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This paper describes and evaluates the performance of a modified deficit round robin
scheduler called PDRR (for Priority DRR). In conjunction with per-flow admission con-
trol, PDRR allows the realization of implicit service differentiation where streaming and
elastic flows are assured adequate performance without the need for explicit class of ser-
vice marking or resource reservation. We show through simulation that PDRR is scalable
and feasible since the number of flows to be scheduled remains less than a few hundred for
any link speed. It is also shown to provide very low latency for the packets of streaming
flows as long as their rate is a relatively small fraction of the link rate.
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1. Introduction

The practical difficulties of using mechanisms of standardized QoS models to cost-
effectively realize performance guarantees have led us to define an alternative flow-aware
networking architecture [8,7]. This architecture applies traffic controls to user defined
flows identified on the fly by inspection of packet headers. The controls in question are
per-flow scheduling and per-flow admission control invoked locally and independently on
individual network links. The controls can be combined to provide necessary performance
guarantees to streaming and elastic flows without any change to the current best effort
user-network interface.

Implicit service differentiation is realized by three devices: max-min fair sharing is
realizing per-flow fair queueing; packets of flows that emit packets at a rate less than
the current fair rate are forwarded via a priority queue; admission control is applied
to maintain the fair rate above a certain threshold. The latter threshold is chosen to
ensure low latency forwarding for a useful range of streaming applications. A flow in this
system is locally defined at any given link and consists of all packets with an identical
flow identifier (derived from particular header fields such as IP addresses and the IPv6
flow label or IPv4 port numbers) occurring with some minimum inter-packet interval (a
few seconds).

We introduced the notion of implicit service differentiation in [6] with fair queueing



realized using a self-clocked fair queueing algorithm called PFQ (for Priority Fair Queue-
ing). The scalability of this algorithm was demonstrated by means of trace driven sim-
ulations and analytical modelling [4,5]. In the present paper we show that PFQ can be
advantageously replaced by an adaptation of the well-known Deficit Round Robin (DRR)
scheduler [10]. We retain the low complexity of DRR while again providing low latency
for streaming flows.

The paper describes the PDRR (for Priority DRR) scheduler and presents the results
of a performance evaluation. The latter is conducted by simulation using a mixture
of real trace data and synthetically generated traffic. The results confirm the claimed
scalability and latency properties. We also illustrate through an example how admission
control preserves performance in overload. We first recall in the next section the essential
principles of implicit service differentiation.

2. Implicit service differentiation

We consider the objective of service differentiation to be to ensure low packet latency for
streaming applications while using residual bandwidth to provide maximum throughput to
elastic flows. We have argued elsewhere that it is not useful, at least not in the backbone,
to distinguish between more precisely defined classes [8]. Implicit service differentiation
is possible on recognizing that streaming flows have a relatively low rate and that this
characteristic can be used as the key to discrimination.

2.1. Priority fair queueing

Imposing max-min fair sharing between flows on individual links leads to overall max-
min fair sharing in the network [3]. This is a reasonable resource allocation goal for
elastic traffic [2]. Network imposed fairness makes performance less vulnerable to user
misbehaviour and avoids the requirement for transport protocols to be “friendly” to legacy
TCP [7].

With max-min fairness, any flow whose rate is less than the fair rate on all links of its
path should not suffer packet loss. However, depending on the particular fair queueing
scheduler employed, packet latency can be significant. To preserve the necessary low
latency for streaming flows, we propose to give head of line priority to all packets of flows
whose rate is less than the current fair rate. This is the principle of priority fair queueing.

Any flow whose rate exceeds the fair rate will suffer packet delay. If the rate excess is
momentary, this delay simply smoothes the flow rate; any flow whose rate is persistently
greater than the fair rate will loose packets and typically have to adapt the source rate
in consequence.

2.2. Admission control

Priority fair queueing is an adequate traffic control in normal load conditions. To
maintain good performance in overload, we propose to additionally employ implicit per-
flow admission control.

If the fair rate should descend below a certain threshold or the load of the priority
queue exceed another threshold, it is necessary to deny access to any new flows to protect
the service quality of flows already in progress. The fair rate threshold must be chosen
to ensure adequate throughput for elastic flows and priority treatment for the packets of



a useful range of streaming applications. The load threshold should ensure low enough
packet latency. Note that per-flow fair queueing facilitates the measurement of these
congestion indicators.

Admission control can be performed implicitly simply by discarding the packets of new
flows whenever congestion occurs [1]. Higher layer protocols must be designed to recognize
packet discard as a sign of flow level congestion and react accordingly.

2.3. Differentiation with respect to flow rates

To use flow rate as a key to service differentiation appears to be adequate whenever
the link in question realizes a fairly high degree of sharing. This is because, to realize
efficient statistical multiplexing, the peak rate of streaming flows must typically be a
small fraction of the link rate. A value of around 1% is compatible with medium to high
utilization (see [9, Sec 16.1], for example). In this case, an admission control threshold on
fair rate of around 1% of link capacity is sufficient to ensure low latency for such flows.
This threshold is also known to realize a satisfactory compromise between low blocking
in normal load and adequate elastic flow throughput performance in overload [1].

The peak rate emerges as an essential traffic characteristic for both streaming and
elastic flows. For streaming flows, the peak rate determines the efficiency of statistical
multiplexing. For elastic flows, the peak rate, defined as the rate limit imposed by con-
straints outside a considered network, determines whether the flow can or cannot realize a
fair share of available bandwidth. It is thus a natural as well as very convenient to choose
as a criterion for differentiation.

3. Priority Deficit Round Robin

Priority Deficit Round Robin, or PDRR, is a fair queueing algorithm that inherits the
O(1) complexity and fairness properties of DRR while improving latency by the use of a
priority queue for low rate flows. The proposed use of fair queueing is somewhat unusual
in that the population of flows to be scheduled is highly dynamic being determined only
by the origin of packets currently in the buffer (like [11]).

3.1. Pseudo code

Table 3.2 presents the PDRR pseudo-code with additional instructions with respect
to DRR highlighted using italics (see [10] for more information on DRR). We generally
envisage use of PDRR for equitable fair sharing but present the pseudo-code for weighted
sharing by means of variable quanta Qi to facilitate the comparison with DRR.

A data structure called the active flow list (AFL) stores data for flows that have, or
recently have had, packets in the queue. These data include the flow identity, the current
deficit count DCi, flow quantum Qi and pointers realizing a FIFO linked list of queued
packets for that flow. An additional parameter ByteCount(i) is used to determine whether
flow packets should or should not be sent to the priority queue (PQ). AFL entries are
visited in a certain order in each scheduling round. This order is defined by a pointer in
each AFL entry indicating the next flow to be visited.



3.1.1. Enqueue operation

If on the arrival of a packet p the buffer is full, a packet must be selected for dropping
(lines 2-3)1. If packet p does not belong to an active flow, the flow is added to the current
end of the AFL cycle and the packet is inserted at the tail of PQ (lines 5-9). ByteCount(i)
keeps track of the number of bytes already inserted in PQ for flow i. A packet arriving
to an active flow will be given priority while ByteCount(i) ≤ Qi (lines 11-13); otherwise
it is placed at the end of the flow queue (line 15). These operations (and the removal of
inactive flows from AFL at line 32) ensure that packets of flows emitting less than one
quantum per round realize low packet latency.

3.1.2. Dequeue operation

The dequeue operation extracts the packet at the head of PQ whenever it is not empty
(lines 17-20). When a packet is sent from PQ, the deficit counter of its flow is decreased
by the packet size (line 21). This prevents more than one quantum being served during
the same round. When PQ is empty and AFL contains at least one flow (line 22), the
flow at the current head of the AFL cycle is selected for service and its deficit counter is
incremented by one quantum (lines 23-24). The last instructions (lines 25-34) allow the
flow to emit up to DCi bytes. The flow is removed from the schedule if it empties (lines
32-34). Note that this will happen if the flow emitted less than its quantum in the current
round or, in other words, if its rate is smaller than the current fair rate.

3.2. Measuring congestion

It is straightforward to detect congestion for elastic traffic by measuring the current
value of the fair rate. This is generally only a small fraction of the link rate in situations of
overload [1]. To do this we count the number of bits a fictitious permanently backlogged
flow could emit in an interval of length tf and divide by tf . We also measure the load in
the priority queue by averaging the emitted bit rate over a suitable interval tp. Successive
measurements are used to determine the admission control criteria to be applied to newly
arriving flows (note that admission control requires an additional data structure recording
the identities of flows currently in progress, independently of whether these are in AFL
or not). Due to lack of space, we omit the details of these measurements.

3.3. Complexity

Unlike DRR, the active list in PDRR may contain flows with empty queues (these are
flows whose packets are all forwarded via PQ). This implies that the dequeue operation
can visit several empty queues before actually sending a packet, effectively invalidating
the O(1) dequeue complexity. If necessary, this can be corrected by maintaining an AFL
cycle as a linked list only for non-empty queues. This cycle is updated appropriately
whenever a new flow receives more than its quantum in the initial round. It is necessary
for this purpose to create additional pointers in the per-flow data of the AFL. We omit
details.

The presence of a flow in the active list (line 5 in Table 3.2) can be detected in constant
time (O(1) complexity) using a content addressable memory (CAM). This requires that
size of AFL be small enough for hardware implementation. That this is the case is

1One effective policy is to drop the packet at the head of the flow with the longest backlog [11]



Table 1
Pseudo code for PDRR
Enqueuing module: Dequeuing module:

1. on arrival of packet p 16. While (TRUE) do
2. If no free buffers left then 17. While (PQ not empty) do
3. FreeBuffer(); 18. p = Dequeue(PQ);
4. i = ExtractFlow(p); 19. i = ExtractFlow(p);
5. If (i /∈ AFL) 20. Send(p);
6. InsertActiveList(i); 21. DC i -= Size(p);
7. DC i = 0; 22. If (AFL is not empty) then

8. ByteCount i = size(p); 23. Get head of AFL, say flow i;
9. Enqueue(PQ,p); 24. DC i += Q i;
10. Else 25. While ((DC i ≥ 0) and (Queue i not empty)) do
11. ByteCount i += size(p); 26. PacketSize = Size (Head(Queue i));
12. If (ByteCount i ≤ Q i) then 27. If (PacketSize ≤ DC i) then

13. Enqueue(PQ,p); 28. Send(Dequeue(Queue i));
14. Else 29. DC i -= PacketSize;
15. Enqueue(Queue i,p); 30. Else

31. break; (*skip while loop*)
32. RemoveActiveList(i);
33. If (Queue i is not empty) then

34. InsertActiveList(i);

demonstrated in the next section.

4. Performance evaluation

We have evaluated the performance of PDRR by means of ns simulations using both
real Internet trace data and synthetic traffic. We report two sets of simulations, the first
to evaluate the required size of AFL, the second to demonstrate the improved latency
properties provided by the modified algorithm compared to DRR. In these simulations,
all flows have the same quantum, equal to the value of the maximum size packet MTU.

4.1. Trace statistics

We have used three traces, as in [5]:
ADSL : an OC3 link concentrating the traffic outgoing to several thousand ADSL users;
the trace represents 5 minutes of data recorded on August 25 2003;
Ab-I : an OC48 link on the Abilene research network between Indianapolis and Kansas
City; the trace represents 5 minutes of data recorded on August 14 2002 (10:30 to 10:35
am);
Ab-III : an OC192 link on Abilene III between Indianapolis and Chicago; the trace rep-
resents 2 minutes of data recorded on June 1 2004 (7:31 to 7:33 pm).
The Abilene traces are publicly available on the NLANR website2. The ADSL data is
from a commercial network. Summary statistics for these three traces are shown in Table
2. TCP connections contribute around 95% of bytes in all traces.

2http://pma.nlanr.net/Traces/Traces/long/ipls/1 and http://pma.nlanr.net/Special/ipls3.html



Table 2
Packet trace statistics summary

ADSL Ab-I Ab-III

bandwidth 155Mbps 2.5Gbps 10Gbps
total packets 2.6M 19M 156M
total flows 850K 2.3M 683K
utilization 28% 13% 19%

flows in progress 24000 37000 62000
MTU 1500 1500 9000

4.2. Required AFL size

The active flow list must be dimensioned to ensure a small saturation probability. In
case of saturation, packets belonging to newly active flows are handled with priority until
the flow can be added to AFL. The only consequence is that such flows may momentarily
emit at a rate higher than the current fair rate.

We performed simulations using the three traces described above with the link capacity
reduced in order to attain loads of 0.6 and 0.9. The introduction of spurious effects due
to the reaction of TCP congestion control, we provide sufficient buffering to avoid packet
loss. As shown in Figure 1, the number of active flows is bounded with high probability
to several hundred (550 in the worst case), much less than the number of flows in progress
(see Table 2). These observations confirm results obtained using the PFQ scheduler [5].

We notice that the number of active flows is slightly greater with PDRR than with PFQ
since the former removes non-backlogged flows from AFL somewhat later. However, the
results confirm scalability in that the required AFL size does not increase with link speed.
The size is also shown to be relatively small allowing efficient hardware implementation
using a CAM.

An analytical explanation for these results is given in [?]. Succinctly, the number
of simultaneous bottlenecked flows (those with peak rate greater than the fair rate) is
small due to the stochastic behaviour of statistical bandwidth sharing [?] while the large
number of non-bottlenecked flows only enter the AFL for the small fraction of time that
they actually have a packet in the buffer.

4.3. Packet latency

We now show that PDRR ensures negligible packet delay for flows whose rate is less
than the fair rate. We add five constant rate UDP connections to the Ab-I trace and
adjust the link capacity (483 Mbps) to produce a load of 0.9. The rates of the UDP flows
are 64 Kbps, 10, 20, 30 and 40 Mbps and they emit 1500 byte packets. The left plot
of Figure 2 shows the distribution of packet delays for each of these flows. The lowest
rate flows have very small delays since their packets are always given priority. The delay
for the other flows increases with their rate. This is because the flows are sometimes
backlogged due the random variations in the trace data.

The right hand figure shows the evolution of the average fair rate (exponentially smoothed
100 ms samples). Though this is consistently higher than 40 Mbps, the higher rate flows
are occasionally backlogged due to very short term variations in the number of active
flows. The crosses in the figure represent samples of the instantaneous fair rate derived
by dividing one 1500 byte quantum by the duration of the current round. Backlog occurs
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Figure 1. Complementary distribution of AFL size, loads 0.6 (left) and 0.9 (right)

whenever the round last longer than the inter-packet interval of a given flow.
Figure 3 compares packet latency of DRR and PDRR for low rate flows. The figure

on the left relates to a mix of synthetic TCP and UDP traffic identical to that used in
[6]. TCP connections emit 1000 byte packets and their size follows a truncated Pareto
distribution with shape parameter 1.5, mean 25 packets, minimum 8 and maximum 1000.
UDP connections of mean duration 1 minute emit on-off traffic with 64Kbps peak rate
and 500 ms mean exponentially distributed burst and silence lengths. TCP flows count
for 80% of total load. Link capacity is 10 Mbps and arrival rates are set to realize a load
of 9 Mbps. The figure shows the delay distribution of UDP packets. The figure on the
right relates to the Ab-I trace data augmented by a single 64 Kbps CBR flow and depicts
the packet delay distribution of the latter. The link load is again 0.9 for a link capacity
of 361 Mbps.

The relative difference between results for PDRR and DRR is similar in both cases.
However, the absolute delays clearly depend on the link speed. The advantage of using
PDRR is slight for the high capacity link where regular DRR would be sufficient for most
streaming applications. Note that the delay with DRR depends on the number of flows
in AFL. The delay is limited since this number is relatively small with high probability,
as discussed in the previous section.

Packet delay in the priority queue can be predicted quite well if the priority load is
known. Dotted lines in Figure represent the complementary delay distribution of an
M/M/1 queue with mean packet size and priority load derived from the simulation re-
sults3. Latency can thus be controlled by ensuring the short term load due to priority
packets is not greater than some threshold. This can be achieved using per-flow admission
control, as envisaged in Section 2.2.

5. Service protection in overload

The previous results demonstrate that PDRR provides low latency and/or high through-
put as required up to loads of 90%. In this section we illustrate the role of admission

3It would of course be possible to use a more refined model if precise latency guarantees are necessary
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Figure 3. Comparison between complementary distribution of packet delays for 64Kbps
CBR flows with PDRR and DRR, synthetic traffic (left) and Ab-I trace (right)

control in maintaining satisfactory performance in overload. Overload occurs whenever
demand (flow arrival rate x average flow size) exceed link capacity4.

We perform simulations with artificial traffic since, with trace data recorded on a con-
gestion free link, it is impossible to account for the way TCP would react to inevitable
packet loss. The simulation set-up is that of Section 4 with a mix of TCP and UDP flows.
The arrival rate is increased to produce an offered load of 11 Mbps. The link rate is 10
Mbps, overall buffer capacity is 1000 packets and the AFL holds data for a maximum of
500 flows. The system starts empty. We have simulated the system with and without
applying admission control.

When admission control is activated, flows are rejected (i.e., their packets are discarded)
whenever the fair rate estimate is below 100 Kbps. The estimate is derived by exponen-

4Overload may also be said to occur at loads less than 100% but greater than some nominal threshold of
90%, say. The precise definition of overload in fact depends on the way admission control is implemented.
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Figure 4. AFL length (left) and priority load (right) variations vs. time, synthetic traffic
under overload

tially averaging fair rate samples evaluated every 100 ms using a smoothing parameter of
0.95. For the considered traffic mix, this is the only admission criterion necessary since
the load in the priority queue is always quite low (around 0.25).

Figure 4 shows the variation in time of the number of AFL flows (left) and the load
in the priority queue (right), with and without admission control. The simulation results
are identical until 60 s. At this point the fair rate decreases to 100 Kbps for the first time.
Without admission control the decrease continues as the number of flows competing for
bandwidth grows. The AFL population increases until, at around 210 s, it saturates.
From this point on, all new packets join the priority queue which rapidly saturates. This
queue never empties so that no flow in the AFL is ever served and all “priority” packets
suffer near maximum delay.

Admission control effectively protects the system from such drastic performance degra-
dation. The left plots of Figure 4 show that the fair rate is maintained close to the
admission threshold. The load of the priority queue is around 25%. Other results (not
shown) confirm that the link is nearly fully utilized with a flow blocking probability of
10%. The delay of UDP flow packets is 0.69 ms on average while TCP flows realize an
average throughput of 129 Kbps (without admission control, packet delay is more than
400 ms and TCP throughput tends to zero).

6. Conclusion

We have shown through the results of simulation that PDRR is scalable in that the
number of flows to be scheduled does not increase with link rate. Implementation appears
perfectly feasible since with high probability this number is relatively small (i.e., no more
than a few hundreds) for loads up to 90% of link capacity.

In overload, it is necessary to apply per-flow admission control in order to preserve good
performance for admitted flows. Note that no scheduler can avoid drastic performance
degradation when offered traffic exceeds capacity. PDRR has the advantage of allowing

5i.e., new = 0.9 × old + 0.1 × measurement



simple measurement of the relevant congestion parameters. Our simulation results show
that latency and throughput are effectively maintained by admission control.

PDRR discriminates between flows on the basis of their incoming rate. Bottlenecked
flows are guaranteed the current max-min fair rate. Packets of flows whose rate is less
than the fair rate are transmitted in a priority queue. This is a useful key for discrimi-
nation since streaming flows generally do have a relatively low peak rate. The absolute
improvement in latency may be negligible in the case of a very high speed link. Latency
with regular DRR is then low since the number of flows in any round is bounded and each
quantum of service is measured in microseconds. On the other hand, PDRR is hardly
more complex than DRR.

We believe the notion of implicit service differentiation and its realization using PDRR
opens interesting possibilities for traffic control in IP networks. It remains to more fully
evaluate the scope for implementation taking account notably of the significant differences
between the edge and the core of the IP internet.

Since different variants of DRR are already deployed in some high speed routers, we
believe that PDRR is simple to implement. It requires only a few additional instructions.
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