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Abstract—
In this paper we present Cross-protect, a combination of router

mechanisms allowing quality of service differentiation while main-
taining the simple user-network interface of the best effort Inter-
net. By associating implicit flow level admission control and per-
flow fair queuing in a router it is possible to distinguish streaming
and elastic flows and meet their respective quality requirements
without requiring specific packet marking. We describe the im-
plied mechanisms and justify the claimed performance and scala-
bility properties by means of simulation and analysis.

I. INTRODUCTION

Our previous work on the statistical nature of Internet traf-
fic has led us to question the appropriateness of many proposed
and standardized traffic controls. We have argued that the net-
work should be flow-aware and have shown how implicit ad-
mission control can be used to ensure adequate quality of ser-
vice for both streaming and elastic flows [10], [4]. The pro-
posed flow-aware architecture required explicit differentiation
between streaming and elastic traffic in order to control the
packet delay of the former in a priority queue. The present pa-
per builds on this prior work. We propose mechanisms allowing
implicit service differentiation: the user-network administrative
interface is that of the best effort architecture while the par-
ticular quality of service requirements of streaming and elastic
flows are assured by a combination of per-flow scheduling and
admission control. For reasons which are made clear later, we
call the resulting architecture “Cross-protect”.

The previous flow-aware networking architecture, while con-
siderably simpler than most current propositions for realizing
quality of service, shares with them two significant disadvan-
tages. Firstly, it is necessary to control the peak rate of stream-
ing flows by policing or shaping at the ingress imposing a hard
constraint on user traffic. This constraint is unnecessary in pe-
riods of light traffic when higher flow peak rates are acceptable.
Secondly, it is necessary to rely on user cooperation to realize
fair bandwidth sharing between elastic flows making network
performance vulnerable to user misbehaviour.

Cross-protect overcomes these disadvantages. The name de-
rives from two features. On one hand, admission control and
fair queuing are mutually beneficial: admission control ensures
the scalability of the scheduling algorithm while fair queuing
provides the admission conditions. On the other hand, stream-
ing and elastic flows achieve their necessary quality of service
without mutual detrimental effect.

In the next section, we present the mechanisms and functions
necessary to realize Cross-protect. We present the scheduling
algorithm in more detail in Section III and illustrate claimed

scalability by means of analytical models. Section IV presents
a number of simulation results illustrating the performance of
the proposed architecture.

II. A CROSS-PROTECT ROUTER

Fig. 1 illustrates a possible division of the Cross-protect
functions in an IP router. Flow identification and forwarding
decisions, including admission control, are implemented in the
incoming line cards. Per-flow fair queuing is performed in the
outgoing line cards.
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Fig. 1. A Cross-protect router

A. Flow identification

A flow is a set of packets having the same values in certain
header fields among the packet address attributes. A flow is
completely specified by these values associated with an idle pe-
riod (or time-out). A flow is deemed to have ended when no
packet is observed during this idle period.

A minimal flow identifier would be the combination of the
origin and destination IP addresses. A more useful choice
would be to include header fields whose value is entered freely
by the user or application. Such fields include the transport port
numbers in IPv4 and the flow label in IPv6.

B. Forwarding decision

In addition to the usual forwarding functions of an IP router,
we propose to perform supplementary operations to decide if a
packet should be forwarded or not. This decision is taken on
the basis of data included in a protected flow list (PFL).

A PFL is a list of flow identifiers together with the arrival
time of the last packet of each one. Flows are written to the list
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depending on certain forwarding criteria. They are erased when
the time since the last packet exceeds a time-out threshold.

Forwarding decisions are taken on the arrival of every packet.
If the packet belongs to a protected flow, it is forwarded directly
and the last packet time is updated in the PFL. If the flow is not
in the list, it is necessary to proceed to a forwarding decision.
The packet will be rejected if the admission conditions are not
satisfied. If they are satisfied, the packet is forwarded via the
designated queue. In the latter case, the flow identity may or
may not then be added to the PFL, depending on some addi-
tional criteria.

One possible criterion is to apply a probabilistic decision:
the flow is added with probability � ; with probability ��� � ,
the packet is forwarded but the flow remains unprotected. If� is low (0.1, say), the majority of very small flows are never
included in the PFL while long flows are protected with high
probability after the emission of the first few packets.

The required overall size of the PFL grows in proportion to
the rate of the protected link. It is necessary to dimension the
memory used by the list to limit the probability of saturation.
However, the only consequence of such a saturation would be
that a flow would not immediately acquire the status of pro-
tected flow. Its packets would still be forwarded correctly in the
absence of congestion.

C. Packet scheduling

Fair queuing scheduling ensures that link bandwidth is
shared fairly without relying on the cooperative behaviour of
users [7]. In association with admission control, it can also be
used to guarantee the rate of admitted flows. A large number
of fair queuing algorithms have been proposed in the literature.
The Start-time Fair Queuing (SFQ) algorithm of Goyal et al.
[8] is particularly well adapted to the present architecture.

Assume for the sake of simplicity that this algorithm real-
izes perfect max-min fairness with a well defined fair rate1. We
enhance the SFQ algorithm by giving head of line priority to
packets arriving to flows whose incoming rate is less than the
current fair rate. Such packets are easily identified from the
different parameters of the algorithm. We refer to this enhance-
ment as Priority Fair Queuing or PFQ.

PFQ thus implicitly gives priority to the packets of stream-
ing flows (and elastic flows) whose peak rate is less than the
fair rate. Admission control maintains the fair rate above a cho-
sen threshold allowing real time performance guarantees for a
targeted category of streaming flows.

D. Admission control measurements

Admission control relies on congestion measurements per-
formed within the PFQ scheduler. Two indicators are moni-
tored, fair rate and priority load :
� fair rate is an estimation of the rate currently realized by

backlogged flows,� priority load is the sum of the lengths of priority packets
transmitted in a certain interval divided by the duration of
that interval.

�
Sharing is max-min fair with a fair rate � if the rate of a flow of peak rate � is�
	��� ������� and the sum of rates is equal to the minimum of the link bandwidth

and the sum of the peak rates of active flows.

Periodic measurements of fair rate and priority load allow a
continuous monitoring of the congestion status of the link and
the deduction of admission conditions to be applied to newly
arriving flows.

III. THE PFQ ALGORITHM

In this section we provide a more explicit description of the
PFQ algorithm and discuss a number of implementation issues.

A. PFQ data

The scheduler maintains the following data:
� a “push-in, first-out” (PIFO) queue2 where packets are

stored in decreasing order of a time stamp; each element in
the PIFO has the form � packet, time stamp � where packet
designates the data relating to the packet (flow identifier,
size, memory location) and time stamp is the packet “start
tag” determined by the SFQ algorithm,� a pointer � identifying the last of the priority packets at
the head of the queue,� a list of flows flow list containing the identifier of all active
flows together with a time stamp flow time stamp corre-
sponding to the “finish tag” of the last packet of this flow,
the current backlog size in bytes, backlog, and a counter
of received bytes, bytes,� a counter virtual time allowing the calculation of time
stamps; according to SFQ, virtual time is equal to the start
tag of the last packet to have begun transmission.

B. Operations on packet arrival

PFQ executes the following pseudocode on each packet ar-
rival. The variable packet designates the arriving packet, � is
its length in bytes and � its flow identifier.

1. if PIFO congested, reject packet at head of
longest backlog

2. if ��� flow list
3. begin
4. backlog( � ) �����
5. if bytes  MTU
6. push  packet,flow time stamp � to PIFO
7. else begin
8. push  packet, virtual time � to PIFO

behind ! ; update !
9. (counter of priority bytes ����� )
10. bytes( � ) �"�#�
11. end
12. flow time stamp( � ) �����
13. end
14. else begin
15. push  packet,virtual time � to PIFO

behind ! ; update !
16. (counter of priority bytes ����� )
17. if flow list is not saturated
18. begin
19. add flow �
20. flow time stamp( � ) = virtual time �$�
21. backlog( � ) �#�
22. bytes( � ) �#�
23. end
24. end

%
PIFO is shorthand for the sorting algorithms allowing packets to join the

queue at any position, as determined by a time stamp, and serving always the
packet at the head of the line [5]
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It is first necessary to test if the queue is congested and, if so,
which packet should be rejected (line 1). Different criteria for
defining congestion and for choosing a packet for discard are
possible. Here, we adopt the approach proposed by Suter et al.
in [11].

If the flow is active, the backlog are updated (line 4). The
test at line 5 is to distinguish between the first packets of a
new flow with small-sized packets (lines 8-10) and the packets
of a flow already having a significant backlog (line 6). Pack-
ets have priority while the cumulative volume of transmitted
bytes is less than the maximum packet size, MTU. Note that
this choice enables the PFQ to realize implicit differentiation
between packets even when the switch fabric deals with smaller
constant sized cells. The pointer � is necessary to realize prior-
ity queuing, distinguishing between packets of backlogged and
non-backlogged flows having the same time stamp. The time
stamp flow time stamp is updated (line 12).

If the flow is not active, the packet is given priority. It ac-
quires time stamp virtual time and is inserted in the PIFO at
the position indicated by � (line 15). A counter keeps track of
the total number of priority bytes for congestion measurement
(lines 10 and 16). If the list is not already saturated, the flow
is added to flow list with flow time stamp equal to virtual time
plus the packet length � (this is the packet finish tag in SFQ)
(lines 19-22).

Note that if the list is saturated, the only impact of non-
insertion is that the next packet of this flow will be given pri-
ority even if it has a rate greater than the current fair rate. The
flow will be identified as backlogged with high probability on a
subsequent packet arrival.

C. Operations on packet departure

The pseudocode relating to a packet departure (end of emis-
sion of last byte) is as follows. The variable packet designates
the departing packet, � its length and � its flow identifier.

1. if PIFO is now empty
2. remove all flows from flow list
3. else begin
4. backlog( � ) � ���
5. serve packet at head of line
6. next time stamp designates time stamp

of this packet
7. if next time stamp

�� virtual time
8. begin
9. virtual time = next time stamp
10. for all flows � � flow list
11. begin
12. if flow time stamp ������� virtual time
13. remove � from flow list
14. end
15. end
16. end

When a packet leaves the queue, the operations performed
depend on whether or not the PIFO is then empty. If so, it
is necessary to empty flow list (line 2). It is not necessary to
change virtual time whose value is arbitrary in an idle period.
If the PIFO is not empty, we first adjust the backlog of flow � 3

(line 4). Since virtual time takes the value of the time stamp
	
Special treatment is necessary if the flow was not included in the flow list

due to saturation (line 17 of the arrival pseudo code).

of the packet that is head of line, no further operations are re-
quired if this is the same as the previous value (line 7). If not,
virtual time is updated (line 9) and flows which become inac-
tive (their flow time stamp is less than or equal to the new value
of virtual time) are removed from flow list (lines 12-13).

D. Congestion measurement

The congestion indicators priority load and fair rate are cal-
culated periodically. Considering the time scales of the respec-
tive congestion phenomena, the period between two samples of
priority load should be several milliseconds while a longer in-
terval of several hundred milliseconds is sufficient for fair rate .

To estimate priority load we maintain a counter incremented
on the arrival of each priority packet by its length in bytes. Let��
����� be the value of this counter at time � , ( ��������� ) a measure-
ment interval (in seconds) and � the link bit rate. An estimation
of priority-load is:

priority load �
� ��
������� � ��
����������� �

� ����� � ����� !

To estimate fair rate we consider a fictitious flow emitting
single byte packets and suppose these would be inserted be-
tween real packets in an order dictated by the PFQ algorithm.
In a queue busy period, the number of bytes that could have
been transmitted is then given directly by the evolution of vir-
tual time. In an idle period, the fictitious flow could transmit at
link rate. Let " ������� be the value of virtual time at time � , ( �#������ )
a measurement interval, $ the total idle time during this interval
and � the link bit rate. We define the estimator:

fair rate �&%(') �*$
� � ��� " ���+� � � �," ����� � �����-� ��+��� � ���.� !

The first term is typically significant when the link is lightly
loaded and corresponds to the fictitious flow using all residual
link capacity. The second term is significant when the link is
busy and approximately measures the throughput achieved by
any real flow that is continually backlogged in the interval. Our
experience suggests it is not necessary to perform more refined
estimations for intermediate load conditions.

E. Scalability

The complexity of PFQ, like SFQ, is logarithmic in the num-
ber of active flows [8]. Scalability of Cross-protect is assured
by the fact that this number is bounded (with high probability)
by admission control. It is measured in hundreds rather than
hundreds of thousands, whatever the service rate � . To see
this, we successively consider three cases.

First assume all flows are bottlenecked at the link and there-
fore realize the fair rate. Under very general and realistic traffic
assumptions, the number of flows in progress is greater than/ with probability 0�132�4 ��5 where 0 is the stationary link load4

[1]. For 07698 ! : , the probability of having more than 100 flows
simultaneously in progress is very small ( 69; � ��8=<�> ). If, there-
fore, admission control can ensure a fair rate of at least 8 ! 8 ��� ,
?�@ � session arrival rate A average number of flows per-session A average

flow size BDC
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the probability of blocking is negligible in normal loads. There
is no advantage in relaxing this condition even when 1% of �
is much larger than a reasonable target fair rate [3]. The max-
imum number of flows to be taken into account in this case is
just 100.

Now suppose � is very large and that the load is such that
no flow attains the fair rate. This is currently the case for most
backbone links. Further assume, for the sake of simplicity, that
packets are of constant size � . Under these assumptions the
scheduler realizes FIFO queuing. No busy period of the queue
involves more than one packet of any flow and every packet
contributing to a busy period adds one to the length of the flow
list. The list is emptied at the end of the busy period.

Assuming a large number of independent flows, the queue
behaves locally like an M/D/1 system with an arrival rate equal
to the sum of the packet arrival rates of all active flows. Desig-
nate this sum divided by capacity � the local load. The number
of flows in the flow list is equal to the length (in packets) of the
M/D/1 busy period. Its distribution is given in [9, p. 216]. As-
suming admission control ensures the local load is less than
8 ! : , the number of flows in the flow list is less than 140 with
probability 0.99.

Consider lastly a traffic mix where some flows are bottle-
necked and others are not. Admission control simultaneously
bounds the fair rate and the local priority load. Let the num-
ber of bottlenecked flows be ��� . Assume admission control
ensures ����� ��8 8 and local load � %

��� �*8 ! : � � �	����
 ��8 8 � .
These conditions are compatible with an objective fair rate of at
least 8 ! 8 ��� .

Assuming length � packets, virtual time in PFQ only takes
values of the form � � for � � � �� � !.!�! . A change in virtual
time initiates a cycle beginning with the service of a backlogged
packet and continuing until the next change in virtual time oc-
curs. Assume local load is constant in a cycle. The number
of flows in the flow list at the end of a cycle is then equal to
the number of customers contributing to � � consecutive busy
periods of an M/D/1 queue.

We have evaluated the distribution of the flow list size for the
range of possible values of � � . It turns out that the list is largest
for ��� ����8 and local load = 0.9. A saturation probability of
0.01 than corresponds to a list size of 480.

It remains to perform a more thorough performance evalua-
tion accounting for variable packet sizes. However, the above
discussion does illustrate why the required list size is indepen-
dent of the service rate � and is orders of magnitude less than
the number of flows in the corresponding PFL.

IV. SIMULATION RESULTS

In this section we present a number of ns2 simulation results
to illustrate the operation of Cross-protect.

A. Simulation set-up

We simulate a bottleneck link receiving elastic and stream-
ing flows generated according to Poisson processes. Streaming
flows use UDP and consist of a succession of exponentially dis-
tributed on- and off-periods, all of mean 500 ms. The rate when
on is 64 Kbit/s, packets are of length 190 bytes and flows last

for 1 minute on average. Elastic flows use TCP Reno and emit
packets of 1000 bytes. Their size has a truncated Pareto distri-
bution with shape parameter 1.5, mean 25 packets, minimum
8 and maximum 1000 packets. Elastic flows count for 80% of
overall traffic. The bottleneck link buffer is sized to absorb ap-
proximately one delay bandwidth product: 100 packets for a 10
Mbit/s link, 1000 for a 100 Mbit/s link. For each experiment
we discard the first 100 seconds and calculate averages over the
ensuing 400 seconds.

B. Behaviour in underload and overload

Most of the presented results pertain to a 10 Mbit/s bottle-
neck. Fig. 2 presents four sets of traces for each of 3 different
configurations. The simulated configurations are, from left to
right: an overall offered load of 9 Mbit/s without admission
control; a load of 11 Mbit/s without admission control; a load
of 11 Mbit/s with admission control. The traces depict, from
top to bottom: the value of priority load measured at 10 ms in-
tervals; the value of fair rate measured at 15 ms intervals; the
number of flows in the protected flow list and the PFQ active
flow list; the number of priority packets and the overall number
of packets in the queue sampled at random instants.

The results conform to the claims of the previous sections.
When load is not too close to 100% (case a), the link is virtually
transparent for streaming flows. Average delay is only .48 ms
and no loss occurs. Most elastic flows are too short to attain the
bottleneck rate. Those that are long enough attain a throughput
of around 1 Mbit/s.

In overload, without admission control, performance deteri-
orates progressively as the number of flows in progress steadily
increases (trace 3b). Elastic flow throughput is very small as
illustrated by the value of fair rate (2b). Drop rate is 11%.
Streaming flows become backlogged and their delay attains a
maximum of 122 ms.

Admission control restores the performance of the over-
provisioned link. The traces are somewhat similar in cases a
and c. The admission condition used was to refuse flows if the
latest measure of fair rate is less than 100 Kbit/s (a condition
on priority load is not necessary in the considered set-up.
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Fig. 3. Simulation results for a 100 Mbit/s bottleneck. The figure depicts the
evolution of the number of flows in the PFL (red/dark) and the PFQ active flow
list (green/light).

To illustrate the scalability of Cross-protect, we have simu-
lated a 100 Mbit/s bottleneck. Fig. 3 shows the evolution of the
number of flows in the protected flow list and the PFQ flow list
over a 50 second interval when the offered load is 90 Mbit/s.
Comparison with the third row of Fig. 2 confirms that, though
the number of protected flows increases linearly with link rate,
the PFQ flow list remains small.
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Fig. 2. Simulation results for a 10 Mbit/s bottleneck under a) normal load, b) overload without admission control, c) overload with admission control. Traces
depict from top to bottom, 1) priority load , 2) normalized fair rate , 3) PFL size (red/dark) and PFQ flow list size (green/light), 4) priority queue length (red/dark)
and overall queue length (green/light).

V. CONCLUDING REMARKS

By associating the respective advantages of fair queuing and
implicit admission control, Cross-protect allows differentiated
quality of service guarantees while preserving the simplicity of
the user-network interface of the best effort Internet.

We believe the derived flow-aware networking architecture
does not introduce significant new opportunities for denial of
service attacks. Indeed, per-flow scheduling is a robust service
protection while flow-awareness brings new opportunities for
attack detection and prevention.

Implementation of Cross-protect does require standards and
can be introduced incrementally. A fully equipped AS could
be made virtually transparent to quality degradation. End-to-
end guarantees are, inevitably, dependent on the quality of all
components of the communication path. However, the Cross-
protect architecture avoids the substantial complication of class
of service marking conventions and traffic conditioning pre-
sumptions.

Note finally, that flow blocking by admission control is not
necessarily a negative action. It opens the possibility for adap-
tive routing where blocked flows can be redirected to an alter-
native paths. This, together with the simplicity of operating the
network with a plain best effort user-network interface, implies
considerable economies for the network provider.
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