
Be fair to flows!

A fair network is attractive and trustworthy
and far more than just adequate.

Jim Roberts
IRT-SystemX, France

Revisiting congestion control, active queue
management (AQM) and packet scheduling

•  new interest is arising from perceived problems in home
networks (bufferbloat) and data center interconnects

•  a new IETF working group will define an AQM that
–  “minimizes standing queues”
–  “helps sources control rates without loss (using ECN)”
–  “protects from aggressive flows”
–  “avoids global synchronization”

•  AQM performance depends significantly on what congestion
control is implemented in end-systems
–  high speed TCP, low priority TCP
–  new congestion control protocols for the data center (DCTCP,...)
–  new algorithms at application layer (QUIC,...)

AQM + congestion control is not the answer!

•  how can a network continue to rely on end-systems implementing
the right congestion control?
–  why should users comply?
–  or course, they don’t!

•  instead, impose per-flow fairness in the core...
–  this is scalable, feasible and sufficient

•  and enhanced flow-aware scheduling at the edge
–  since a fair share may not be sufficient
–  priority to a video stream, priority to Dad!

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level and scalability
–  fairness is all we need in the network
–  something else in the last/first mile

“Bufferbloat”

•  the problem: too large buffers, notably in home routers, get
filled by TCP leading to excessive packet latency

Bloat, the puffer-fish
© Pixar

TCP
window/rate

Bufferbloat

•  how TCP should use the buffer

router

buffer link

TCP
flow

“good
queue”

packets
in buffer

“bad
queue”

Bufferbloat

•  impact of a bloated buffer: longer delays, same throughput

router

bloated buffer link

packets
in buffer

TCP
flow

Bufferbloat

•  impact of a bloated buffer: high latency for real time flows

TCP
flow

router

bloated buffer link

packets
in buffer

“bad
queue”

VoIP
flow

Bufferbloat

•  impact of drop tail: unfair bandwidth sharing

TCP
flow

router

bloated buffer link

packets
in buffer

TCP
flow

Bufferbloat

•  impact of drop tail: unfair bandwidth sharing

TCP
flow

router

bloated buffer link

packets
in buffer

“UDP”
flow

AQM to combat bufferbloat

•  CoDel (Controlled Delay) [Nichols & Jacobson, 2012]
–  measure packet sojourn time
–  drop packets to keep minimum delay near target

•  PIE (Proportional Integral controller Enhanced) [Pan et al, 2013]
–  drop probability updated based on queue length & departure rate

•  both rely on TCP in end-system, neither ensures fairness

AQM and scheduling: fq_codel

•  fq_codel combines SFQ (stochastic fairness queuing) and CoDel
–  hash flow ID to one of ~1000 queues (buckets)
–  deficit round robin scheduling over queues
–  control latency in each queue using CoDel

•  with some enhancements
–  priority to packets of “new” flows
–  drop from queue head rather than tail

•  V. Jacobson (quoted by D. Täht):
–  “If we're sticking code into boxes to deploy CoDel, don't do that.

Deploy fq_codel. It's just an across the board win”

Realizing fair queuing

•  a shared pool of RAM
•  enqueue and dequeue logic implementing deficit round robin (DRR)
•  complexity and performance depend on number of active flows

(flows that have 1 or more packets in buffer)

... enqueue

add
pointer
to flow
FIFO

packet
to RAM

dequeue

head of
due flow
in cycle

fetch
from RAM

RAM

queue logic

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level and scalability
–  fairness is all we need in the network
–  something else in the last/first mile

top of rack
switches

aggregation
switches

core routers

servers

pod

Congestion in the interconnect

•  1000s of servers connected by commodity switches and routers
•  mixture of bulk data transfers requiring high throughput...
•  ... and query flows requiring low latency

Congestion in the interconnect

switch

shared buffer

links
query
flows

bulk
data

•  1000s of servers connected by commodity switches and routers
•  mixture of bulk data transfers requiring high throughput...
•  ... and query flows requiring low latency
•  a practical observation

–  regular TCP does not ensure high throughput and low latency

Many new congestion control protocols

•  DCTCP [Alizadeh 2010]
–  limits delays by refined ECN scheme to smooth rate variations

•  D3 [Wilson 2011]
–  “deadline driven delivery”

•  D2TCP [Vamanan 2012]
–  combines aspects of previous two

•  PDQ [Hong 2012]
–  size-based pre-emptive scheduling

•  HULL [Alizadeh 2012]
–  low delay by “phantom queues” and ECN

•  evaluations assume all data center flows implement the
recommended protocol

pFabric: “minimalist data center transport”

•  instead of end-to-end congestion control, implement scheduling
in switch and server buffers [Alizadeh 2013]

•  “key insight: decouple flow schedule from rate control”

top of rack
switches

aggregation
switches

core routers

servers

pod

pFabric: “minimalist data center transport”

•  instead of end-to-end congestion control, implement scheduling
in switch and server buffers [Alizadeh 2013]

•  “key insight: decouple flow schedule from rate control”
•  SRPT* scheduling to minimize flow completion time

server or
switch

output input

* SRPT = shortest remaining
processing time first

pFabric: “minimalist data center transport”

•  instead of end-to-end congestion control, implement scheduling
in switch and server buffers [Alizadeh 2013]

•  “key insight: decouple flow schedule from rate control”
•  SRPT* scheduling to minimize flow completion time
•  also optimal for flows that arrive over time
•  minimal rate control: eg, start at max rate, adjust using AIMD

server or
switch

green flow
pre-empted

green flow
resumes

output input

* SRPT = shortest remaining
processing time first

Realizing SRPT queuing

•  a shared pool of RAM
•  enqueue and dequeue logic implementing SRPT

–  priority ⇔ remaining flow size
•  similar complexity to DRR

...
enqueue

pointer,
priority

packet
to RAM

dequeue

fetch
from RAM

...

top
priority

first pkt of
top priority
flow

RAM

queue logic

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level and scalability
–  fairness is all we need in the network
–  something else in the last/first mile

How can the Internet continue to rely on
end-to-end congestion control ?

•  “TCP saved the Internet from congestion collapse”
–  but there are easier ways to avoid the “dead packet” phenomenon

•  new TCP versions are necessary for high speed links
–  but they are generally very unfair to legacy versions

•  no incentive for applications to be “TCP friendly”
–  in particular, congestion pricing is unworkable

•  better, like pFabric, to decouple scheduling and rate control

local congestion ⇒
many dropped packets

large number of
“dead packets”

flow suffers
congestion

collapse

Decouple scheduling and rate control
through per-flow fair queuing

•  imposed fairness means no need to rely on TCP
–  flows use the congestion control they want (eg, high speed TCP)
–  no danger from “unresponsive flows”

•  fairness realizes implicit service differentiation
–  since rate of streaming flows is generally less than fair rate
–  lower still latency by giving priority to “new” flows

•  as proposed by [Nagle 1985], [Kumar 1998], [Kortebi 2004],...
–  with longest queue drop as AQM

Fair
Queuing

fair rate

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level and scalability
–  fairness is all we need in the network
–  something else in the last/first mile

Understanding traffic at flow level
•  rather than modelling traffic at packet level, recognize that

packets belong to a flow (file transfer, voice signal,...)
–  a set of packets with like header fields, local in space and time

•  traffic is a process of flows of different types
–  conversational, streaming, interactive data, background
–  with different traffic characteristics – rates, volumes,...
–  and different requirements for latency, integrity, throughput

•  characterized by size and “peak rate”

video stream

TCP data

peak
rate

•  three bandwidth sharing regimes

•  transparent regime:

–  all flows suffer negligible loss, no throughput degradation
•  elastic regime:

–  some high rate flows can saturate residual bandwidth; without
control these can degrade quality for all other flows

•  overload regime:
–  traffic load is greater than capacity; all flows suffer from

congestion unless they are handled with priority

Sharing regimes and the meaning of congestion

“transparent” “elastic” “overload”

Statistical bandwidth sharing

•  ie, statistical multiplexing with elastic traffic
•  consider a network link handling flows between users, servers, data

centers,...
•  define, link load = flow arrival rate x mean flow size / link rate
 = packet arrival rate x mean packet size / link rate
 = mean link utilization

Traffic variations and stationarity

one day

mean
link
utilization

busy hour
demand

one week

mean
link
utilization

a stationary stochastic process

mean

Statistical bandwidth sharing

•  ie, statistical multiplexing with elastic traffic
•  consider a network link handling flows between users, servers, data

centers,...
•  define, link load = flow arrival rate x mean flow size / link rate
 = packet arrival rate x mean packet size / link rate
 = mean link utilization

Bandwidth sharing performance

•  in the following simulation experiments, assume flows
–  arrive as a Poisson process
–  have exponential size distribution
–  instantaneously share link bandwidth fairly

•  results apply more generally thanks to insensitivity

Performance of fair shared link

time

number of
active flows

flow
performance

mean
rate

duration

(arrival rate x mean size / link rate)

Performance of fair shared link

number of
active flows

time

Performance of fair shared link

number of
active flows

time

.4
X

load

relative
throughput

1.0 0.0
0.0

1.0

Performance of fair shared link

number of
active flows

time

Performance of fair shared link

number of
active flows

time

.4
X

load

relative
throughput

X

1.0 0.0
0.0

1.0

Performance of fair shared link

number of
active flows

time

Performance of fair shared link

number of
active flows

time

.4
X

load

relative
throughput

X
X

1.0 0.0
0.0

1.0

Performance of fair shared link

number of
active flows

time

Performance of fair shared link

number of
active flows

time

.4
X

load

relative
throughput

X
X

X

1.0 0.0
0.0

1.0

Performance of fair shared link

number of
active flows

time

Performance of fair shared link

number of
active flows

time

.4
X

load

relative
throughput

X
X

X
X

1.0 0.0
0.0

1.0

(1−load)

Observations

•  the number of flows using a fairly shared link is small until load
approaches 100% (for any link capacity)

•  therefore, fair queuing schedulers are feasible and scalable
•  our simulations make Markovian assumptions but the results for

the number of active flows are true for much more general
traffic [Ben-Fredj 2001]

Poisson
session
arrivals

flow
arrivals

session
departures

new flow
of same
session

... flow
1

flow
2

flow
3

flow
n

think
time

think
time

a session

More simulations

•  on Internet core links (≥ 10 Gbps), the vast majority of flows
cannot use all available capacity; their rate is constrained
elsewhere on their path (eg, ≤ 10 Mbps)

•  consider a link shared by flows whose maximum rate is only 1%
of the link rate
–  conservatively assume these flows emit packets as a Poisson process

at rate proportional to the number of flows in progress

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

“active flows”
have ≥ 1 packet

in queue

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

.4

X
load

relative
throughput

1.0 0.0
0.0

1.0

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

.4

X
load

relative
throughput

X
1.0 0.0

0.0

1.0

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

.4

X
load

relative
throughput

X X
1.0 0.0

0.0

1.0

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

.4

X
load

relative
throughput

X X
1.0 0.0

0.0

1.0

X

Performance with rate limited flows

time

number of
flows in
progress

number of
active flows

Observations 2

•  most flows are not elastic and emit packets at their peak rate
•  these flows are “active”, and need to be scheduled, only when

they have a packet in the queue
•  the number of active flows is small until load approaches 100%
•  fair queuing is feasible and scalable, even when the number of

flows in progress is very large

Yet more simulations

•  links may be shared by many rate limited flows and a few elastic
flows

•  consider a link shared by 50% of traffic from flows whose peak
rate is 1% of link rate and 50% elastic traffic

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

.4
X

load

relative
throughput

1.0 0.0
0.0

1.0

X

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

.4
X

load

relative
throughput

X

1.0 0.0
0.0

1.0

X X

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

Performance of link with elastic and
rate limited flows

time

number of
flows in
progress

number of
active flows

.4
X

load

relative
throughput

X

X

1.0 0.0
0.0

1.0

X X X

Observations 3

•  the number of active flows is small (<100) with high probability
until load approaches 100%

•  therefore, fair queuing is feasible and scalable
•  fair queuing means packets of limited peak rate flows see

negligible delay:
–  they are delayed by at most 1 round robin cycle
–  this realizes implicit service differentiation since conversational

and streaming flows are in the low rate category
–  a scheduler like DRR considers packets as belonging to new flows;

we can therefore identify them and give them priority (cf. fq-codel)

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level scalability
–  fairness is all we need in the network
–  something else in the last/first mile

Fairness, not weighted fairness

•  eg. class 1 flows get 10 times rate of class 2, equal traffic
–  limited gain for class 1, class 2 hardly suffers until load close to 1
–  from [Bonald and Masoulié, 2001]

•  little advantage from weights for added cost of flow state
•  little disadvantage when sharing is not perfectly fair

.4

load

relative
throughput

1.0 0.0
0.0

1.0

class 1

class 2

Fairness, not size-based scheduling

•  SRPT makes it very easy to cheat by segmenting long flows
–  pFabric assumes cooperative sources in a private data center

•  size-based scheduling in a network brings capacity loss
–  eg, for linear network, [Verloop et al, 2003] “confirm the tendency

for users with long routes and large service requirements to
experience severe performance degradation”

–  pFabric applies to a star-network – what capacity of SRPT ?

ρ2

ρ1 ρ1

for strict priority:
 only stable if ρ2 < (1−ρ1)2

ρ1

ρ2
for strict priority:
 only stable if ρ2 < (1−ρ1)2

Fairness is stable if ρl < 1 for all links l

•  as proved by [Paganini et al., 2009] for α-fair sharing and
general flow size distribution
–  as occurs with reasonable congestion control

•  it is stable if routers implement fair queuing, even if users do
not use congestion control [Bonald et al, 2009]
–  though performance can suffer !

load

relative
throughput

1.0 0.0
0.0

1.0

Fairness for predictable performance

•  suppose a flow mix {(a1,c1),..., (am,cm)} where ai is load and ci is
(integer) peak rate of class i; link of (integer) capacity C; N is
sum of peak rates of flows in progress

•  in a loss system, the rate distribution, f(n) = Pr[N=n],
is insensitive and satisfies
–  f(n) = 1/n ∑ ai f(n-ci) for 0 ≤ i ≤ C

Fairness for predictable performance

•  suppose a flow mix {(a1,c1),..., (am,cm)} where ai is load and ci is
(integer) peak rate of class i; link of (integer) capacity C; N is
sum of peak rates of flows in progress

•  in a (balanced) fair system, the rate distribution, f(n) = Pr[N=n],
is insensitive and satisfies
–  f(n) = 1/n ∑ ai f(n-ci) for 0 ≤ n ≤ C
 1/C ∑ ai f(n-ci) for C < n

•  in a (maxmin) fair system, the congestion probability
Pc = Pr[fair rate < c] satisfies
–  Pc < Erlangdelay (A/c, C/c) where A = ∑ai is overall demand
–  see [Bonald 2012] for justification and significance

Recommendation for traffic control
on shared network links

•  implement per-flow fair queuing in router queues with longest
queue drop
–  avoids relying on end-system congestion control
–  and realizes implicit service differentiation
–  and is scalable and feasible

•  view fairness as an expedient not a socio-economic objective
–  yielding predictable performance: an “Internet Erlang formula”

•  apply traffic engineering to ensure load is not too close to 100%
and implement overload controls in case this fails

•  this works for the Internet and data center interconnects but
access networks need more than fair sharing

Outline

•  perceived problems, proposed solutions
–  bufferbloat
–  the data center interconnect

•  the case for fair flow queuing
–  traffic at flow level and scalability
–  fairness is all we need in the network
–  something else in the last/first mile

Sharing the first/last mile

•  this is the usual bottleneck for Internet flows
–  for DSL, cable, wireless, fiber

•  AQM and congestion control or flow-aware scheduling?
–  for upstream and downstream

•  flow fairness is not enough
–  eg, for a video streamed at more than the fair rate

•  who rules? who decides priorities?
–  surely the user, not the network operator

“home router” “edge router”
uploads
ACKs
VoIP

···

downloads
streams

VoIP
···

Sharing the first/last mile

•  CoDel, PIE, fq-codel do not distinguish classes of service
–  eg, though users have priorities (eg, background uploads)

•  also, difficult coexistence of AQM and low priority congestion ctrl
–  eg, CoDel, FQ,... give same share to LEDBAT & TCP [Gong 2013]

•  prefer explicit, per-flow scheduling to realize user’s fairness and
priority objectives
–  eg, priority to Dad’s flows, limit Junior’s total bandwidth,...

“home router” “edge router”
uploads
streams

ACKs
VoIP

···

downloads
streams

ACKs
VoIP

···

Sharing the first/last mile

•  operators differentiate managed and over-the-top services
–  though users may want other priorities (eg, priority to Skype,

background downloads)
•  user control would be a better alternative, requiring:

–  a flow scheduler in the router trading off complexity and flexibility
–  a signalling protocol allowing the user to dictate priorities

•  to be defined...

“home router” “edge router”
uploads
streams

ACKs
VoIP

···

downloads
streams

ACKs
VoIP

···

Conclusions

•  new AQM and congestion controls are a poor, short term fix
–  to perceived congestion in the home network (bufferbloat) and the

data center interconnect
•  fair flow queuing, proposed since 1985, is the preferred solution

for high capacity shared network links
–  performance robust to end-system behaviour
–  provably scalable and therefore feasible
–  yields an “Erlang formula” for the Internet

•  first/last mile sharing needs more complex per-flow scheduling
–  enabling “priority to video”, “priority to Dad”,...
–  both upstream and downstream, under user control

References

–  Alizadeh, et al., “Data center TCP (DCTCP)” SIGCOMM, 2010.
–  Alizadeh, et al., “Less is more: trading a little bandwidth for ultra-low

latency in the data center”, NSDI, 2012.
–  Alizadeh et al. “pFabric: minimal near-optimal datacenter transport”,

SIGCOMM, 2013.
–  Ballani et al., “Towards predictable datacenter networks”, SIGCOMM, 2011.
–  Ben-Fredj et al., “Statistical bandwidth sharing: a study of congestion at

flow level”. SIGCOMM, 2001.
•  Bonald and Massoulié, “Impact of fairness on Internet performance”,

SIGMETRICS, 2001.
•  Bonald and Proutière, “Insensitive bandwidth sharing in data networks”.

Queueing Systems, 2003
–  Bonald and Roberts, “Internet and the Erlang formula”, SIGCOMM Comput.

Commun. Rev., 2012.
•  Floyd and Fall, “Promoting the use of end-to-end congestion control”, IEEE

ToN, 1999.
•  Gong et al. “Fighting the bufferbloat: on the coexisitence of AQM and low

priority congestion controlé, TMA, 2013.

References (2)

–  Hong et al., “Finishing flows quickly with preemptive scheduling”, SIGCOMM,
2012.

–  Kortebi et al. “Cross-protect: implicit service differentiation and admission
control”, HPSR, 2004.

–  Kumar et al., “Beyond best efort: router architectures for the
differentiated services of tomorrow’s Internet”, IEEE Comm Mag., 1998.

–  Nagle, “On packet switches with infinite storage”, RFC 970, 1985.
–  Nichols and Jacobson, “Controlling queue delay”, Comm. ACM, 2012.
–  Paganini et al. “Stability of networks under general file size distribution with

alpha fair rate allocation”, Allerton, 2009.
–  Pan et al. “PIE: a lightweight control scheme to address the bufferbloat

problem”, HPSR, 2013.
–  Vamanan et al., “Deadline-aware datacenter TCP (D2TCP)”, SIGCOMM, 2012.

•  Verloop et al., “Stability of size-based scheduling disciplines in resource
sharing networks”, Perfom. Eval., 2005.

-  Wilson et al., “Better never than late: meeting deadlines in datacenter
networks”, SIGCOMM, 2011.

