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Revisiting congestion control, active queue 
management (AQM) and packet scheduling 

•  new interest is arising from perceived problems in home 
networks (bufferbloat) and data center interconnects 

•  a new IETF working group will define an AQM that 
–  “minimizes standing queues” 
–  “helps sources control rates without loss (using ECN)” 
–  “protects from aggressive flows” 
–  “avoids global synchronization” 

•  AQM performance depends significantly on what congestion 
control is implemented in end-systems 
–  high speed TCP, low priority TCP 
–  new congestion control protocols for the data center (DCTCP,...) 
–  new algorithms at application layer (QUIC,...) 



AQM + congestion control is not the answer! 

•  how can a network continue to rely on end-systems implementing 
the right congestion control? 
–  why should users comply? 
–  or course, they don’t!   

•  instead, impose per-flow fairness in the core... 
–  this is scalable, feasible and sufficient 

•  and enhanced flow-aware scheduling at the edge 
–  since a fair share may not be sufficient 
–  priority to a video stream, priority to Dad! 



Outline 

•  perceived problems, proposed solutions 
–  bufferbloat 
–  the data center interconnect 

•  the case for fair flow queuing  
–  traffic at flow level and scalability 
–  fairness is all we need in the network 
–  something else in the last/first mile 



“Bufferbloat” 

•  the problem: too large buffers, notably in home routers, get 
filled by TCP leading to excessive packet latency 

Bloat, the puffer-fish 
© Pixar 
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•  impact of a bloated buffer: longer delays, same throughput 
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Bufferbloat 

•  impact of a bloated buffer: high latency for real time flows 
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Bufferbloat 

•  impact of drop tail: unfair bandwidth sharing 
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AQM to combat bufferbloat 

•  CoDel (Controlled Delay) [Nichols & Jacobson, 2012] 
–  measure packet sojourn time 
–  drop packets to keep minimum delay near target  

•  PIE (Proportional Integral controller Enhanced) [Pan et al, 2013] 
–  drop probability updated based on queue length & departure rate 

•  both rely on TCP in end-system, neither ensures fairness  



AQM and scheduling: fq_codel 

•  fq_codel combines SFQ (stochastic fairness queuing) and CoDel 
–  hash flow ID to one of ~1000 queues (buckets)  
–  deficit round robin scheduling over queues 
–  control latency in each queue using CoDel 

•  with some enhancements 
–  priority to packets of “new” flows 
–  drop from queue head rather than tail 

•  V. Jacobson (quoted by D. Täht): 
–  “If we're sticking code into boxes to deploy CoDel, don't do that. 

Deploy fq_codel. It's just an across the board win” 



Realizing fair queuing 

•  a shared pool of RAM  
•  enqueue and dequeue logic implementing deficit round robin (DRR) 
•  complexity and performance depend on number of active flows 

(flows that have 1 or more packets in buffer) 
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•  the case for fair flow queuing  
–  traffic at flow level and scalability 
–  fairness is all we need in the network 
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Congestion in the interconnect 

•  1000s of servers connected by commodity switches and routers 
•  mixture of bulk data transfers requiring high throughput...  
•  ... and query flows requiring low latency 



Congestion in the interconnect 
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•  1000s of servers connected by commodity switches and routers 
•  mixture of bulk data transfers requiring high throughput...  
•  ... and query flows requiring low latency 
•  a practical observation 

–  regular TCP does not ensure high throughput and low latency 



Many new congestion control protocols 

•  DCTCP [Alizadeh 2010]  
–  limits delays by refined ECN scheme to smooth rate variations 

•  D3 [Wilson 2011] 
–  “deadline driven delivery”  

•  D2TCP [Vamanan 2012] 
–  combines aspects of previous two  

•  PDQ [Hong 2012] 
–  size-based pre-emptive scheduling  

•  HULL [Alizadeh 2012] 
–  low delay by “phantom queues” and ECN 

•  evaluations assume all data center flows implement the 
recommended protocol 



pFabric: “minimalist data center transport” 

•  instead of end-to-end congestion control, implement scheduling 
in switch and server buffers [Alizadeh 2013] 

•  “key insight: decouple flow schedule from rate control” 
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pFabric: “minimalist data center transport” 

•  instead of end-to-end congestion control, implement scheduling 
in switch and server buffers [Alizadeh 2013] 

•  “key insight: decouple flow schedule from rate control” 
•  SRPT* scheduling to minimize flow completion time 
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pFabric: “minimalist data center transport” 

•  instead of end-to-end congestion control, implement scheduling 
in switch and server buffers [Alizadeh 2013] 

•  “key insight: decouple flow schedule from rate control” 
•  SRPT* scheduling to minimize flow completion time 
•  also optimal for flows that arrive over time 
•  minimal rate control: eg, start at max rate, adjust using AIMD 
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Realizing SRPT queuing 

•  a shared pool of RAM  
•  enqueue and dequeue logic implementing SRPT 

–  priority ⇔ remaining flow size 
•  similar complexity to DRR 
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–  something else in the last/first mile 



How can the Internet continue to rely on  
end-to-end congestion control ? 

•  “TCP saved the Internet from congestion collapse” 
–  but there are easier ways to avoid the “dead packet” phenomenon 

•   new TCP versions are necessary for high speed links 
–  but they are generally very unfair to legacy versions 

•  no incentive for applications to be “TCP friendly” 
–  in particular, congestion pricing is unworkable 

•  better, like pFabric, to decouple scheduling and rate control 
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Decouple scheduling and rate control  
through per-flow fair queuing 

•  imposed fairness means no need to rely on TCP 
–  flows use the congestion control they want (eg, high speed TCP) 
–  no danger from “unresponsive flows” 

•  fairness realizes implicit service differentiation 
–  since rate of streaming flows is generally less than fair rate 
–  lower still latency by giving priority to “new” flows 

•  as proposed by [Nagle 1985], [Kumar 1998], [Kortebi 2004],... 
–  with longest queue drop as AQM 
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Understanding traffic at flow level 
•  rather than modelling traffic at packet level, recognize that 

packets belong to a flow (file transfer, voice signal,...) 
–  a set of packets with like header fields, local in space and time 

•  traffic is a process of flows of different types 
–  conversational, streaming, interactive data, background 
–  with different traffic characteristics – rates, volumes,... 
–  and different requirements for latency, integrity, throughput 

•  characterized by size and “peak rate” 
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•  three bandwidth sharing regimes 

 
•  transparent regime:  

–  all flows suffer negligible loss, no throughput degradation 
•  elastic regime: 

–  some high rate flows can saturate residual bandwidth; without 
control these can degrade quality for all other flows 

•  overload regime: 
–  traffic load is greater than capacity; all flows suffer from 

congestion unless they are handled with priority 

Sharing regimes and the meaning of congestion 

“transparent” “elastic” “overload” 



Statistical bandwidth sharing 

•  ie, statistical multiplexing with elastic traffic 
•  consider a network link handling flows between users, servers, data 

centers,...  
•  define, link load = flow arrival rate x mean flow size / link rate 
                              = packet arrival rate x mean packet size / link rate 
                              = mean link utilization 
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Statistical bandwidth sharing 

•  ie, statistical multiplexing with elastic traffic 
•  consider a network link handling flows between users, servers, data 

centers,...  
•  define, link load = flow arrival rate x mean flow size / link rate 
                              = packet arrival rate x mean packet size / link rate 
                              = mean link utilization 
 



Bandwidth sharing performance 

•  in the following simulation experiments, assume flows 
–  arrive as a Poisson process 
–  have exponential size distribution 
–  instantaneously share link bandwidth fairly 

•  results apply more generally thanks to insensitivity 
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Observations 

•  the number of flows using a fairly shared link is small until load 
approaches 100% (for any link capacity) 

•  therefore, fair queuing schedulers are feasible and scalable 
•  our simulations make Markovian assumptions but the results for 

the number of active flows are true for much more general 
traffic [Ben-Fredj 2001] 
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More simulations 

•  on Internet core links (≥ 10 Gbps), the vast majority of flows 
cannot use all available capacity; their rate is constrained 
elsewhere on their path (eg, ≤ 10 Mbps) 

•  consider a link shared by flows whose maximum rate is only 1% 
of the link rate 
–  conservatively assume these flows emit packets as a Poisson process 

at rate proportional to the number of flows in progress 
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Observations 2 

•  most flows are not elastic and emit packets at their peak rate 
•  these flows are “active”, and need to be scheduled, only when 

they have a packet in the queue 
•  the number of active flows is small until load approaches 100% 
•  fair queuing is feasible and scalable, even when the number of 

flows in progress is very large 



Yet more simulations 

•  links may be shared by many rate limited flows and a few elastic 
flows 

•  consider a link shared by 50% of traffic from flows whose peak 
rate is 1% of link rate and 50% elastic traffic 
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Observations 3 

•  the number of active flows is small (<100) with high probability 
until load approaches 100% 

•  therefore, fair queuing is feasible and scalable 
•  fair queuing means packets of limited peak rate flows see 

negligible delay:  
–  they are delayed by at most 1 round robin cycle 
–  this realizes implicit service differentiation since conversational 

and streaming flows are in the low rate category 
–  a scheduler like DRR considers packets as belonging to new flows; 

we can therefore identify them and give them priority (cf. fq-codel) 



Outline 

•  perceived problems, proposed solutions 
–  bufferbloat 
–  the data center interconnect 

•  the case for fair flow queuing  
–  traffic at flow level scalability 
–  fairness is all we need in the network 
–  something else in the last/first mile 



Fairness, not weighted fairness 

•  eg. class 1 flows get 10 times rate of class 2, equal traffic 
–  limited gain for class 1, class 2 hardly suffers until load close to 1 
–  from [Bonald and Masoulié, 2001] 

•  little advantage from weights for added cost of flow state 
•  little disadvantage when sharing is not perfectly fair  
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Fairness, not size-based scheduling 

•  SRPT makes it very easy to cheat by segmenting long flows 
–  pFabric assumes cooperative sources in a private data center 

•  size-based scheduling in a network brings capacity loss 
–  eg, for linear network, [Verloop et al, 2003] “confirm the tendency 

for users with long routes and large service requirements to 
experience severe performance degradation” 

–  pFabric applies to a star-network – what capacity of SRPT ? 
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Fairness is stable if ρl < 1 for all links l 

•  as proved by [Paganini et al., 2009] for α-fair sharing and 
general flow size distribution 
–  as occurs with reasonable congestion control 

•  it is stable if routers implement fair queuing, even if users do 
not use congestion control [Bonald et al, 2009] 
–  though performance can suffer !  
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Fairness for predictable performance 

•  suppose a flow mix  {(a1,c1),..., (am,cm)} where ai is load and ci is 
(integer) peak rate of class i; link of (integer) capacity C; N is 
sum of peak rates of flows in progress 

•  in a loss system, the rate distribution, f(n) = Pr[N=n],                  
is insensitive and satisfies 
–   f(n) = 1/n ∑ ai f(n-ci)  for 0 ≤ i ≤ C 



Fairness for predictable performance 

•  suppose a flow mix  {(a1,c1),..., (am,cm)} where ai is load and ci is 
(integer) peak rate of class i; link of (integer) capacity C; N is 
sum of peak rates of flows in progress 

•  in a (balanced) fair system, the rate distribution, f(n) = Pr[N=n], 
is insensitive and satisfies 
–   f(n)  = 1/n ∑ ai f(n-ci)  for 0 ≤ n ≤ C 
                1/C ∑ ai f(n-ci)  for C < n 

•  in a (maxmin) fair system, the congestion probability                 
Pc = Pr[fair rate < c] satisfies  
–   Pc < Erlangdelay (A/c, C/c)  where A = ∑ai is overall demand 
–  see [Bonald 2012] for justification and significance 



Recommendation for traffic control  
on shared network links 

•  implement per-flow fair queuing in router queues with longest 
queue drop 
–  avoids relying on end-system congestion control 
–  and realizes implicit service differentiation 
–  and is scalable and feasible  

•  view fairness as an expedient not a socio-economic objective 
–  yielding predictable performance: an “Internet Erlang formula”  

•  apply traffic engineering to ensure load is not too close to 100% 
and implement overload controls in case this fails 

•  this works for the Internet and data center interconnects but 
access networks need more than fair sharing 
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Sharing the first/last mile 

•  this is the usual bottleneck for Internet flows 
–  for DSL, cable, wireless, fiber 

•  AQM and congestion control or flow-aware scheduling? 
–  for upstream and downstream 

•  flow fairness is not enough 
–  eg, for a video streamed at more than the fair rate 

•  who rules? who decides priorities?  
–  surely the user, not the network operator  
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Sharing the first/last mile 

•  CoDel, PIE, fq-codel do not distinguish classes of service 
–  eg, though users have priorities (eg, background uploads) 

•  also, difficult coexistence of AQM and low priority congestion ctrl 
–  eg, CoDel, FQ,... give same share to LEDBAT & TCP [Gong 2013] 

•  prefer explicit, per-flow scheduling to realize user’s fairness and 
priority objectives 
–  eg, priority to Dad’s flows, limit Junior’s total bandwidth,... 
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Sharing the first/last mile 

•  operators differentiate managed and over-the-top services  
–  though users may want other priorities (eg, priority to Skype, 

background downloads) 
•  user control would be a better alternative, requiring: 

–  a flow scheduler in the router trading off complexity and flexibility  
–  a signalling protocol allowing the user to dictate priorities 

•  to be defined... 
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Conclusions 

•  new AQM and congestion controls are a poor, short term fix  
–  to perceived congestion in the home network (bufferbloat) and the 

data center interconnect 
•  fair flow queuing, proposed since 1985, is the preferred solution 

for high capacity shared network links 
–  performance robust to end-system behaviour 
–  provably scalable and therefore feasible  
–  yields an “Erlang formula” for the Internet 

•  first/last mile sharing needs more complex per-flow scheduling 
–  enabling “priority to video”, “priority to Dad”,... 
–  both upstream and downstream, under user control 



References 

–  Alizadeh, et al., “Data center TCP (DCTCP)” SIGCOMM, 2010. 
–  Alizadeh, et al., “Less is more: trading a little bandwidth for ultra-low 

latency in the data center”, NSDI, 2012. 
–  Alizadeh et al. “pFabric: minimal near-optimal datacenter transport”, 

SIGCOMM, 2013. 
–  Ballani et al., “Towards predictable datacenter networks”, SIGCOMM, 2011. 
–  Ben-Fredj et al., “Statistical bandwidth sharing: a study of congestion at 

flow level”. SIGCOMM, 2001. 
•  Bonald and Massoulié, “Impact of fairness on Internet performance”, 

SIGMETRICS, 2001. 
•  Bonald and Proutière, “Insensitive bandwidth sharing in data networks”. 

Queueing Systems, 2003 
–  Bonald and Roberts, “Internet and the Erlang formula”, SIGCOMM Comput. 

Commun. Rev., 2012. 
•  Floyd and Fall, “Promoting the use of end-to-end congestion control”, IEEE 

ToN, 1999. 
•  Gong et al. “Fighting the bufferbloat: on the coexisitence of AQM and low 

priority congestion controlé, TMA, 2013. 



References (2) 

–  Hong et al., “Finishing flows quickly with preemptive scheduling”, SIGCOMM, 
2012. 

–  Kortebi et al. “Cross-protect: implicit service differentiation and admission 
control”, HPSR, 2004. 

–  Kumar et al., “Beyond best efort: router architectures for the 
differentiated services of tomorrow’s Internet”, IEEE Comm Mag., 1998. 

–  Nagle, “On packet switches with infinite storage”, RFC 970, 1985. 
–  Nichols and Jacobson, “Controlling queue delay”, Comm. ACM, 2012. 
–  Paganini et al. “Stability of networks under general file size distribution with 

alpha fair rate allocation”, Allerton, 2009. 
–  Pan et al. “PIE: a lightweight control scheme to address the bufferbloat 

problem”, HPSR, 2013. 
–  Vamanan et al., “Deadline-aware datacenter TCP (D2TCP)”, SIGCOMM, 2012. 

•  Verloop et al., “Stability of size-based scheduling disciplines in resource 
sharing networks”, Perfom. Eval., 2005. 

-  Wilson et al., “Better never than late: meeting deadlines in datacenter 
networks”, SIGCOMM, 2011. 


