
u,
(
X

N

i (u), i∈I∗
))

du.

The main result of the paper is the following theorem.

Theorem 4.4. If (XN (t)) is the solution of SDE (4.10) whose initial condition
satisfies Condition (4.15), then, for the convergence in distribution,

(4.17) lim
N→+∞

((
X

N

i (t), i∈I∗[1]
)
,ΛN

)
=
((
xi(t), i∈I∗[1]

)
,Λ∞

)
,

where (XN (t)) and occupation measure ΛN are defined respectively by Relations (4.14)
and (4.16), with, for g ∈ Cc

(
R+×(R∗

+)
I∗)

,

(4.18) ⟨Λ∞, g⟩ =
∫
R+

g
(
s,
(
x(s),

(
Li(x(s)), i∈I∗[2+]

)))
ds,

where:

(a) If y∈(R∗
+)

I∗
[1] , L(y)=(Li(y), i∈I∗[2+]) is the unique solution of the system

(4.19) κ0i +
∑
j∈I∗

[1]

yjκji +
∑

j∈I∗
[2+]

\{i}

Lj(y)
kjκji = Li(y)

ki

∑
j∈I\{i}

κij , i∈I∗[2+];

(b) The function (x(t))=(xi(t), i∈I∗[1]) is the unique solution of the set of

ODEs,

(4.20) ẋi(t) = κ0i +
∑

j∈I∗
[1]

\{i}

xj(t)κji

+
∑

j∈I∗
[2+]

\{i}

Lj(x(t))
kjκji − xi(t)

∑
j∈I\{i}

κij , i∈I∗[1],

with initial point (αi, i∈I∗[1]).

Not that the coordinates of the scaled vector (XN (t)) with indices in I[1] also
appear in ΛN even if there is a much stronger result for the convergence in distri-
bution for them. This is only to have simpler expressions.
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3. A Generalized M/M/∞ Queue

In this section, we will study the simplest form of k-unary CRN, a CRN with
only one species,

∅ λN−−⇀↽−−
µ

kS.

The process (XN (t)) is a birth and death process with the transition rates, for x≥0,

(4.21) x −→ x+

{
k at rate λN,

−k “ µx(k).

When k=1, (XN (t)) is the Markov process of the M/M/∞ queue, with arrival rate
λN , and departure rate µ. It is a basic model in the study of stochastic chemical
reaction networks. See Laurence and Robert [52] and Chapter 6 of Robert [67] for
a general presentation.

We start with a simple scaling result.

Proposition 4.5. If the initial condition xn of the Markov process (XN (t)) is
such that

lim
N→+∞

xn
k
√
N

= α,

then, for the convergence in distribution, the relation

lim
N→+∞

(
1

k
√
N
XN

(
t/N1−1/k

)
, t ≥ 0

)
= (x(t), t ≥ 0) ,

holds, where (x(t)) is the solution of the ODE ẋ(t)=λ−µx(t)k, with x(0)=α.

Proof. This is done with straightforward stochastic calculus. The SDE (4.10)
is in this case

(4.22) dXN (t) = kP01((0, λN),dt)−kP10((0, µXN (t−)(k)),dt),

by integrating this relation, we obtain that, for t≥0,

(4.23) YN (t)
def.
=

1
k
√
N
XN

(
t/N1−1/k

)
= YN (0)+MN (t)+λkt−k

∫ t

0

XN (s)(k)

N
ds,

where (MN (t)) is a martingale whose previsible increasing process is given by

⟨MN ⟩ (t) = λk2t

N1+1/k
+
µk2

N1/k

∫ t

0

XN (s)(k)

N
ds,

therefore, with Relation (4.23) we get

E (⟨MN ⟩ (t)) ≤ λk2t

N1+1/k
+

µk

N1/k
(YN (0)+λkt) .

Doob’s Inequality gives that the sequence of martingales (MN (t)) is converging in
distribution to 0. By using again Relation (4.23), we get that, for any T>0 and
ε>0, there exists K such that

P
(
sup
t≤T

YN (t) ≥ K

)
≤ ε.

We can then use the criterion of the modulus of continuity, see Theorem 7.3
of Billingsley [14], to show that the sequence (YN (t)) is tight for the convergence
in distribution. It is then easy to conclude the proof of the proposition. □

When k=1, this is the classical result for the scaled M/M/∞ queue that, for
the convergence in distribution

lim
N→+∞

(
XN (t)

N

)
=

(
λ

µ
+

(
α−λ

µ

)
e−µt

)
.
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See Theorem 6.13 in Robert [67].
The case k≥2 is in fact more interesting, and more important for our study.

With Definition (4.14), the above proposition gives the asymptotic behavior of the

process (X
N
(t/N1−1/k)), i.e. on a slower timescale than the timescale (t) of interest

in our paper. It is quite clear that (XN (t)) should be close to the equilibrium of

the function (x(t)), i.e. close to ℓ∞= k
√
λ/µ.

For such a process on a fast timescale, a convergence result of (X
N
(t)) to (ℓ∞)

is classically formulated in terms of the convergence in distribution of its occupation
measure. See Section 2.3. Here, however, a stronger result of convergence is a key
ingredient in the proofs of tightness for the convergence results of this paper.

Proposition 4.6. If k≥2 and XN (0)=O( k
√
N), then for any 0<η<T , and ε>0,

lim
N→+∞

P
(

sup
η≤t≤T

∣∣∣∣XN (t)
k
√
N

−ℓ∞
∣∣∣∣ > ε

)
= 0

holds with ℓ∞
def.
= k
√
λ/µ.

Proof. The proof is carried out in two (similar) steps: with a stochastic upper

bound of X
N
(t)−ℓ∞, and then, with a stochastic lower bound of ℓ∞−XN

(t).
First, we show that the process reaches the neighborhood of ℓ∞ before time

η>0 with high probability. Let ℓ1>ℓ∞, define

SN
def.
= inf

{
t≥0 : XN (t)(k) ≤ (ℓ1)

kN
}
,

The integration of Relation (4.22) gives

E
(
XN (η∧SN )

)
= xN + kE

(∫ η∧SN

0

(λN − µ(XN (u))(k)) du

)
≤ C0

k
√
N + kµ

(
(ℓ∞)k−(ℓ1)

k
)
NE(η∧τN ),

for some constant C0. Therefore we have for N large enough,

E (η∧SN ) ≤ C0

kµ((ℓ1)k−(ℓ∞)k)
N1/k−1,

and therefore that (P(SN>η)) converges to 0.
With the strong Markov property of (XN (t)), we can therefore assume that

XN (0) ≤ yN
def.
= ℓ1

k
√
N+k−1.

Let (Z(t)) be a birth and death process on N starting at 0, with the transitions

x→ x+

{
+1 λ,

−1 µ(ℓ1)
k if x≥1.

The process (Z(t)) is the process of the number of jobs of an M/M/1 queue with
input rate λ and service rate µ(ℓ1)

k. See Chapter 5 of Robert [67]. Since µ(ℓ1)
k>λ,

this process is positive recurrent.
We now construct a coupling of (XN (t)) and (Z(t)) such that the relation

(4.24) XN (t) ≤ yN+kZ(Nt), ∀t≥0,

holds, where (XN (t)) is the solution of the SDE (4.22) with initial point xN≤yN
and (Z(t)) is the solution of the SDE

dZ(t) = P01

(
(0, λN),

dt

N

)
− 1{Z(t−)>0}P10

(
(0, µ(ℓ1)

kN),
dt

N

)
with initial point at 0.
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It is enough to prove Relation (4.24) by induction on the instants of jumps of
the process (XN (t), Z(Nt)) in the following way: if the inequality holds at time t0,
then it also holds at the instant of the next jump of the process (XN (t), Z(Nt))
after time t0.

Without loss of generality, we can assume that t0=0 and XN (0)≤yN+kZ(0),
t1 is the first instant of jump of (XN (t), Z(Nt)). Since both processes (XN (t)) and
(kZ(Nt)) have the same positive jump sizes at the same instants, we have only to
consider jumps with negative sizes.

(a) If XN (0)≥yN , then XN (0)(k)≥(ℓ1)
k. If at time t1, there is a jump for

(Z(Nt)) whose size is −k, it is due to the Poisson process P10. In view of
the SDE for (XN (t)), this implies that there is also a jump −k for (XN (t))
at time t1. Relation (4.24) will then also hold at the first instant of jump
of (XN (t), Z(Nt)).

(b) If XN (0)<yN , if there is a negative jump of (ZN (Nt)) at time t1, Rela-
tion (4.24) will obviously hold at that instant.

All the other possibilities preserve clearly the desired inequality.
Now, for ℓ2 such that ℓ2>ℓ1,

P
(

sup
0≤t≤T

XN (t)
k
√
N

≥ ℓ2

)
≤ P

(
sup

0≤t≤T
Z(Nt) ≥ (ℓ2−ℓ1) k

√
N

k
−1

)
.

If, for 0<ε<ℓ2−ℓ1,
τN

def.
= inf{t ≥ 0 : Z(t) ≥ ε

k
√
N},

with the last inequality, we have therefore, for N sufficiently large,

(4.25) P
(

sup
0≤t≤T

XN (t)
k
√
N

≥ ℓ2

)
≤ P(τN ≤ NT ).

Proposition 5.11 of Robert [67] on the hitting times of a positive recurrent M/M/1

queue gives that there exists ρ∈(0, 1) such that the sequence (ρ
k√
NτN ) converges

in distribution to an exponentially distributed random variable. In particular

lim sup
N→+∞

P(τN ≤ TN) = lim sup
N→+∞

P
(
ρ

k√
NτN ≤ Nρ

k√
NT
)
= 0.

Since ℓ2 is arbitrarily close to ℓ∞, Relation 4.25 gives the relation for the upper
bound. The other case uses the same ingredients. The proposition is proved. □

With the same type of arguments, we can obtain the following corollary.

Corollary 4.7. For k≥2, if the initial condition of (XN (t)) satisfies the re-
lation

lim
N→+∞

XN (0)
k
√
N

= α > 0,

and, for M>m>0 such that αk, λ/µ∈(m,M). then

lim
N→+∞

P
(
XN (s)(k)

N
∈ (m,M),∀s∈[0, T ]

)
= 1.

4. Uniform Estimates

This section is devoted to the proof of the fact that for any T>0, with high
probability, the scaled process (XN (t)) of Relation (4.14) lives in a bounded domain
of the interior of Rn

+ uniformly on the time interval [0, T ]. Recall that since the
components with index i such that ki≥2 are on “fast” timescales, see Section 2.6,
uniform estimates on a time interval are more challenging to establish.
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Theorem 4.8. If (XN (t)) is the Markov process associated to the k-unary
CRN of Definition 2.1 whose matrix Rκ is irreducible and with initial conditions
satisfying Relation (4.15), then for any T>0, there exist two positive vectors (mi)
and (Mi) of Rn

+ such that

lim
N→+∞

P (EN ) = lim
N→+∞

P
(
XN

i (t)(ki)

N
∈ (mi,Mi),∀i∈{1, . . . , n},∀t≤T

)
= 1,

with, for J⊂I,

(4.26)

KJ =
{
x=(xi)∈ (R+)

I∗
: ki
√
mi < (xi)

ki < ki
√
Mi,∀i∈J∗

}
EN

def.
=

{
XN (t) ∈ KI ,∀t≤T

}
.

The important implication of this result is that, on the set EN , every reaction
has a rate of the order ofN . Note that because of the factorial term in the expression
of the rate of the reactions, the event EN is not the event{

XN
i (t)(ki)

N
∈ (mi,Mi),∀i∈{1, . . . , n},∀t≤T

}
,

however, when N goes to infinity, both events have the same probability.
The proof of the theorem is done by considering the stopping time HN∧TN ,

where

(4.27)


HN

def.
= inf

{
t ≥ 0 : min

i∈I∗

(XN
i (t))(ki)

miN
≤ 1

}
,

TN
def.
= inf

{
t ≥ 0 : max

i∈I∗

(XN
i (t))(ki)

MiN
≥ 1

}
,

and prove that for any T>0, the sequence (P(HN∧TN≤T )) converges to 0.
The proof is done in several steps. Results on convenient vectors (mi) and (Mi)

are established in Section 4.1. Proposition 4.11 of Section 4.2 proves the result when
I∗[1]=∅, i.e. when ki≥2 for all i∈I∗. Section 4.3 concludes with the general case.

A coupling argument with a set of independent M/M/∞ queues is used and then
Corollary 4.7 of Section 3.

4.1. Some Linear Algebra. The notations and assumptions of Section 2.3
are used.

Proposition 4.9. If κ∈Ω(I), then there exists a unique solution ℓκ=(ℓκ,i)∈(R∗
+)

I∗
,

such that, for i∈I∗,

(4.28) κ+i (ℓκ,i)
ki = κ0i+

∑
j∈I∗\{i}

(ℓκ,j)
kjκji,

furthermore,

(4.29) ((ℓκ,i)
ki) =MR

κ ·
(
κ0i

κ+i

)
,

where MR
κ is an I∗×I∗ matrix whose coefficients are non-negative and depend only

on κij, i∈I∗, j∈I.

Recall that, from Relation (4.8), if i∈I∗,

κ+i = κi0+
∑
j ̸=i

κij .
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Proof. The system (4.28) can be written as

z ·Rκ = 0,

with z0=1 and zi=(ℓκ,i)
ki , for i∈I∗. This is simply the system of invariant measure

equations for the Markov process associated to Rκ, introduced in Section 2.1. Since
I is finite, the irreducibility property gives the existence and uniqueness of such a
solution z.

Relation (4.29) is just a linear algebra representation of this solution, based on
the fact that the spectral radius of the matrix R∗

κ=(κji/κ
+
i , i, j∈I∗) is strictly less

than 1, which is a consequence of the irreducibility of Rκ,(
κ+i (ℓκ,i)

ki
)
=

(
+∞∑
m=0

(R∗
κ)

m

)
· (κ0i).

□

The following proposition is a key result used in a coupling in the proof of
Theorem 4.8.

Proposition 4.10. If κ∈Ω(I), then for any (αi)∈(R∗
+)

n, there exist two vectors
(mi) and (Mi)∈Rn

+ such that,

(4.30) 0 < mi < αki
i < Mi, ∀i ∈ I∗,

and

Miκ
+
i > κ0i +

∑
j∈I∗\{i}

Mjκji,(4.31)

miκ
+
i < κ0i +

∑
j∈I∗, d(j)<d(i)

mjκji,(4.32)

where d is the distance of Definition 4.2.

It should be noted that Relations (4.31) and (4.32) are not symmetrical, because
of the restriction on the summation using the distance d. The result will used for
the vector (αi) associated to the initial conditions, see Relation (4.15).

Proof. Let (zi)=((ℓκ,i)
ki) be the solution of the system of the type (4.28), for

i=1,. . . , n,

ziκ
+
i = 1 +

∑
j∈I∗\{i}

zjκji.

Relations αki
i <Mi and (4.31) hold if we take Mi=ρzj , with

ρ > max

(
αki
i

zi
, κ0i : i=1, . . . , n,

)
.

The construction of (mi) for the lower bounds is done by induction on the values
of d(i).

If i∈I∗ is such that d(i)=1, then necessarily κ0i>0, then we can take mi so
that

0 < mi < min

(
κ0i

κ+i
, αki

i

)
.

If d(i)=p≥2, then there exists j∈I∗ such that d(j)=p−1 and κji>0, therefore we
can take mi>0 such that

mi < min

αki
i ,

1

κ+i

κ0i + ∑
j∈I∗,d(j)<d(i)

mjκji

 ,

since the sum of the second term is strictly positive. The proposition is proved. □
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4.2. CRN with Only Fast Processes. In this section it is assumed that
I∗[1] is empty, i.e. ki≥2 for all i∈{1, . . . , n}.

Proposition 4.11. If I∗[1]=∅, then there exist two vectors (mi) and (Mi) with

positive coordinates such that for any T>0, the sequence (P (EN )) is converging to
1, where EN is the event defined by Relation (4.26).

Proof. Let HN and TN be the stopping times defined by Relation (4.27).
We start with the stopping time TN . We take (Mi) of Proposition 4.10 satisfying
Relations (4.30) and (4.31). Let (YN (t)) = (Y N

i (t)) be the solution of the SDE

dY N
i (t) = kiP0i ((0, κ0iN),dt) +

∑
j∈I∗\{i}

kiPji ((0, κjiMjN) ,dt)

−
∑

j∈I\{i}

kiPij

((
0, κij(Y

N
i (t−))(ki)

)
,dt
)
,

with YN (0)=XN (0). Note that we have necessarily that Y N
i (t)−XN

i (t)∈kiZ, for all
i∈I∗ and t≥0.

We prove that, for all t<TN , the relations XN
i (t)≤Y N

i (t) hold for any i∈I∗.
This is done by induction on the sequence of the instants of jumps of the process
((XN

i (t), Y N
i (t)), i∈I∗) in the time interval [0, TN ]. As in the proof of Proposi-

tion 4.6, we assume that XN
i (0)≤Y N

i (0) and XN
i (0)(ki)≤MiN hold for all i∈I∗,

and denote by t1 the instant of the first jump of the process (XN
i (t), Y N

i (t), i∈I∗).
We show that the above inequalities also hold at time t1.

For all i∈I∗, we have (XN
i (0))(ki) ≤MiN , hence, for, j∈I∗ and t≥0,

Pji

((
0, κji(X

N
i (t))(ki)

)
×[0, t]

)
≤ Pji ((0, κjiMjN)×[0, t]) ,

and if (XN
i (t)) has a jump up at t1 due to Pji, so does (Y N

i (t)). Consequently, the
inequality is clearly preserved if the size of the first jump is positive.

If t1 is an instant of a jump with negative size for (Y N
i (t)), if XN

i (0)<Y N
i (0),

then necessarily Y N
i (0)−XN

i (0)≥ki, the relation XN
i (t1)≤Y N

i (t1) is therefore sat-
isfied. All the other possibilities for t1 clearly preserve the desired relations. Our
assertion has been established.

For i∈I∗, the process (Y N
i (t)) has the same distribution as the process of a

generalized M/M/∞ queue, introduced in Section 3, with arrival rate λiN and
departure rate µi given by

λi = κ0i+
∑

j∈I∗\{i}

Mjκji, µj = κ+i .

We haveMi>λi/µi for all i∈I∗ because of Relation (4.31). Since all ki’s are greater
than 2, Corollary 4.7 applied to these n generalized M/M/∞ queues shows that
the relation

lim
N→+∞

P(TN ≤ T ) = 0

holds. We now take care of the stopping time HN . A vector (mi) satisfying Re-
lations (4.30) and (4.32) of Proposition 4.10 is fixed. Let (ZN (t))=(ZN

i (t)) be the
solution of the SDE

dZN
i (t) = kiP0i ((0, κ0iN),dt) +

∑
j∈I∗

d(j)<d(i)

kiPji ((0, κjimjN) ,dt)

−
∑

j∈I\{i}

kiPij

((
0, κij(Y

N
i (t−))(ki)

)
,dt
)
,



142 4. K-UNARY CRN

with ZN (0)=XN (0). It is easily seen by induction on the sequence of the instants
of jumps of the process (XN

i (t), ZN
i (t)) that the relation XN

i (t)≥ZN
i (t) holds for

all t<HN and i∈I∗.
For i∈I∗, the process (ZN

i (t)) has the same distribution as the process of a
generalized M/M/∞ queue with arrival rate λiN and departure rate µi given by

λi
def.
= κ0i+

∑
j∈I∗

d(j)<d(i)

mjκji, µj
def.
= κ+i .

Since the vector (mi) has been chosen so that mi<λi/µi holds for all i∈I∗, we
can conclude in the same way as before using Corollary 4.7. The proposition is
proved. □

4.3. Proof of Theorem 4.8. We first take care of the indices in the set I∗[1].

We define

(4.33)


m1

1 =
1

2
αmin exp(−κ+maxT ),

M1
1 = 2kmax

κ+0 T+ ∑
j∈I∗

[1]

αj

 ,

with xmax/min=max /min(xi, 1≤i≤n) for x∈Rn
+.

We show here that for all i∈I∗[1], we can choose mi=m
1
1 and Mi=M

1
1 . For all

i∈I∗, it is easily seen that the following upper bound, for t≥0,
(4.34)

sup
t≤T

∑
i∈I∗

[1]

kiX
N
i (t) ≤ kmax

∑
i∈I∗

[1]

xNi +
∑

i∈I∗
[2+]

xNi +
∑
i∈I∗

[1]

P0i([0, κ0iN ]×[0, T ])

 .

holds. The right-hand side of the last relation divided by N converges almost surely
to

kmax

κ+0 T+ ∑
i∈I∗

[1]

αi

 ,

hence

(4.35) lim
N→+∞

P

(
sup
t≤T

max
i∈I∗

[1]

XN
i (t)

N
≥M1

1

)
= 0.

Since the lifetime of a molecule of type i∈I∗[1] is exponentially distributed with

parameter κ+i , the number of species i at time T is stochastically greater than

xN
i∑

k=1

1{Ei+
k ≥T},

where (Ei+
k ) is a sequence of i.i.d. exponential random variables with parameter

κ+i . This last quantity divided by N converges almost surely to αi exp(−κ+i T ). We
therefore obtain the relation

(4.36) lim
N→+∞

P

(
inf
t≤T

min
i∈I∗

[1]

XN
i (t)

N
≤ m1

1

)
= 0.

From Relations (4.35) and (4.36), for node i∈I∗[2+], the input rate from node

j∈I+[1] on the time interval [0, T ] is, with high probability, upper bounded by κjiM
1
1

and lower bounded by κjim
1
1.
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Define κ=(κij , i, j∈I[2+]) and κ=(κij , i, j∈I[2+]), by, for i∈I[2+],

κij = κij = κij , j∈I[2+];

κi0 = κi0 = κi0 +
∑

j∈I∗
[1]
κij ;

κ0i = κ0i +
∑

j∈I∗
[1]
κjiM

1
1 ;

κ0i = κ0i +
∑

j∈I∗
[1]
κjim

1
1.

Using a coupling argument, one can define the Markov processes (Y 2
N (t)), respec-

tively (Z2
N (t)), associated to the k-Unary CRN with species I∗[2,+], with com-

plexes (kiSi, i ∈ I∗[2+]) and constant of reactions κ, respectively κ, both starting

at XN
[2,+](0) and that verify for all t ≤ TN ∧HN ,

ZN,2
i (t) ≤ XN

i (t) ≤ Y N,2
i (t), ∀i ∈ I∗[2+].

Since κ∈Ω(I[2+]), Proposition 4.11 applied to the process (Y 2
N (t)) shows that

there exists a vector (Mi,∈I[2+]), such that

lim
N→+∞

P

(
XN (t) ∈

N∏
i=1

(
0, ki
√
Mi

)
,∀t≤T

)
= 1.

Similarly, by considering κ, there exists a vector (mi,∈I[2+]) with positive compo-
nents such that

lim
N→+∞

P

(
XN (t) ∈

N∏
i=1

(
ki
√
mi,

ki
√
Mi

)
,∀t≤T

)
= 1.

The theorem is proved.

5. CRN with only fast processes

When I∗[1] is empty, i.e. ki≥2 for all i∈{1, . . . , n}, the time evolutions of all

species are fast processes, see Section 2.6. Theorem 4.4 is only about the con-
vergence in distribution of the sequence of occupation measures (ΛN ) on R+×Rn

+

defined by Relation (4.16). The absence of chemical species i such that ki=1 gives a
kind of instantaneous equilibrium property in the sense that the limit in distribution
of (ΛN ) is homogeneous with respect to the first coordinate, the time coordinate.
The main result of this section is Theorem 4.17 which is simply Theorem 4.4 stated
in this context. The motivation of such a separate proof is that it is focused, in
our view, on the key argument of the general proof. The identification of possible
limits of (ΛN ) is done by induction via the use of an entropy function. The proof
of the general case follows also such line but in a “non-homogeneous”, technically
more complicated, context.

5.1. Tightness of (ΛN ). We first establish the tightness of (ΛN ) for the con-
vergence in distribution in the general case.

Proposition 4.12. If the subset I∗[1] is empty and if the initial conditions satisfy

Relation (4.15), then the sequence of measure valued processes (ΛN ) on [0, T ] ×
(R∗

+)
I∗

is tight for the convergence in distribution. Any limiting point Λ∞ can be
expressed as,

(4.37) ⟨Λ∞, f⟩ =
∫
[0,T ]×KI

f(s, x)πs(dx) ds,

for any function f∈Cc([0, T ]×(R+)
I∗
), where (πs) is an optional process with values

in P(KI), the set of probability measures on the compact subset KI defined by
Relation (4.26).
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See Dawson [21] for a presentation of the convergence in distribution of measure-
valued processes. The optional property of (πs) is used only to have convenient
measurability properties so that time-integrals with respect to (πs, s>0) are indeed
random variables. See Section VI.4 of Rogers and Williams [69].

Proof. We take the vectors (mi) and (Mi) of Theorem 4.8, and KI the com-
pact set of Rn

+ and EN the event defined in Relation (4.26). Since ΛN ([0, T ]×KI)≥T1EN
,

with Theorem 4.8, we obtain the relation

lim
N→+∞

E (ΛN ([0, T ]×KI)) = T.

Lemma 1.3 of Kurtz [55] gives that the sequence of random measures (ΛN ) is tight
for the convergence in distribution, and Lemma 1.4 of the same reference gives the
representation (4.37). The proposition is proved. □

In the following we assume that Λ∞ is a limit of a subsequence (ΛNr
) with the

representation (4.37).

Lemma 4.13. If f is a continuous function on RI∗

+ , then the relation

lim
r→+∞

(∫ t

0

f
(
XNr

(s)
)
ds

)
=

(∫ t

0

∫
RI∗

+

f(x)πs(dx) ds,

)
holds for the convergence in distribution of processes.

Proof. This is a straightforward use of the criterion of modulus of continuity,
see Theorem 7.3 of Billingsley [14], and of Theorem 4.8. For s≤t, on the event EN ,
we have ∫ t

s

f
(
XNr (s)

)
ds ≤ 2(t−s) sup

x∈KI

|f(x)|,

with the notations of Relation (4.26). We conclude with the identification of the
finite marginals. □

As we have seen in Section 2.6, for i∈I∗, the value of ki gives in fact the

natural timescale of the process (X
N

i (t)). On the event EN , see Relation (4.26),
every reaction has a rate of order N , in particular, the rate at which the process
(XN

i (t)) jumps of ±ki is of order N . With the scaling in space of the process,

(X
N

i (t)) is significantly changed when there are N1/ki reactions changing (XN
i (t)),

and therefore after a duration of time of the order of N1/ki−1. If for two species

i and j, ki>kj , then the process (X
N

i (t)) changes more rapidly than the process

(X
N

j (t)).
From now on in this section it is assumed that I∗[1] is empty.

5.2. A Limiting Equation. For a function f ∈ C2
c

(
(R+)

I∗)
, the SDE (4.10)

gives directly, for t∈[0, T ],

(4.38) f
(
XN (t)

)
= f

(
XN (0)

)
+Mf,N (t) +

∫ t

0

∑
i∈I∗

κ0iN∇ ki

N1/ki
ei
(f)(XN (s)) ds

+

∫ t

0

∑
i,j∈I,
i ̸=0

κij(X
N
i (s))(ki)∇

− ki

N1/ki
ei+

kj

N
1/kj

ej
(f)(XN (s)) ds,

with the notations

— for x, a∈RI∗
, ∇a(f)(x)=f(x+a)−f(x);

— for i∈I∗, ei is the i-th unit vector of RI∗
, and the convention e0=0,
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and (Mf,N (t)) is local martingale whose previsible increasing process is given by,
for t≤T ,

(4.39) ⟨Mf,N ⟩ (t) =
∫ t

0

∑
i∈I∗

κ0iN

(
∇ ki

N1/ki
ei
(f)(XN (s))

)2

ds

+

∫ t

0

∑
i,j∈I,
i ̸=0

κij(X
N
i (t))(ki)

(
∇

− ki

N1/ki
ei+

kj

N
1/kj

ej
(f)(XN (s))

)2

ds

Proposition 4.14. If the subset I∗[1] is empty and (Λ∞) is a limiting point of

(ΛN ) with the representation (4.37), then, for any p≥2 and f∈C2(KI[2,p]), almost
surely, the relation

(4.40)

∫ t

0

∫
KI

∑
i∈I∗

[p]

κ0i+ ∑
j∈I∗\{i}

κjix
kj

j −κ+i x
p
i

 ∂f

∂xi
(x[2,p])πs(dx) ds = 0,

holds for all t∈[0, T ].

Recall the conventions x[2,p]=(xi, i∈I∗[2,p]) for x∈(R+)
I∗
, see Section 2.3.

Proof. It is assumed that I∗[p] ̸=∅. Let f∈C2((R+)
I∗
[2,p]). To simplify expres-

sions in this proof, we will make the slight abuse of notation, f(x)=f(x[2,p]) for

x∈(R+)
I∗
.

Since our goal is of characterizing the process (πt), by Theorem 4.8, without
loss of generality, we can assume that the support of the function f is included in
KI defined in Relation (4.26). Similarly, from now on, all relations are considered
on the event EN whose probability is arbitrarily close to 1 as N gets large. In
particular the process (XN (t), t∈[0, T ]) has values in KI .

For t≤T , Relation (4.38) can be rewritten as,

(4.41)
f
(
XN (t)

)
N1−1/p

−
f
(
XN (0)

)
N1−1/p

− Mf,N (t)

N1−1/p

=

∫ t

0

∑
i∈I∗

[2,p]

κ0i+ ∑
j ̸∈I[2,p]

κji
(XN

j (t))(kj)

N

N1/p∇ ki

N1/ki
ei
(f)(XN (s)) ds

+

∫ t

0

∑
i∈I∗

[2,p]

κi0 + ∑
j ̸∈I[2,p]

κij

 (XN
i (t))(ki)

N
N1/p∇− ki

N1/ki
ei
(f)(XN (s)) ds

+

∫ t

0

∑
i∈I∗

[2,p]

∑
j∈I∗

[2,p]
\{i}

κij
(XN

i (t))(ki)

N
N1/p∇

− ki

N1/ki
ei+

kj

N
1/kj

ej
(f)(XN (s)) ds.

For a, b≥0, there exist constants C0 and C1 such that

(4.42) max
i∈I∗

sup
x∈KI

∣∣∣∣∣xki− ( ki
√
Nx)(ki)

N

∣∣∣∣∣ ≤ C0

N1/ki
,

and, for any i, j∈I∗,

sup
x∈KI

∣∣∣∣∇− a

N1/ki
ei+

b

N
1/kj

ej
(f)(x)+

a

N1/ki

∂f

∂xi
(x)− b

N1/kj

∂f

∂xj
(x)

∣∣∣∣
≤ C1

(
a

N1/ki
+

b

N1/kj

)
.
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We get that, for i∈I[2,p], the processes(
N1/p∇± ki

N1/ki
ei
(f)(XN (t)), t ≤ T

)
vanish if ki ̸=p. With the definition (4.27), Relation (4.39) and Doob’s Inequality
give that the martingale (Mf,N (t∧TN )/N1−1/p) converges in distribution to 0 and

so (Mf,N (t)/N1−1/p) by Theorem 4.8.
Relation (4.41) becomes

∫ t

0

∑
i∈I∗

[p]

κ0i+ ∑
j∈I∗\{i}

κji

(
X

N

j (t)
)kj

 p
∂f

∂xi
(XN (s)) ds

−
∫ t

0

∑
i∈I∗

[p]

κ+i

(
X

N

i (t)
)kj

p
∂f

∂xi
(XN (s)) ds = UN (t),

where (UN (t)) is a process converging in distribution to 0. This relation can be
written in terms of occupation measure ΛN , it is easy to conclude the proof of the
proposition with the help of Lemma 4.13. □

5.3. A Convex Function on KI .

Definition 4.15. If κ∈Ω(I), the function Fκ is defined by, for z=(zi)∈KI ,

(4.43) Fκ(z)
def.
=
∑
i∈I∗

κ+i zi−κ0i− ∑
j∈I∗\{i}

κjizj

 ln

(
zi

(ℓκ,i)ki

)
,

where KI is defined by Relation (4.26) and ℓκ=(ℓκ,i)∈RI∗

+ is the unique solution of
the system (4.28) of Proposition 4.9.

Proposition 4.16. The function Fκ is non-negative, strictly convex on KI ,
with a unique minimum 0 at z=((ℓκ,i)

k), furthermore the mapping (κ, z)7→Fκ(z) is
continuous on Ω(I)×KI .

Proof. The existence and uniqueness of ℓκ, solution of a non-singular linear
system, has been seen in Proposition 4.9. The continuity of κ7→ℓκ on Ω(I) gives
the continuity of (κ, z)7→Fκ(z).

We now calculate the Hessian matrix of Fκ. For i∈I∗, we have, for z∈KI ,

∂Fκ

∂zi
(z) = κ+i ln

(
zi

(ℓκ,i)ki

)
+

1

zi

κ+i zi − κ0i−
∑

m∈I∗\{i}

κmizm


−

∑
m∈I∗\{i}

κim ln

(
zm

(ℓκ,m)km

)
.

Relation (4.28) gives that this quantity is indeed null at z=((ℓκ,m)km). For j∈I∗,
j ̸=i, we have the relation

∂2Fκ

(∂zi)2
(z) =

1

z2i

κ+i zi+κ0i+∑
m∈I∗\{i}

zmκmi

 ,
∂2Fκ

∂zi∂zj
(z) = −κijzi + κjizj

zizj
.
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LetHκ(z) be the Hessian matrix of Fκ at z∈KI . For u=(ui)∈RI∗
, with the notation

γij=κijzi+κjizj for i̸=j, the associated quadratic form at u is given by

utFκ(z)u = −
∑
i∈I∗

∑
j∈I∗\{i}

γij
uiuj
zizj

+
∑
i∈I∗

(κi0zi+κ0i)
u2i
z2i

+
∑
i∈I∗

∑
j∈I∗\{i}

γij
u2i
z2i

=
∑
i∈I∗

(κi0zi+κ0i)
u2i
z2i

+
1

2

∑
i∈I∗

∑
j∈I∗\{i}

γij

(
ui
zi
−uj
zj

)2

.

This last expression is positive for any non-zero element u=(ui)∈RI∗
. The function

Fκ is strictly convex. This concludes the proof of the proposition. □

5.4. Identification of the Limit. We can now state the main convergence
result of this section.

Theorem 4.17. If κ∈Ω(I) and the subset I∗[1] is empty, if Relation (4.2) holds

for the initial conditions, then the sequence (ΛN ) is converging in distribution to
Λ∞, such that, almost surely, for any function f∈Cc(R+×(R∗

+)
I∗
), the relation

(4.44)

∫
f(s, x)Λ∞(ds,dx) =

∫ +∞

0

f(s, ℓκ) ds,

holds, where ℓκ=(ℓκ,i) is the unique solution of the system (4.28) of Proposition 4.9.

The proof is carried out by induction on the “speed” of the different processes.
We start by the identification of the fastest species, with the largest ki, and identify
step by step each set I∗[p]. One of the difficulties is that we have only the functional

equation, Relation (4.40), to identify all the species in the set I∗[p] for each p ≥ 2.

A convex function, related to a relative entropy functional, will be used to identify
them simultaneously.

Proof. Let m0≥1 and (pa)∈Nm such that 2≤pm0<· · ·<p2<p1 and

{ki, i∈I∗} = {pa, a=1, . . . ,m0},
in particular, we have

I∗ =

m0⋃
a=1

I∗[pa]
and I=I[2,p1].

We will proceed by induction on m0 to prove that a random measure Λ∞ that
verifies Relation (4.40) is expressed by Relation (4.44).

We first consider the species of the set I∗[p1]
associated to the fastest processes

of (XN (t)). With the notations of Relation (4.26), Relation (4.40) gives, for T>0
and p1, the identity

(4.45)

∫ T

0

∫
KI

∑
i∈I∗

[p1]

Ki

[
x[2,p2]

]
(x[p1]

p1)
∂f

∂xi
(x)πs(dx) ds = 0

holds almost surely for f∈C2(KI), with, for y∈KI[2,p2]
, z∈KI[p1]

and i∈I∗[p1]
,

Ki[y](z)
def.
= κ0i +

∑
j∈I∗

[2,p2]

y
kj

j κji +
∑

j∈I∗
[p1]

\{i}

zjκji − κ+i zi.

and the notation zp1=(zi
p1).

For y∈KI[2,p2]
, we introduce an I[p1]×I[p1] matrix κ1(y) as follows: For i, j∈I∗[p1]

,

j ̸=i, κ1ij(y)=κij and

κ10i(y) = κ0i +
∑

j∈I∗
[2,p2]

y
kj

j κji, κ1i0(y) = κi0 +
∑

j∈I∗
[2,p2]

κij .
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Remark that, for i∈I[p1],

κ1,+i (y) =
∑

j∈I[p1]\{i}

κ1ij(y) = κ+1 .

It is easily seen that κ1∈Ω(I[p1]) and

Ki[y](z) = κ10i(y) +
∑

j∈I∗
[p1]

\{i}

zjκ
1
ji(y)− κ1,+i (y)zi.

Note that if I∗[2,p2]
is empty, then κ1 is then constant, there is no dependence on y

of course, and Theorem 4.17 is proved for m0 = 1.
Now if I∗[2,p2]

is not empty, for y∈KI[2,p2]
, the equation

K1[y](z
p)=0

is the system (4.28) of Proposition 4.9 for the set of indices I[p1] and the matrix

κ1(y). It has a unique solution z=L̃1[y]=(L1
i (y), i∈I∗[p1]

). We now define an entropy

function H1 given by, for y∈KI[2,p2]
and z∈KI[p1]

,

(4.46) H1[y](z) =
∑

i∈I∗
[p1]

zi ln

(
zi

L1
i (y)

p1

)
−zi.

Note that H1[y] is a C2-function on KI . It is easily checked that Relation (4.45) for
the function f :x 7→H1[x[2,p2]](x[p1]) can be rewritten as

(4.47)

∫ T

0

∫
KI

F1[x[2,p2]](x[p1]
p1)πs(dx) ds = 0,

where, for z∈KI[p1]
,

F1[y](z)
def.
=

∑
i∈I∗

[p1]

ziκ1,+i (y)− κ10i(y)−
∑

j∈I∗
[p1]

\{i}

zjκji(y)

 ln

(
zi

L1
i (y)

p1

)
.

Note that, for y∈KI[2,p2]
, F1[y] is the function Fκ1(y) of Relation (4.43) for the set

of indices I[p1]. Relation (4.47) gives therefore that, almost surely,∫ T

0

∫
y∈KI[2,p2]

(∫
z∈KI[p1]

F1[y](z
p1)π[p1]

s (dz|y)

)
ds⊗π[2,p2]

s (dy) = 0,

with the notations of Section 2.3 and, for s≥0, π
[p1]
s (dz|y) is the conditional distribu-

tion on KI[p1]
of πs∈P(RI∗

+ ) with respect to y∈KI[2,p2]
. Consequently, since F1[y] is

non-negative, up to a negligible set of [0, T ]×KI[2,p2]
for the measure ds⊗π[2,p2]

s (dy),
we have the relation ∫

KI[p1]

F1[y](z
p1)π[p1]

s (dz|y) = 0.

Proposition 4.16 gives that L̃1(y) is the only root of the function x 7→F1[y](x
p1) on

KI[p1]
, hence the probability distribution π

[p1]
s (dx|y) is the Dirac measure at L̃1(y).
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If h, f1 and f2, are continuous functions on, respectively, [0, T ], KI[2,p2]
and

KI[p1]
then, almost surely,∫ T

0

∫
KI

h(s)f1(x[2,p2])f2(x[p1])πs(dx) ds

=

∫ T

0

∫
y∈KI[2,p2]

f1(y)

∫
z∈KI[p1]

h(s)f2(z)π
[p1]
s (dz|y)π[2,p2]

s (dy) ds

=

∫ T

0

∫
y∈KI[2,p2]

h(s)f1(y)f2(L̃1(y))π
[2,p2]
s (dy) ds.

We get therefore that for f∈Cc([0, T ]×KI), almost surely,

(4.48)

∫ T

0

∫
KI

f(s, x)πs(dx) ds =

∫ T

0

∫
KI[2,p2]

f
(
s, (y, L̃1(y))

)
π[2,p2]
s (dy) ds,

with the slight abuse of notation of writing x=(x[2,p2], x[p1]) for x∈RI∗

+ .

We can now use our induction assumption to identify the measure ds⊗π[2,p2]
s (dy).

To do so, we have to show that a set of equations as in Relation (4.40) holds for

π
[2,p2]
s and an appropriate κ2.

If we can find some κ2 ∈ Ω(I[2,p2]) depending only on the initial κ such that
for all y ∈ KI[2,p2]

, for all i ∈ I∗[2,p2]
,

(4.49) κ0i +
∑

j∈I∗
[p1]

κji(L
1
i (y))

p1 +
∑

j∈I∗
[2,p2]

\{i}

κjiy
kj

j − κ+i y
ki
i

= κ20i +
∑

j∈I∗
[2,p2]

\{i}

κ2jiy
kj

j − κ2,+i yki
i .

Applying Relation (4.48) in Relation (4.40), for any 2≤p≤p2, for any f∈C2
(
KI[2,p]

)
,

almost surely, we have that the relation∫ t

0

∫
KI[2,p2]

∑
i∈I∗

[p]

κ20i+ ∑
j∈I∗\{i}

κ2jix
kj

j −κ2,+i xpi

 ∂f

∂xi
(x[2,p])π

[2,p2]
s (dx) ds = 0,

holds for t ∈ [0, T ]. We recognize here the Relations of Proposition 4.14, for the set
of indices I[2,p2] and the matrix κ2∈Ω(I[2,p2]). We can apply the induction hypoth-

esis on the measure π[2,p2]. Setting L̃2 the unique solution of the system (4.28) of
Proposition 4.9 for the set of indices I[2,p2] and the matrix κ2, Relation (4.48) can
be rewritten as : for f∈Cc([0, T ]×KI), almost surely,

(4.50)

∫ T

0

∫
KI

f(s, x)πs(dx) ds =

∫ T

0

∫
KI[2,p2]

f
(
s, (L̃2, L̃1(L̃2))

)
ds,

with the slight abuse of notation of writing x=(x[2,p2], x[p1]) for x∈RI∗

+ .
We conclude the induction by checking that

(L̃2, L̃1(L̃2)) = ℓκ,

where ℓκ=(ℓκ,i) is the unique solution of the system (4.28) of Proposition 4.9.
For the existence of κ2 that verifies Relation (4.49). It is done by induction

on the number of elements of the set I∗[p1]
. If this set contains only one index i0,

setting κi0 such that for i, j∈I[1,p2], j ̸=i,

(4.51) κi0ij = κij +
κii0κi0j

κ+i0
,
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is suitable. Otherwise, if I∗[p1]
contains more than one element, we remove them,

one by one, by applying the transformation of Relation (4.51).
The theorem is proved.

□

6. The General Case

We can now conclude the proof of Theorem 4.4. The difference with Section 5
is the time-inhomogeneity of the limiting quantities.

Proposition 4.18. If the initial conditions satisfy Relation (4.15) then the
sequence of processes ((XN

[1](t)),ΛN ), defined by Relations (4.14) and (4.16), is

tight for the convergence in distribution. Any limiting point ((x(t)),Λ∞) is such
that

(a) Almost surely, (x(t)) is a continuous process with values in KI[1] ;

(b) For any function f∈Cc([0, T ]×(R+)
I∗
),

(4.52) ⟨Λ∞, f⟩ =
∫
[0,T ]×KI[2+]

f (s, (x(s), y))π[2+]
s (dy) ds,

where (π
[2+]
s ) is an optional process with values in P(KI[2+]

).

Recall the convention of writing an element x of (R+)
I∗

as x=(x[1], x[2+]). See
Section 2.3.

Proof. The tightness of the occupation measures is shown exactly as in the
proof of Proposition 4.12. Definition (4.27), Theorem 4.8 shows that the tightness
of (XN (t∧TN )) gives the tightness of the sequence of processes (XN (t)). It is estab-
lished via the criterion of the modulus of continuity. See Theorem 7.3 of Billingsley
[14].

For i ∈ I∗[1], δ>0, Relation (4.10) gives the relation

wN
i (δ)

def.
= sup

s,t≤T∧TN

|s−t|≤δ

∣∣∣XN

i (t)−XN

i (s)
∣∣∣ ≤ κ0iδ+2 sup

t≤T∧TN

|MN (t)|

+
∑

j∈I∗\{i}

κji

∫ t

s

X
N

j (u)(kj) du+
∑

j∈I\{i}

κij

∫ t

s

X
N

i (u) du,

where (MN (t∧TN )) is a martingale whose previsible increasing process at time T
is

k2i
N

κ0iT∧TN+
∑

j∈I∗\{i}

κji

∫ T∧TN

0

X
N

j (u)(kj) du+
∑

j∈I\{i}

κij

∫ T∧TN

0

X
N

i (u)(ki) du

 .

The expected value of this quantity on the event EN converge to 0, by Doob’s
Inequality and Theorem 4.8, the martingale (MN (t∧TN )) converges in distribution
to 0. The proposition is proved. □

Proposition 4.19. If ((x(t)),Λ∞) is a limiting point of ((XN (t)),ΛN ) with

the representation (4.52), then for p ≥ 2, for f∈C2((R∗
+)

I∗
[2,p]), almost surely, for
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all t∈[0, T ], the relation

(4.53)

∫ t

0

∫
KI∗

[2+]

∑
i∈I∗

[p]

∑
j∈I∗

[1]

κjixj(s) + κ0i +
∑

j∈I∗
[2+]\{i}

κjiy
kj

j − κ+i y
p
i


∂f

∂xi
(y[2,p])π

[2+]
s (dy) ds = 0.

holds.

Proof. We take a subsequence ((X
Np

[1] (t)),ΛNp
) converging in distribution to

the random variable ((x(t)),Λ∞). The occupation measure of (X
N

i (t), i∈I[2+]) is

converging in distribution to Λ
[2+]
∞ defined by〈

Λ[2+]
∞ , f

〉
=

∫ T

0

∫
KI[2+]

g(y)π[2+]
s (dy) ds,

for f∈Cc((R+)
I[2+]). Since the process (X

Np

i (t), i∈I∗[1]) converges in distribution,

for the uniform norm on [0, T ], we obtain a representation of Λ∞,

(4.54) ⟨Λ∞, g⟩ =
∫ T

0

∫
KI

g(y)πs(dy) ds =

∫ T

0

∫
KI[2+]

g(x(s), y)π[2+]
s (dy) ds,

for g∈Cc((R+)
I∗
). With the same method as in the proof of Proposition 4.14,

the analogue of Relation (4.40) is established. We conclude the proof by using
Relation (4.54). □

Proof of Theorem 4.4. In view of Theorem 4.17, we can assume I[1] ̸=∅.
First, lets identify Λ∞. Using Relation (4.54), we only have to identify the

measure ds⊗ π
[2+]
s (dy) on R+ × (R∗

+)
I∗
[2,+] .

We set for t ∈ [0, T ], κ3(t) as follows: For i, j∈I∗[2+], j ̸=i, κ
3
ij(t)=κij and

κ30i(t) = κ0i +
∑
j∈I∗

[1]

xj(t)κji, κ3i0(t) = κi0 +
∑
j∈I∗

[1]

κij .

Relation (4.53), can be rewritten as Relation (4.40), for the set of indices I[2+]

and the matrix (κ3(t)) ∈ Ω(I[2,p2])
[0,T ]. The species i ∈ I∗[1] behave for the fast

species as exterior input, with rate time dependent.
The convergence of the measure π[2+](dy) is then shown similarly as in the

proof of Theorem 4.17. The only difference is the time dependence of the κ3(t),
which does not create any difficulty, since Proposition 4.18 gives the continuity of
(κ3(t)) on [0, T ]. Using Relation (4.54), for g∈Cc((R+)

I∗
), we have

⟨Λ∞, g⟩ =
∫ T

0

∫
KI

g(y)πs(dy) ds =

∫ T

0

g((x(s)), ℓ(s)) ds,

where for all t ∈ [0, T ] ℓ(t) is the unique solution of the system (4.28) of Proposi-
tion 4.9 for the set of indices I[2+] and the matrix κ3(t). It is easily seen that for
all t ∈ [0, T ],

ℓ(t) = L(x(t)),

where L is defined in Relation (4.19).
The convergence of the occupation measure is shown.
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For the identification of the function (x[1](t))=(xi(t), i∈I∗[1]), integrating Rela-

tion (4.10) and dividing it by N , we get for t∈[0, T ], i∈I∗[1]:

(4.55) X
N

i (t) = X
N

i (0) +MN
i (t) +

∑
j∈I∗

[1]
\{i}

∫ t

0

κjiX
N

j (s) ds

+

∫ t

0

∑
j∈I[2+]

κji
(XN

j (s))(ki)

N
ds− κ+i

∫ t

0

X
N

i (s) ds,

where (MN
i (t)) is a local martingale whose previsible increasing process is given by,

for t ≤ T ,〈
MN

i

〉
(t) =

1

N

∑
j∈I∗

[1]
\{i}

∫ t

0

κjiX
N

j (s) ds

+
1

N

∑
j∈I[2+]

∫ t

0

κji
(XN

j (s))(ki)

N
ds+

κ+i
N

∫ t

0

X
N

i (s) ds.

Using Doob’s inequality and the bound of (X
N
(t)) on the event EN , we get the

convergence in distribution of the martingales to 0.
Relation (4.42), Lemma 4.13, and the convergence of π2+

s just proven, shows
that for the convergence in distribution, for j ∈ I∗[2+],

lim
N→+∞

(∫ t

0

κji
(XN

j (s))(ki)

N
ds, t ∈ [0, T ]

)
=

(∫ t

0

κji(Lj(x(s)))
kj ds, t ∈ [0, T ]

)
,

and therefore, taking N to infinity in Relation (4.55), we get for t∈[0, T ], i∈I∗[1]:

xi(t) = αi+
∑

j∈I∗
[1]

\{i}

∫ t

0

κjixj(s) ds+

∫ t

0

∑
j∈I[2+]

κji(Lj(x(s)))
kj ds−κ+i

∫ t

0

xi(s) ds,

which is exactly Relation (4.20).
Since (x[1](t)) lives in KI[1] , the solution of this ODE is unique, and therefore

the identification of (x[1](t)) is complete.
□

Note that ODE (4.20) can be rewritten as

ẋi(t) = κ40i +
∑

j∈I∗
[1]

\{i}

xj(t)κ
4
ji − xi(t)

∑
j∈I\{i}

κ4ij , i∈I∗[1],

where κ4∈Ω(I[1]) is a matrix depending on the initial κ, constructed following the

steps of the construction of κ2 in the Proof of Theorem 4.17. The κ4 can be
given explicitly in terms of a path between complexes of I∗[1]. The simplified ODE

corresponds to the ODE associated to a CRN with only the complexes

{∅}∪{Si, i∈I∗[1]},

whith reactions defined by κ4. As an example, the limit (x4(t)) of (X
N

4 (t)) in the
CRN of Figure 1 is solution of the ODE associated to the CRN

∅
κ4
04−−⇀↽−−
κ4
40

S4,

with

κ404 =
κ01κ12κ24

κ+1 κ
+
2

+
κ01κ13κ34

κ+1 κ
+
3

+
κ01κ12κ23κ34

κ+1 κ
+
2 κ

+
3

and κ440 =
κ43κ30

κ+3
.
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1. Introduction

In this paper, we consider a general class of weakly reversible stochastic chem-
ical reaction networks (CRNs) with two chemical species S1 and S2. They are
referred to as 2D-CRNs, such a CRN can be described with a finite set of chemical
reactions of the type

(5.1) y−1 S1+y
−
2 S2

κ−⇀ y+1 S1+y
+
2 S2,

where y−=(y−1 , y
−
2 ) and y

+=(y+1 , y
+
2 )∈N2.

With the kinetics of the law of mass action, see Voit et al. [76] and Lund [56],
the time evolution of a 2D-CRN can be represented by a Markov process (X(t))
with values in N2. In state x=(x1, x2)∈N2, provided that x1≥y−1 and x2≥y−2 , the
transition associated to the reaction (5.1) is x→x+y+−y− and its rate is given

κ
x1!

(x1−y−1 )!
x2!

(x2−y−2 )!
∼ κx

y−
1

1 x
y−
2

2 ,

for x1 and x2 large.
The stability of this class of CRNs, i.e. the positive recurrence of (X(t)), is

investigated in Agazzi et al. [2] by showing that the entropy function (V (x)) is a Lya-
punov function for the infinitesimal generator of (X(t)), with, for x=(x1, x2)∈R2

+,

(5.2) V (x) = v(x1) + v(x2) with v : y ∈ N 7→ y ln(y)−y+1,

with the convention 0 ln(0)=0.
Our goal in this paper is of showing that, starting from a large state in the

interior of N2, then there exists some K>0 such that

TK
def.
= inf{t≥0 : min(X1(t), X2(t)) ≤ K}

is integrable and there exists a constant C0 such that

(5.3) Ex(TK) ≤ C0V (x),

for all x=(x1, x2) such that min(x1, x2)>K.

153
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This general result gives us an insight on the amount of time required for the
process to return to the boundary of the domain. It is specific to the interior of the
domain and uniform in the sense that the bound of Relation (5.3) with the function
V holds for all such CRNs.

The proof is done with the use of Filonov’s formulation of the Lyapunov con-
dition introduced in Laurence and Robert [52] with the entropy function. One has
to show that there exists positive constants γ, K and an integrable stopping time
τ such that, for x=(x1, x2)∈N2 with min(x1, x2)≥K, then

(5.4) Ex(V (X(τ))−V (X(0))) ≤ −γEx(τ).

In this case, it can be shown that Relation (5.3) holds. Filonov’s approach has
already been used for specific examples of CRNs in Laurence and Robert [52]
and Laurence and Robert [54] to prove the positive recurrence of the associated
Markov processes. In this chapter we show that it can also be used in the context
of a quite large class of CRNs.

To establish Relation (5.4), a finite partition of the interior of the state space is
used to define a convenient stopping time τ . Ideas related to the notion of endotactic
CRN developed in [10] are used. For some subsets of the partition, taking τ=t1 is
enough, where t1 is the first instant of jump of the process (X(t)). For the other
cases, functional limit theorems for the Markov process on a convenient timescale
are necessary to define the appropriate τ .

The approach of the stability of 2D-CRNs of Agazzi et al. [2] considers essen-
tially the case when τ is taken as t1. Finding γ and K such that Relation (5.4)
holds for this choice of τ turns out to be quite technical in fact.

It should be noted that, starting from a neighborhood of the boundary, the
time evolution of the process towards the origin is much more complicated. There
does not exist a bound of the type (5.3) with a fixed function V independent of the
CRN. See Section 7 of Laurence and Robert [52] for an example of 2D-CRN with
a (very) slow return along one of the boundaries.

2. Model and main results

We introduce the main notations and definitions of this paper in this section.
A general overview of the results is presented.

2.1. Chemical reaction network. In this paper, we study a general class
of CRNs with two species (2D-CRN). Such a CRN is defined by a triple X =
(S, C,R), where S = {1, 2} is the set of species, reduced to two elements, the set of
complexes C is a finite subset of N2, and the set of reactions R is a finite subset of
(C × C)\{(y, y), y ∈ C}.

The species i ∈ S is often written Si, and for a complex y ∈ C, we use the
notation

y = y1S1 + y2S2,

and ∅ refers to the complex associated to the null vector (0, 0). A reaction (y−, y+)∈R
is usually written y− ⇀ y+.

The reaction graph associated to a CRN is the directed graph whose vertices
are the complexes and whose set of directed edges is R.

The connected components of the graph of the CRN determine a partition of
the complexes into linkage classes. We set ℓ the number of linkage classes of the
CRN studied, (Ci) the partition of C, and Xi = (S, Ci,Ri) the CRN that compose
the ith linkage class: for 1 ≤ i ≤ ℓ,

Ri
def.
= {(y−, y+) ∈ R : y−, y+ ∈ Ci}.
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We make the assumption that the CRN studied is weakly reversible : each connected
component of its reaction graph is strongly connected.

2.2. The Stochastic Markov process. The state of the CRN X is given
by a vector x=(x1, x2)∈N2, for i = 1, 2, xi is the number of copies of chemical
species Si. A chemical reaction r=y− ⇀ y+ corresponds to the change of state, for
x=(x1, x2),

(5.5) x −→ x+y+−y−,

provided that y−i ≤xi holds for i = 1, 2, i.e. there are at least y−i copies of chemical
species of type i, for all i∈S, otherwise the reaction cannot happen.

The dynamical behavior of the system is governed by the law of mass action,
see Voit et al. [76], Lund [56] for surveys on the law of mass action and the historical
reference Guldberg and Waage [35]. A vector κ=(κr, r∈R) of positive numbers is
added to the parameters of the model. For r ∈ R, κr is the constant rate of reaction
r, and the rate of transition (5.5) in state x ∈ N2 is given by

(5.6) λr(x)
def.
= κr

x1!

(x1 − y−1 )!

x2!

(x2 − y−2 )!
1{x1≥y−

1 }1{x2≥y−
2 }.

The process (X(t)) associated to the CRN X is defined by his infinitesimal
generator A:

(5.7) A(f)(x) =
∑

r=y−⇀y+∈R

λr(x)(f(x+ y+ − y−)− f(x)).

for any function f : N2 → R.

2.3. Filonov’s Criterion. We will show that there exist an integrable stop-
ping time τ and a constant γ > 0 such that Relation (5.4) holds for x ∈ G, for some
convenient subset G of N2, where (V (x)) is the function defined by Relation (5.2).

When Gc is a finite subset of N2, Relation (5.4) is in fact sufficient to show
the stability of the process (X(t)). This is Filonov’s criterion. See Laurence and
Robert [52].

We will show that Relation (5.4) holds in the interior of the space of states,
away from the boundaries of the state space. Besides, since we consider general 2D-
CRNs, the chemical species S1 and S2 have symmetrical roles, hence, considering
states x=(x1, x2)∈N2 such that x1 ≥ x2 is enough. The convenient subset G is
B(K1,K2), with

(5.8) B(K1,K2)
def.
=
{
x ∈ N2 : ∥x∥ ≥ K1 and x1 ≥ x2 ≥ K2

}
,

for K1 ≥ K2 ≥ 1, where ∥y∥ = y1 + y2, for y ∈ N2.
Such a subset is chosen so that the boundary behaviors of the system, mentioned

in the introduction, do not impact our study. To ensure this, we will choose K2

large enough so that if x ∈ B(K1,K2), every reaction of the system can happen at
state x:

K2 ≥ 2max{yi, y ∈ C, i = 1, 2}.

When the stopping time τ in Relation (5.4) is chosen as the first instant of
jump of the process, i.e. when τ = t1 with

(5.9) t1
def.
= inf{t ≥ 0 : X(t−) ̸= X(t)},

provided that convenient integrability properties hold, for x ∈ N2,

Ex (V (X(t1)))− V (x) = Ex

(∫ t1

0

A(V )(x) ds

)
= A(V )(x)Ex (t1) ,
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so that Relation (5.4) is equivalent to

(5.10) A(V )(x)≤−γ.

It is usually this form of the criterion that is used in the literature of stochastic CRN.
However, showing this inequality on B(K1,K2) requires a complicated modification
of the function V , defined piecewise on a partition of the space of states. For
Filonov’s criterion, we can choose to fix the entropy as the energy at all states, and
then vary the definition of the stopping time τ to get the decrease of the energy.

2.4. Main result. The purpose of this paper is to show the following propo-
sition :

Theorem 5.1. If (X(t)) is the Markov process associated to a weakly reversible
2D-CRN, irreducible on E0 ⊂ N2 infinite, there exists an integrable stopping time τ
and constants γ > 0, K1 ≥ K2 ≥ 1 such that for all x ∈ B(K1,K2),

Ex(V (X(τ))−V (X(0))) ≤ −γEx(τ)

holds with V as the entropy function defined by Relation (5.2), and B(K1,K2) is
defined in Relation (5.8).

The following Corollary is a consequence of this theorem and Theorem 8.13
of Robert [67]. It shows that the process exits quite quickly the interior of the state
space to hit a neighborhood of the boundary of the domain.

Corollary 5.2. Let Tk the first time when (X(t)) gets to the boundary of
width k≥1:

Tk
def.
= inf{t ≥ 0 : min{X1(t), X2(t)} ≤ k},

then there exist K>0 such that

Ex(TK) ≤ V (x)

γ
,

if x=(x1, x2) is such that min(x1, x2)>K.

This is a rather strong result, since the upper bound of the mean value of the
stopping time does not depend closely on the CRN studied: only the constants K
and γ depend on it. Starting from a state xn = (xn1 , x

n
2 ) such that

lim sup
n→+∞

∥xn∥
n

≤ 1,

we know that for some constant K ≥ 1,

lim sup
n→+∞

Exn
(TK)

n ln(n)
< +∞.

The strategy to use Filonov’s criterion is to remark that once the energy of the
system is fixed, here as the entropy function V , the stopping time can be chosen
according to the initial state of the system. The space of states is partitioned into
subsets on which a stopping time is defined. We will exploit Relation (5.10):

(a) At the states where we can show that Relation (5.10) holds, we will set
the stopping time τ as t1.

(b) For all the other states, a closer study of the time evolution of (V (X(t)))
will be necessary to set the right stopping time τ . Scaling arguments will
be used.
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2.5. Estimation of A(V )(x). We start by getting some estimate for A(V )(x),
for x∈B(K1,K2). To do so, we first estimate the contribution of one reaction
r=y−⇀y+ at state x, i.e. we estimate

λr(x)(V (x+ y+ − y−)− V (x)),

for states of the form
x = xN = (N,Nω2),

where ω2 ∈ (0, 1] and N is large. We set ω = (1, ω2).
At xN , the following approximation holds :

λr(xN ) = κr
xN1 !

(xN1 − y−1 )!

xN2 !

(xN2 − y−2 )!
= κrN

y−
1 +ω2y

−
2 + o(Ny−

1 +ω2y
−
2 ).

Using the Taylor expansion of V , we get

(5.11) V (xN+y+−y−)−V (xN ) = (y+1 −y−1 ) ln(N)+(y+2 −y−2 )ω2 ln(N)+o(ln(N)).

If ⟨·, ·⟩ is the usual scalar product on R2, the following approximation holds:

λr(xN )(V (xN + y+ − y−)− V (xN ))

= κr
〈
y+ − y−, ω

〉
N⟨ω,y−⟩ ln(N) + o(N⟨ω,y−⟩ ln(N)).

As a consequence, if

ρ0(ω)
def.
= max{⟨y, ω⟩ , y ∈ C},

we can show that the dominant terms ofA(V )(xN ) are the contributions of reactions
r = y− ⇀ y+, such that y− verify ⟨y−, ω⟩ = ρ0(ω). In state xN , these reactions
are the fastest reactions.

This leads to the following estimate of A(V )(xN ):

(5.12) A(V )(xN )

=
∑

r=y−⇀y+∈R:

⟨y−,ω⟩=ρ0(ω)

κr(
〈
y+, ω

〉
− ρ0(ω))N

ρ0(ω) ln(N) + o
(
Nρ0(ω) ln(N)

)
.

Because of the maximality of ρ0(ω), the terms (⟨y+, ω⟩−ρ0(ω)) in the sum are
negative or null. If one of these terms is non zero, this estimate is sufficient to show
Relation (5.10) for N large enough. If not, one has to take the Taylor expansion to
the next level.

The next step consist in understanding whether or not a reaction r = y− ⇀ y+

such that ⟨y−, ω⟩ = ρ0(ω) and ⟨y+ − y−, ω⟩ < 0 exists.

2.6. Classification of the states. As mentioned above, to see the entropy
decrease at state xN , one has to find a dissipative reaction, i.e. a reaction r=y− ⇀
y+ such that 〈

y+ − y−, ω
〉
< 0.

If such a reaction exists, we set ρd(ω) as

ρd(ω)
def.
= max

{〈
ω, y−

〉
: y− ⇀ y+ ∈ R,

〈
y+ − y−, ω

〉
< 0
}

Of the dissipative reactions, the ones with the largest rate verify ⟨y−, ω⟩=ρd(ω).
If we have ρd(ω) = ρ0(ω), then Relation (5.12) allows us to conclude to Rela-
tion (5.10), and therefore to Relation (5.4) with τ=t1.

However, if ρd(ω) < ρ0(ω), Relation (5.12) is rewritten

A(V )(xN ) = o
(
Nρ0(ω) ln(N)

)
,

and we are not able to conclude yet.
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More precisely, Relation (5.10) can be shown for each state inB(K1,K2), except
for the states in the sets Hc(ω), for some ω2 ∈ (0, 1], ω = (1, ω2) and c > 0 such
that

(a) ω is such that ρd(ω) < ρ1(ω)
(b) The states in Hc(ω) are precisely at the same order of magnitude as

(N,Nω2). Hc(ω) is defined as the set

Hc(ω)
def.
=

{
x ∈ N2 : e−c ≤ x2

xω2
1

≤ ec
}
.

These states will be called H-states.

2.7. The H-states. Remains to show Relation (5.4) for the states in Hc(ω),
where ω verify

(5.13) ρd(ω) < ρ0(ω).

In this configuration, the fastest reactions (with rate O(Nρ0(ω))) do not change the
entropy of the system. One has to wait for a dissipative reaction, whose rate is
O(Nρd(ω)), to happen.

In practice, we will use scaling arguments to show that on the timescale t 7→t/Nρd(ω)−1,
the entropy of the system decreases significantly. We will show a result of the form,
for t0 > 0,

lim sup
∥x∥→+∞, x∈Hc(ω)

Ex

(
V (X(t0/N

ρd(ω)−1))
)

V (x)
< 1

from which Relation (5.4) will be deduced, setting τ = t0/N
ρd(ω)−1.

2.8. Overview of the Paper. In Section 3 are introduced definitions and
properties of the CRN used all through the proofs: we formally introduce the fastest
reactions, the dissipative reactions, and characterize the ω such that Relation (5.13)
holds.

We then proceed to the proof of Theorem 5.1. In order to prove Relation (5.10),
we first study CRNs with one linkage class, in Section 4. In this case, at most one
ω = (1, ω2) verifies Relation (5.13). Except in the set Hc(ω) associated to this ω,
we are able to show Relation (5.10).

In Section 5, using an argument of superposition for the infinitesimal generator,
we deduce Relation (5.10) for the whole CRN, except for the H-states. Finally, in
Section 6, we deal with the H-states using scaling arguments.

2.9. Notations. The following notations will be used throughout the paper.
As a convention, when some ω2 ∈ [0, 1] is introduced, ω = (1, ω2).

For z, z′ ∈ R2, we denote ∥z∥ = |z1|+ |z2| and the usual scalar product

⟨z, z′⟩ = z1z
′
1 + z2z

′
2.

For x ∈ R2
+, y ∈ R2

+, we denote xy = xy1

1 x
y2

2 .

If A∈B(R+) is a Borelian subset of R+, and P is a Poisson process on R2
+, with

intensity measure the Lebesgue measure on R2
+ we use the following notation,

(5.14) P(A,dt) =

∫
x∈R+

1{x∈A}P(dx, dt).
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3. Properties of the 2D-CRN

Let X = {{S1, S2}, C,R} a weakly reversible 2D-CRN. In this section are in-
troduces some definitions and properties associated to the graph of the CRN.

Definition 5.3. For some ω = (1, ω2) ∈ [0, 1]2, we set

(5.15) ρ0(ω)
def.
= max{⟨ω, y⟩ , y ∈ C},

and the set I1(ω) as

(5.16) I1(ω)
def.
= {y ∈ C : ⟨ω, y⟩ = ρ0(ω)} .

We also define the set

(5.17) Id(ω)
def.
= {y ∈ C : ∃y ⇀ y+ ∈ R :

〈
y+ − y, ω

〉
< 0}

and if Id(ω) ̸= ∅,

(5.18) ρd(ω) = max{⟨ω, y⟩ , y ∈ Id(ω)}.

We use the convention ρd(ω) = −1 if Id(ω) = ∅.

Note that since X is weakly reversible, each complex is source of at least one
reaction.

We saw in Section 2 that for the states xN = (N,Nω2) for ω = (1, ω2) ∈ [0, 1]2,
and N ≫ 1, the “classification” of the reactions and complexes can be done easily,
using the sets of Definition 5.3.

— At state xN , a reaction y− ⇀ y+ has a rate proportional to N⟨ω,y−⟩, and
changes the entropy of the order of ⟨y+ − y−, ω⟩ ln(N).

— The fastest reactions, i.e. the reactions with the largest rates, are the
reactions starting from a complex in I1(ω), and their rate is proportional
to Nρ0(ω).

— The dissipative reactions, i.e. the reactions decreasing the entropy are re-
actions starting from a complex in Id(ω). The fastest dissipative reactions
have a rate proportional to Nρd(ω).

The properties 5.4, 5.6, 5.8 and 5.9 are consequences of the weak reversibility
of the CRN. They are mainly straightforward, they will be used repeatedly in the
following. Their proof is given in the Appendix.

Proposition 5.4. The fastest reactions that change the entropy of the system
are dissipative : for ω = (1, ω2) ∈ [0, 1]2 and y− ⇀ y+ ∈ R,

(a) If ⟨ω, y−⟩ > ρd(ω), then ⟨ω, y+ − y−⟩ = 0.
(b) If ⟨ω, y−⟩ = ρd(ω), then ⟨ω, y+ − y−⟩ ≤ 0.
(c) If ⟨ω, y+ − y−⟩ > 0, then ⟨ω, y−⟩ < ρd(ω).

Furthermore, if Id(ω) ̸= ∅, then I1(ω) ̸= C.

In the next definition, we introduce the set of ω2 ∈ [0, 1] for which, at the states
xN = (N,Nω2), the fastest reactions do not decrease the entropy.

Definition 5.5. Define W(X ) as the set

W(X ) = {ω = (1, ω2) ∈ (0, 1]2 : I1(ω) ∩ Id(ω) = ∅}.

If ω ∈ W(X ), we define

Hc(ω)
def.
=

{
x ∈ N2 : e−c ≤ x2

xω2
1

≤ ec
}
.

for some c > 0. An element of Hc(ω) is called an H-state.
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Note that (1, 0) /∈ W(X ).
At first, we will study weakly reversible 2D-CRNs with one linkage class. The

following proposition gives the specific properties of such CRNs.

Proposition 5.6. Suppose X has only one linkage class. Let ω = (1, ω2) ∈
[0, 1]2.

a) If A ⊂ C and A ̸= C, there are y− ∈ A and y+ ∈ C \ A such that y− ⇀
y+ ∈ R.

b) If Id(ω) ̸= ∅, then I1(ω) ∩ Id(ω) ̸= ∅.
c) If I1(ω) ∩ Id(ω) = ∅, then for all y ∈ C, ⟨y, ω⟩ = ρ0(ω). Moreover, if

y ̸= y′, then y2 ̸= y′2.
d) W(X ) has at most one element.

We are only interested in processes irreducible on an infinite subset of N2, hence
the following definition.

Definition 5.7. The stoichiometric compatibility class associated to the CRN
X , from a state x ∈ N2, is the set (x+ S) ∩ N2, where

S
def.
=

 ∑
r=y−→y+∈R

ar(y
+ − y−), (ar) ∈ ZR

 .

The CRN X is said to have infinite stoichiometric compatibility classes if the set
(x+ S) ∩ N2 are infinite, except for a finite number of x ∈ N2.

The following proposition characterize the dimension of the stoichiometric com-
patibility class according to the existence of a dissipative reaction.

Proposition 5.8. If X has infinite stoichiometric compatibility classes, Id(ω) ̸=
∅ for all ω = (1, ω2) ∈ (0, 1]2.

This last proposition shows that their is a finite number of set of H-states:

Proposition 5.9. If the CRN X has ℓ linkage classes (Xi),

W(X ) ⊂ ∪ℓ
i=1W(Xi),

and W(X ) has at most ℓ elements.

4. 2D-CRN with one linkage class

In this section, we study a 2D-CRN X with one linkage class.

Proposition 5.10. If X has one linkage class (ℓ = 1), then

(i) If W(X ) = ∅, we can find some K1 ≥ K2 ≥ 1 such that for all x∈B(K1,K2),
the inequality A(V )(x)≤− 1 holds,

(ii) If W(X ) = {ω}, we can find some K1 ≥ K2 ≥ 1 and some c > 0 such that
for all x ∈ B(K1,K2) \ Hc(ω), the inequality A(V )(x) ≤ −1 holds,

where A is the infinitesimal generator of the process associated to X , V is the
entropy function defined in Relation (5.2), B is defined in Relation (5.8) and W
and Hc(ω) in Definition 5.5.

The proof of Proposition 5.10 is carried out by contradiction: in (ii), if ω ∈
W(X ), we make the assumption that a sequence (xp) with value in B(K1,K2) \
Hc(ω) verifies ∥xp∥ → +∞ and A(V )(xp) > −1 for all p.

The goal is then to show that for some subsequence (xpn
), we haveA(V )(xpn

) →
−∞ which contradicts the former hypothesis.

To do so, we distinguish two situations, according to the limit of the sequence
εp = ln(xp,2)/ ln(xp,1):
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(a) If the sequence is converging to the boundary of Hc(ω), i.e. if εp → ω2,

we are able to give an approximation of A(V )(xp) at an order O(x
ρ0(ω)
p,1 )

(one step further than the approximation given in Relation (5.12)), which
goes to −∞ when xp,1 goes to +∞.

(b) If (εp) converges to ε ̸= ω2, with similar ideas as in Anderson and Kim [8]:
we classify the rates of the reactions along the sequence (xp), and show
that at least one of the fastest reactions along (xp) is dissipative.

Proof of Proposition 5.10. The following simple inequalities are used through-
out the paper: For x > 1, for a ∈ R, 2|a| < x, for the function v : x 7→ x ln(x)−x+1,
(5.19)

|v(x+ a)− v(x)| ≤ 2|a| ln(x) and |v(x+ a)− v(x)− a ln(x)| ≤ |a|2

x− |a|
≤ 2|a|2

x
.

They can be shown using Taylor’s theorem.

This proof is done in the case where ω = (1, ω2) ∈ [0, 1]2 is such that I1(ω)∩Id(ω)=∅,
i.e. in situation (i) of the proposition, or in situation (ii) with ω = (1, 0). It can be
easily adapted to the case where no such ω exists.

First, recall that we assume

K2 ≥ 2max{yi, y ∈ C, i = 1, 2}

so that at x ∈ B(K1,K2), each reaction is “active” (i.e. λr(x) > 0 for each
reaction).

Let c > 0, K1 ≥ K2 ≥ 1 specified later, and (xp) ∈ B(K1,K2) \ Hc(ω) a
sequence of states such that

lim
p→+∞

∥xp∥ = +∞

and by contradiction, for all p ≥ 1,

(5.20) A(V )(xp) > −1.

Until the end of the proof, we may take several subsequences of the sequence (xp),
that we will still write (xp).

We set the sequence

εp =
ln(xp,2)

ln(xp,1)
.

By definition, εp ∈ [0, 1] for all p ≥ 1. Up to a subsequence, we can assume that
(εp) converges to ε ∈ [0, 1].

1) If ε = ω2.
Since xp /∈ Hc(ω),

νp
def.
= (εp − ω2) ln(xp,1) ≥ c or νp ≤ −c.

Note that if ω2 = 0, resp. ω2 = 1, then necessarily, νp ≥ c, resp. νp ≤ −c.
Up to a sub-sequence, we can make the assumption that one of the

inequalities is always valid. Here, lets assume that νp ≥ c for all p, the
other side is dealt in the same way.

For all y ∈ C, ⟨y, ω⟩ = ρ0(ω), see Proposition 5.6. Therefore, for any
reaction r = y− ⇀ y+,〈

y+ − y−, (1, εp)
〉
ln(xp,1) = (y+2 − y−2 )νp,

and by Relation (5.19),

λr(xp)(V (xp + y+ − y−)− V (x))

x
ρ0(ω)
p,1

≤ κre
νpy

−
2

[
(y+2 − y−2 )νp +

2∥y+ − y−∥2

K2

]
.
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and therefore A(V )(xp) ≤ x
ρ0(ω)
p,1 g(νp) where g is as follows, for u ∈ R,

g(u)
def.
=

∑
r=y−⇀y+

κre
uy−

2

[
(y+2 − y−2 )u+

2∥y+ − y−∥2

K2

]
.

Setting km
def.
= max{y−2 , y ∈ C} = max{y2, y ∈ C} and ym = (y1,m, km) the

(unique) associated complex, one gets

lim
u→+∞

1

g(u)

 ∑
r=ym⇀y+∈R

κre
ykm(y+2 − km)u

 = 1.

In the last sum, y+2 − km < 0 holds for each term because of Proposi-
tion 5.6 c) and therefore all terms in the sum are negative. Hence, we can
find some u0 > 0 such that g(u) < −1 for all u > u0.

We set c > u0 in the definition of Hc(ω), and if ω = (1, 0), we set
K2 ≥ ec.

This choice of constant contradicts Condition (5.20) and therefore we
can’t have ε = ω2.

2) If ε ̸= ω2.
We order the reactions “along the sequence (xp)”. Applying Lemma

5.1 of Anderson et al. [9], one can construct a subsequence of (xp), and
define a set T 1

(xp)
⊂ C such that the following limits hold :

— For y ∈ T 1
(xp)

and y′ ∈ C,

lim
p→+∞

xy
′

p

xyp
< +∞.

— For y, y′ ∈ T 1
(xp)

, there exists some C > 0 such that

lim
p→+∞

xyp

xy
′

p

= C.

— For y ∈ T 1
(xp)

, if y′ /∈ T 1
(xp)

,

lim
p→+∞

xy
′

p

xyp
= 0.

The construction of the subsequence can be found in the proof of Lemma
4.2 in Anderson [5], and relies mainly in taking a subsequence for which
the following order holds, for some indexation of the complexes {yk, 1 ≤
k≤|C|}=C:

xy1
p ≥ xy2

p ≥ . . . ≥ x
y|C|
p .

The reactions starting from the complexes in T 1
(xp)

are the fastest reac-

tions along (xp), meaning that when p goes to infinity, in state xp, these
reactions have the largest rate.
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We now estimate the value of A(V )(xp). Lets set for x ∈ N2,

D1(x)
def.
=

∑
r=y−⇀y+∈R

y− /∈T 1
(xp)

λr(x)(V (x+ y+ − y−)− V (x)),

D2(x)
def.
=

∑
r=y−⇀y+∈R
y−,y+∈T 1

(xp)

λr(x)(V (x+ y+ − y−)− V (x)),

D3(x)
def.
=

∑
r=y−⇀y+∈R

y−∈T 1
(xp),y

+ /∈T 1
(xp)

λr(x)(V (x+ y+ − y−)− V (x)).

For all x, A(V )(x) = D1(x) + D2(x) + D3(x). We deal with each part
separately.

First note that for a reaction r = y− ⇀ y+, for some 0 < cr < Cr,

cr ≤ lim
p→+∞

λr(xp)

xy
−

p

< Cr.

Let yT ∈ T 1
(xp)

.

— D1(x) is the contribution of the slow reactions along (xp). For a
reaction r = y− ⇀ y+ such that y− /∈ T 1

(xp)
, we have

lim sup
p→+∞

λr(xp)

xy
−

p

xy
−

p

xyT
p

ln

(
xyT
p

xy
−

p

)
= 0,

and

lim sup
p→+∞

λr(xp)

xyT
p

ln

(
xy

+

p

xyT
p

)
= 0.

Using Relation (5.19), this leads to

lim
p→+∞

D1(xp)

xyT
p

= 0.

— D2(x) is the contribution of the fast reactions along (xp), that do not
decrease the entropy. For a reaction r = y− ⇀ y+ ∈ R such that
y−, y+ ∈ T 1

(xp)
, we have

lim sup
p→+∞

λr(xp)

xyT
p

≤ C2,

for some constant C2, and using Relation (5.19),

|V (xp + y+ − y−)− V (xp)| ≤

∣∣∣∣∣ln
(
xy

+

p

xy
−

p

)∣∣∣∣∣+ C3 ≤ C4.

for some constant 0 < C3 < C4. Therefore,

lim sup
p→+∞

D2(xp)

xyT
p

≤ C5,

for some C5 > 0.

— D3(x) is the contribution of the fast reactions along (xp), that de-
crease the entropy.
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First, lets show that this sum is not empty. Let ω′ = (1, ε). Since ω′ ̸=
ω, Id(ω′) ̸= ∅, and therefore I1(ω′) ̸= C, see Proposition 5.4. Hence,
using Proposition 5.6 a), showing that T 1

(xp)
⊂ I1(ω′) is sufficient.

For y /∈ I1(ω′), and y0 ∈ I1(ω′), ⟨y − y0, ω
′⟩ = −η < 0 and for p large

enough, |(y2 − y0,2)(εp − ε)| < η/2. Therefore,

lim
p→+∞

xyp
xy0
p

= lim
p→+∞

x
⟨y′−y0,ω

′⟩+(εp−ε)(y2−y0,2)

p,1 = 0,

and T 1
(xp)

⊂ I1(ω′).

We now estimate this sum. For r = y− ⇀ y+ ∈ R such that y− ∈
T 1
(xp)

, y+ /∈ T 1
(xp)

, using Relation (5.19), one gets

V (xp + y+ − y−)− V (xp)) ≤ ln

(
xy

+

p

xy
−

p

)
+ C6 → −∞,

and since besides,

lim
p→+∞

λr(xp)

xyT
p

= Cr > 0,

one gets

lim
p→+∞

D3(xp)

xyT
p

= −∞.

Summing up all these estimates, we get

lim
p→+∞

A(V )(xp) = −∞,

which leads once again to a contradiction of Condition (5.20).

The proposition is proved. □

5. General 2D-CRN : Superposition of the linkage classes

We now study a general weakly reversible 2D-CRN X , with ℓ linkage classes
(Xi, 1 ≤ i ≤ ℓ), for ℓ ≥ 1. We set (X(t)) its associated Markov chain, and A
its infinitesimal generator. To use the results of Section 4, we use the following
superposition relation :

(5.21) A(f)(x) =

ℓ∑
i=1

Ai(f)(x)

with Ai(f)(x) =
∑

r=(y−,y+)∈Ri

λr(x)(f(x+ y+ − y−)− f(x)).

5.1. An example. Lets sum up our advances on the following example:

(5.22) 2S1
κ1−⇀↽−
κ2

S1 + 2S2, 3S2
κ3−⇀↽−
κ4

S1.

This CRN has two linkage classes, C1 = {2S1, S1+S2} and C2 = {3S2, S1}. It is
easy to verify that in this case,

W(X ) = W(X1) = {(1, 1/2)} and W(X2) = {(1, 1/3)}.
Therefore, as a consequence of Proposition 5.10, we can find some c1, c2 > 0,
K1 ≥ K2 ≥ 1 such that for x ∈ B(K1,K2), x /∈ Hc1((1, 1/2)) ∪Hc2((1, 1/3)),

A(V )(x) = A1(V )(x) +A2(V )(x) ≤ −2.

We still have to deal with the H-states of both CRN X1 and X2, i.e. with both sets
Hc1((1, 1/2)) and Hc2((1, 1/3)).
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In this section, it is the setHc2((1, 1/3)) that is studied. Even ifH-states for the
CRN X2, for the whole CRN, these states are not H-states since (1, 1/3) /∈ W(X ).

The states in this set are of order (N,Nω2) with ω2 = 1/3, and in these states,
the fastest reaction is 2S1 ⇀ S1 + 2S2, which is dissipative :

⟨(S1 + 2S2)− 2S1, ω⟩ = −1/3 < 0.

Therefore, we are in the simple situation described in Section 2.5: we know precisely
the order of magnitude of the state, which will enable us to show a similar Relation
as (5.12).

5.2. The false H-states.

Proposition 5.11. We can find some K1 ≥ K2 ≥ 1, and some cω > 0 for
each ω ∈ W(X )) such that, for all

x ∈ B(K1,K2) \

 ⋃
ω∈W(X )

Hcω (ω)

 ,

the inequality A(V )(x) ≤ −1 holds.

Using Relation (5.21), we know that in all the states x such that Ai(V )(x) ≤ −1
for all 1 ≤ i ≤ ℓ, A(V )(x) ≤ −1 holds. To conclude with the result, we only have
to prove this Relation for the states in Hc(ω) for the ω such that ω ∈ W(Xi) for
some i, but ω /∈ W(X ). This is done by contradiction, similarly as in the proof of
Proposition 5.10.

Proof. We set

W def.
=

ℓ⋃
i=1

W(Xi).

As a consequence of Proposition 5.10 and Relation (5.21), the inequality A(V )(x) ≤
−1 is verified for x in

B(K1,K2) \

 ⋃
ω∈W

Hcω (ω)

 ,

for some K1 ≥ K2 ≥ 1 and cω > 0.
If ω ∈ W but ω /∈ W(X ), lets show that we can find some Kω

1 ≥ K1, K
ω
2 ≥ K2

such that, for x ∈ B(Kω
1 ,K

ω
2 ) ∩Hcω (ω), the inequality A(V )(x) ≤ −1 holds.

The proof is identical to the second part (when ε ̸= ω2) of the Proof of Propo-
sition 5.10. By contradiction, we take (xp) a sequence of states of H(ω)cω (ω) that
verify A(V )(xp) > −1 for all p ≥ 1, and such that

lim
p→+∞

∥xp∥ = +∞.

The fact that xp ∈ Hcω (ω) allows an easier partition of the different complexes
according to the speed of the reactions. Indeed, we can show that in this situation,
T 1
(xp)

= I1(ω), and that

lim
p→+∞

A(V )(xp)

x
ρ0(ω)
p,1

= −∞,

which contradicts the first hypothesis, and allows to conclude the proof.
□
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6. A scaling argument for the H-states

In this section, we find a stopping time τ for the last states still remaining: the
H-states. The 2D-CRN is taken weakly reversible, with an infinite stoichiometric
compatibility classes, see Definition 5.7.

Proposition 5.12. If ω ∈ W(X ), ω2 < 1 and c > 0, one can find some
stopping time τ , and some 0 < b < 1 such that

lim sup
N→+∞

sup
(N,xN

2 )∈Hc(ω)

E(N,xN
2 )(V (X(τ)))

N ln(N)
≤ b

and lim sup
N→+∞

sup
(N,xN

2 )∈Hc(ω)

E(N,xN
2 )(τ)

N
= 0.

6.1. Ideas behind the proof. In this section, we focus on the states xN =
(N, xN2 ) such that

e−cNω2 ≤ xN2 ≤ ecNω2 ,

and we call (XN (t)) the process starting at xN . Since ω ∈ W(X ), the fastest
reactions at this state are not dissipative, and one has to wait for a reaction with
smaller rate to occur to see the energy decrease. This phenomenon is well described
by looking at the different timescales present in the system.

Let us sum up the role of each reaction here:

(a) The fastest reactions are the reactions y− ⇀ y+ such that y− ∈ I1(ω).
Here, all these reactions verify ⟨ω, y+ − y−⟩ = 0, and do not dissipate the
entropy of the system. Therefore, starting from xN , since these are the
reactions that happen first with high probability, we can’t choose τ = t1
in Relation (5.4)

(b) The reactions y− ⇀ y+ that dissipate the entropy of the system verify〈
y+ − y−, ω

〉
< 0.

These are the reactions that we want to see happening. In particular,
the fastest of these reactions will give us the “right timescale” to see the
decrease of the entropy of the system. The reactions we are interested in
are the reactions y− ⇀ y+ that are dissipative and such that ⟨y−, ω⟩ =
ρd(ω), where ρd(ω) is introduced in Definition 5.3.

To study the evolution of (V (XN (t))), making the assumption that (XN
2 (t))

remains O(Nω2) on the studied timescale, we use the following approximation :

V (XN (t))

N ln(N)
=
XN

1 (t)

N
+ o(1) =

〈
XN (t), ω

〉
N

+ o(1).

This motivates the study of the process (SN (t)) = (
〈
XN (t), ω

〉
).

This process has the advantage of not being disturbed by the fast reactions. In
fact, the fastest reactions changing (SN (t)) are the reactions r = y− ⇀ y+ such
that ⟨y−, ω⟩ = ρd(ω), and because of Proposition 5.4, they verify ⟨y+ − y−, ω⟩ < 0,
and therefore are decreasing the process (SN (t)).

Since we need to see (SN (t)/N) decrease significantly, we need to see O(N)
such reactions to happen, and therefore the relevant timescale here is

t 7→ t

Nρd(ω)−1
.

The rest of the proof uses standard scaling methods.
The proof is carried out in three steps:
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— We first show that (XN
2 (t/Nρd(ω)−1)) stays of order Nω2 , using a coupling

argument and the upper bound of an M/M/1 queue, see Proposition 5.15
of Appendix 7.

— We then show that (SN (t/Nρd(ω)−1)/N) can’t increase.
— Finally, we show using a scaling argument that (SN (t/Nρd(ω)−1)/N) has

decreased significantly after a time t0 > 0.

6.2. Formal proof.

Proof. Since the process is weakly reversible and has infinite stoichiometric
compatibility classes, Proposition 5.8 shows that Id(ω) ̸= ∅. We introduce ρ0(ω)
and ρd(ω) as in Definition 5.3, and γ = ρd(ω)− 1 > −1. Recall that ω2 > 0.

For N ≥ 1, let xN = (N, xN2 ) ∈ Hc(ω). x
N
2 verifies the Relation

(5.23) e−c ≤ xN2
Nω2

≤ ec.

(XN (t)) is the process associated to X starting at xN , and solution of the following
stochastic differential equation (SDE). See Section 2 of Laurence and Robert [52].

(5.24) dXN (t) =
∑

r=y−⇀y+∈R

(y+ − y−)Pr

((
0, κr(XN (t−))(y

−)
)
,dt
)
,

where (Pr, r ∈ R) is a family of independent Poisson processes on R2
+, with intensity

measure the Lebesgue measure on R2
+, and for z ∈ N2, y ∈ N2,

z(y) =
z1!

(z1 − y1)!

z2!

(z2 − y2)!
1{z1≥y1}1{z2≥y2}.

We set SN (t) =
〈
XN (t), ω

〉
, and for all N ≥ 1,

(S
N
(t), X

N

1 (t), X
N

2 (t))
def.
=

(
SN (t/Nγ)

N
,
XN

1 (t/Nγ)

N
,
XN

2 (t/Nγ)

Nω2

)
Lets set

HN
1+

def.
= inf

{
t ≥ 0 : X

N

1 (t) ≥M1

}
,

HN
1−

def.
= inf

{
t ≥ 0 : X

N

1 (t) ≤ m1

}
,

HN
2+

def.
= inf

{
t ≥ 0 : X

N

2 (t) ≥Mω2
2

}
,

HN
2−

def.
= inf

{
t ≥ 0 : X

N

2 (t) ≤ mω2
2

}
,

and HN
i

def.
= min{HN

i+, H
N
i−} for i = 1, 2, for some constant m1 < 1 < M1 and

0 < m2 < e−c/ω2/2 < 2ec/ω2 < M2 specified later.
Let t0 > 0, to be specified later, and set

(5.25) τN = min{t0, HN
1 , H

N
2 } and τN =

τN
Nγ

.

We first show that

(5.26) lim sup
N→+∞

sup
(N,xN

2 )∈Hc(ω)

E(N,xN
2 )(S

N
(τN )) ≤ b

holds for some 0 < b < 1, and some choice of m2,M2, t0 > 0.



168 5. 2D-CRN

Control of HN
2 : Uniform bound of (X

N

2 (t)). We show that

lim
N→+∞

P(HN
2 < t0 ∧HN

1 ) = 0.

The bound is shown in two steps, the upper and the lower-bound. Since both steps
are very similar, we will only do here the proof for the upper-bound, i.e. show that
limN→+∞ P(HN

2+ < t0 ∧HN
1 ) = 0. The process (XN

2 (t)) is mainly governed by the
fastest reactions, i.e. the reactions starting from a complex in I1(ω). For the sake
of simplicity, in this proof we don’t take into account the other reactions. It is not
very hard to generalize it to the real process. Similarly, we will use the following

approximation λr(x) ≈ κrx
y−

for the rates of reaction r = y− ⇀ y+, which is valid
since both species are in large number.

Let km = max{y2, y ∈ I1(ω)}, and r∗ = y−∗ ⇀ y+∗ a reaction such that y−∗ ∈
I1(ω) and y−∗,2 = km. Note that since ω ∈ W(X ),

— if y− ∈ I1(ω) and y− ⇀ y+ ∈ R, then y+ ∈ I1(ω).
— for all y ∈ I1(ω), if y ̸= y−∗ , then y2 < y−2,∗.

Let (Z(t)) be a birth and death process on N starting at 0, with the transitions

x→ x+

{
+km λ,

−1 µ if x≥1,

for

λ
def.
=

∑
r=y−⇀y+∈R,

y−∈I1(ω), y−
2 <y+

2

κrM
y−
1

1 M
ω2(km−1)
2 and µ

def.
= κr∗m

y−
∗,1

1

(
M2

2

)ω2km

.

The process (Z(t)) is almost an M/M/1 queue, with steps up equal to km, and
steps down equal to −1. Choosing M2 large enough, depending on m1 and M1, we
can make the assumption that kmλ < µ.

Using a similar argument as the argument used in the proof of Proposition 6 in
Laurence and Robert [53], we can construct a coupling of (XN

2 (t)) and (Z(t)) such
that the relation

XN
2 (t ∧ τN ) ≤

(
M2

2
N

)ω2

+ Z((t ∧ τN )Nρ0(ω)), ∀t ≥ 0,

holds. This leads to

PxN

(
sup
t≤t0

X
N

2 (s ∧HN
1 ) ≥Mω2

2

)
≤ P

(
sup
t≤t0

Z(tNρ0(ω)−γ) ≥
(
M2

2
N

)ω2
)
,

and using Proposition 5.15 of Appendix 7, we can conclude for the upper-bound.
The lower-bound is shown similarly.

Control of HN
1+: Upper bound of (X

N

1 (t)). For all t ≥ 1, XN
1 (t) ≤ SN (t), and

(SN (t)) is solution of the SDE

(5.27) dSN (t) =
∑

r=y−⇀y+∈R

〈
(y+ − y−), ω

〉
Pr

((
0, κr(XN (t−))(y

−)
)
,dt
)
.

in which all the positive terms verify ⟨y−, ω⟩<ρd(ω), see Proposition 5.4. Therefore,

(5.28) sup
t≤t0

(
S
N
(t ∧ τN )

)
− S

N
(0)

≤ 1

N

∑
r=y−→y+∈R,

⟨y−,ω⟩<ρd(ω)

∫ t0

0

Pr

((
0, κrM

y−
1

1 M
ω2y

−
2

2 N⟨y−,ω⟩
)
,

dt

Nρd(ω)−1

)
def.
= RN (t0),
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and when N goes to infinity, (RN (t0)) goes to 0 almost surely. TakingM1 > 1, this
leads to

lim
N→+∞

P(HN
1+ < min{t0, HN

1−, H
N
2 }) = 0.

Decrease of (S
N
(t)). Let rd = y−d ⇀ y+d ∈ R a reaction such that

〈
y−d , ω

〉
=

ρd(ω) and
〈
y+d − y−d , ω

〉
= −δd < 0. If t0 = τN , integrating Relation (5.27), one

gets :

(5.29) S
N
(t0) ≤ S

N
(0) +RN (t0)

− δd
N

∫ t0

0

Prd

((
0, κrdm

y−
1

1 m
ω2y

−
2

2 Nρd(ω)
)
,

dt

Nρd(ω)−1

)
,

and the right part of the inequality converges almost surely when N goes to infinity
to

b(t0)
def.
= 1− δdt0κrdm

y−
1

1 m
ω2y

−
2

2 .

Setting t0 small enough so that 1 > b(t0) > m1, we get

lim sup
N→+∞

sup
(N,xN

2 )∈Hc(ω)

E
(
S
N
(τN )

)
≤M1 lim

N→∞
P(HN

1+ ∧HN
2 = τN ) + b(t0)

and using the previous results, this leads to Relation (5.26).
Proof of Proposition 5.12. We choose τ = τN . The second limit is straightfor-

ward, since γ > −1, and τN ≤ t0/N
γ .

If for N≥1, (yN1 , y
N
2 ) is such that yN1 /N ∈ [m1,M1] and y

N
2 /N

ω2 ∈ [m2,M2],
using a simple Taylor expansion, one gets

V (yN )

N ln(N)
=
yN1
N

+O(1/ ln(N)) =
⟨yN , ω⟩
N

+O(1/ ln(N)),

and therefore,

lim sup
N→+∞

sup
(N,xN

2 )∈Hc(ω)

E (V (XN (τN )))

N ln(N)
= lim sup

N→+∞
sup

(N,xN
2 )∈Hc(ω)

E
(
S
N
(τN )

)
which concludes the proof. □

6.3. The case of ω2 = 1.

Proposition 5.13. If ω = (1, 1) ∈ W(X ) and c > 0, one can find some
stopping time τ , and some a > 0 such that

(5.30) lim sup
N→+∞

sup
e−c≤xN

2 /N≤1

(
E(N,xN

2 )(V (X(τ)))

N ln(N)
− V (N, xN2 )

N ln(N)

)
≤ −a

and lim sup
N→+∞

sup
e−c≤xN

2 /N≤1

E(N,xN
2 )(τ)

N
= 0.

Proof. The proof is very similar to the proof of Proposition 5.12, except that
(XN

2 (t)) does not have to be uniformly bounded as before. We keep the notations
defined in the previous proof, with ω2 = 1. We have

SN (t) = XN
1 (t) +XN

2 (t).

Relation 5.28 still holds until τN , and therefore, takingM1,M2 > 2, one gets easily

lim
N→+∞

sup
e−c≤xN

2 /N≤1

P(N,xN
2 )

(
HN

1+ ∧HN
2+ = τN

)
= 0.

Similarly, Relation (5.29) still holds (with the same notations for reaction rd and
δd), and taking m1 < 1, m2 < e−c and t0 > 0 such that

a(t0)
def.
= δdt0κrdm

y−
1

1 m
ω2y

−
2

2
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verify a(t0) < 1−m1 and a(t0) < e−c −m2, we get

(5.31) lim sup
N→+∞

sup
e−c≤xN

2 /N≤1

(
E(N,xN

2 )(S
N
(τN ))− 1− xN2

N

)
≤ −a(t0).

If for N≥1, (yN1 , y
N
2 ) is such that yN1 /N ∈ [m1,M1] and yN2 /N ∈ [m2,M2],

using a simple Taylor expansion, one gets

V (yN )

N ln(N)
=
yN1 + yN2

N
+O(1/ ln(N)) =

⟨yN , ω⟩
N

+O(1/ ln(N)),

and therefore, Relation (5.31) leads to the first inequality of Proposition 5.13, the
second inequality being straightforward. □

6.4. Practical corollary. The following corollary is a direct consequence of
Propositions 5.12 and 5.13.

Corollary 5.14. If ω ∈ W(X ), and c > 0, one can find some stopping time
τ , such that for N large enough, for all (N, xN2 ) ∈ Hc(ω) such that xN2 ≤ N ,

(5.32) E(N,xN
2 )(V (X(τ)))− V (xN ) ≤ −E(N,xN

2 )(τ).

7. Conclusion

Proof of Theorem 5.1. Proposition 5.11 gives us some K1 ≥ K2 ≥ 1, and
some cω > 0 for each ω ∈ W(X )) such that Relation (5.4) holds for x in

B(K1,K2) \

 ⋃
ω∈W(X )

Hcω (ω)

 ,

and τ = t1 the first instant of jump of the process, defined in Relation (5.9).
For the states in Hcω (ω), for each of the ω ∈ W(X ), we use Corollary 5.14. K2

is not changed, and we chooseK1 large enough so that if N ≥ K1/2, Relation (5.32)
holds. This concludes the proof of Theorem 5.1. □

Appendix

A technical result: upper bound of an M/M/1 queue.

Lemma 5.15. Let p ≥ 1. If (Z(t)) is a process starting at 0 and with transitions

(5.33) x 7→

{
x+ p with rate λ

x− 1 with rate µ,

with 0 < λp < µ, for α, t0 > 0, the following limit holds:

(5.34) lim
N→+∞

P
(
sup
t<t0

{Z(tNα)} ≥ N

)
= 0.

Proof. Let Nλ and Nµ be independent Poisson processes with respective in-
tensities λ dt on R+ and µdt on R+, and set for t≥0

S(t) = pNλ((0, t]),−Nµ((0, t]),

First, lets show that

δc
def.
= P

(
sup
s≥0

S(s) ≥ 1

)
< 1.

The ergodic theorem implies that (S(t)/t) is converging to λp−µ<0, almost
surely. If δc is 1, then the variable

T1 = inf{t≥0 : S(t) ≥ 1}
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is almost surely finite. Since (S(t+T1)−S(T1)) has the same distribution as (S(t)),
one concludes that the lim sup of (S(t)) is +∞. Contradiction.

Now for N ≥ 1, let

HN
def.
= inf{t : Z(t) ≥ N}.

Lets show that we can find α ∈ (0, 1) such that (αNHN ) converges in distribution
to +∞. This is enough to conclude to the result of Lemma 5.15.

As long as (X(t)) does not hit 0, the process behaves as the random walk (S(t)).
Hence, starting from x≥0, the process (X(t)) returns to 0 before going above x+1
with a probability at least 1−δc>0. The duration of this step is stochastically lower
bounded by an exponential random variable with parameter λ+µ.

To reach N starting from 0, we must have at least Np=⌊N/p⌋ consecutive pos-
itive jumps in a row without returning to 0. Let (Bi) a sequence of i.i.d. Bernoulli
random variables with parameter δc and, for n≥1,

νn = inf{k≥n : Bk−n+1=Bk−n+2= · · ·=Bk = 1}
For k∈N, we have

P(νn≤k) ≤ kδnc .

We denote by (Fi) an i.i.d. sequence of exponential random variables with param-
eter λ+µ. By using the fact that F1 has a finite positive exponential moment, for
w0<1/(λ+µ), there exist constants, C0, α1∈(0, 1) andM0≥0, such that forM≥M0,

P

(
1

M

M∑
i=1

Fi ≤ w0

)
≤ C0α

M
1 .

For α2∈(0, 1),

P
(
αN
2 HN ≤ T

)
≤ P

(
αN
2

νNp∑
i=1

Fi ≤ T

)

≤ P

 1

K0⌈α−N
2 ⌉

K0⌈α−N
2 ⌉∑

i=1

Fi ≤
1

K0αN
2 ⌈α−N

2 ⌉
T

+ P
(
νNp

≤ K0⌈α−N
2 ⌉

)
≤ C0α

K0⌈α−N
2 ⌉

1 +K0⌈α−N
2 ⌉δNp

c .

If we fix α2∈(δ1/pc , 1), and N0 so large that if N≥N0, then αN
2 ⌈α−N

2 ⌉≥1/2 and

α−N
2 >N∨M0, and, finally K0≥1 large enough so that 2T/K0≤w0, then we get a

constant α3∈(0, 1) and C1≥0, such that for N≥N0, the relation

P
(
αN
2 HN ≤ T

)
≤ C1α

N
3

holds. The proposition is proved. □

Proofs from Section 3. We will here give a sketch of the proofs of the propo-
sitions in Section 3.

Proposition 5.4 is a consequence of the weak reversibility of the CRN. The
proof would be tedious to write but presents no difficulty.

For Proposition 5.6, X has one single linkage class.

(a) Let (y, y′) ∈ A×C\A. Since the CRN is weakly reversible and has a single
linkage class, there is a path from y to y′, and therefore there is necessarily
a reaction y− ⇀ y+ ∈ R such that y− ∈ A and y+ /∈ A.

(b) If Id(ω) ̸= ∅, we can’t have I1(ω) = C, and using (a), we can conclude.
(c) If I1(ω)∩ Id(ω) = ∅, then Id(ω) = ∅, and therefor I1(ω) = C. Moreover, if

y ̸= y′, since ⟨ω, y⟩ = ⟨ω, y′⟩, we have y1 − y′1 = ω2(y
′
2 − y2), and therefore

y2 ̸= y′2.
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(d) If ω, ω′ ∈ W(X ), because of (c), for y, y′ ∈ C, ⟨ω, y′ − y⟩ = 0 = ⟨ω′, y′ − y⟩.
Note that we still have ω1 = ω′

1 = 1. Therefore, ω2(y
′
2−y2) = ω′

2(y
′
2−y2),

which leads to ω2 = ω′
2.

For Proposition 5.8, lets do the proof by contradiction. If for some ω2∈(0, 1],
setting ω=(1, ω2), I

d(ω)=∅, then for each reaction y−⇀y+∈R, ⟨ω, y+ − y−⟩ = 0.
Therefore, (X(t)) verify a mass conservation equation, and (x+ S) ∩ N2 is finite.

Proposition 5.9 is straightforward.
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