
Minimizing the Overhead in Implementing
Flow-aware Networking

Abdesselem Kortebi
France Telecom, DRD/CORE/CPN

38, rue du Général Leclerc
92794 Issy les Moulineaux, France

abdesselem.kortebi@francetelecom.com

Luca Muscariello
Politecnico di Torino,

Dipartimento di Elettronica
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

luca.muscariello@polito.it

Sara Oueslati
France Telecom, DRD/CORE/CPN

38, rue du Général Leclerc
92794 Issy-Moulineaux, France

sara.oueslati@francetelecom.com

James Roberts
France Telecom, DRD/CORE/CPN

38, rue du Général Leclerc
92794 Issy-Moulineaux, France

james.roberts@francetelecom.com

ABSTRACT
An enhanced flow-aware Internet is arguably a more effec-
tive means of ensuring adequate performance than imple-
menting the complex standardized QoS architectures. This
flow-aware network would provide flow-level performance
guarantees for real time and data applications by imple-
menting per-flow fair queueing and by limiting the impact
of overload through flow level admission control. The paper
discusses the feasibility of the implied router mechanisms
and proposes original solutions that minimize the necessary
overhead with respect to the current best effort network.
Preferred solutions significantly reduce requirements for flow
state by employing directly addressed bitmaps to record flow
status, as necessary for scheduling and admission control,
respectively.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks

General Terms
Performance

Keywords
Fair queueing, admission control, statistical bandwidth shar-
ing, flow-aware networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’05, October 26–28, 2005, Princeton, New Jersey, USA.
Copyright 2005 ACM 1-59593-082-5/05/0010 ...$5.00.

1. INTRODUCTION
Limitations of the current best effort datagram-based In-

ternet architecture have led to proposals for enhanced QoS
empowered architectures. Early proposals for an integrated
services network with per-flow connection set up, based on
RSVP signalling, have not been widely deployed for reasons
of scalability [3]. The currently favoured solution is to ap-
ply class-based service differentiation [1], coupled with the
traffic engineering facilities of MPLS [15], to perform traffic
management based on broad flow aggregates. We have ar-
gued elsewhere that neither Intserv nor Diffserv takes proper
account of the statistical nature of Internet traffic revealed
by numerous measurement studies [20]. They also impose a
significant cost penalty compared to the best effort network,
in terms of both capital and operational expenditure.

The present paper contributes to the specification of an
alternative flow-aware networking architecture [10, 19]. The
objective of flow-aware networking is to augment the current
Internet as sparingly as possible in order to provide neces-
sary performance assurances for both real time and data
transfer applications. According to the analysis in [20] and
[10], the necessary mechanisms are per-flow fair queueing
and flow level admission control. This paper discusses the
implementation overhead of these mechanisms and proposes
original designs that aim to minimize complexity.

A flow in the present context is a flight of datagrams, lo-
calized in time (packets are spaced by no more than a certain
interval, TimeOut) and space (packets in question are ob-
served at a particular interface) and having the same unique
identifier. The identifier is deduced from header fields in-
cluding IP addresses and user-specified fields like the IPv6
flow label or IPv4 port numbers. The expectation is that
users define flows to correspond to a particular instance
of some application such as a video stream or a document
transfer.

Space locality means a given end-to-end flow has multiple
instances, one at each network element on its path. To be
flow-aware, these elements identify flows on the fly by exa-
mining the packet header. There is thus no requirement for

signalling and no modification to the network control plane.
Minimal soft state is established, as necessary, for scheduling
and admission control.

As is well known, fair queueing provides effective traf-
fic separation, avoiding current vulnerability to users who
choose not to implement congestion responsive end-to-end
protocols. Fair queueing also realizes a certain implicit dif-
ferentiation between real time streaming flows and bursty,
potentially high rate, data transfers. This is because packet
latency is limited for any flow that is not bottlenecked and
this is the case for most audio and video applications.

The feasibility of per-flow fair queueing has recently been
demonstrated by showing that the number of active flows
(i.e., the flows that need to be known to the scheduler at
any instant) is not more than several hundred, even at link
loads as high as 90%, and this for any link capacity [12,
13]. The active flows are composed of a relatively small
number of bottlenecked flows together with the subset of
non-bottlenecked flows that currently have a packet in the
buffer. In this paper, we show how complexity can be fur-
ther reduced by limiting scheduling to just the bottlenecked
flows, the maximum number of active flows then being limi-
ted to around 100.

If demand (flow arrival rate × average flow size) were to
exceed link capacity, the number of flows to be scheduled
would grow to much more than 100. To preserve scalability,
and to protect the performance of flows in progress, it is ne-
cessary to limit utilization by performing flow level admis-
sion control. Since the number of flows in progress increases
with link rate and could attain hundreds of thousands or
more for the highest capacities, the amount of state required
for admission control is considerably more than that neces-
sary for scheduling. In the paper, we discuss two approaches
for identifying the current set of in-progress flows:

1. leveraging a general purpose flow table that maintains
per-flow state for a variety of applications in addition
to admission control;

2. designing an ad hoc data structure that reduces me-
mory requirements and complexity by exploiting the
specific features of the admission control application.

The paper contains two main sections devoted to fair
queueing scheduling and admission control, respectively. We
base the discussion of scheduling on Deficit Round Robin
[21], showing how this algorithm can be modified to identify
just the bottlenecked flows whose rate needs to be cont-
rolled. The section on admission control is confined to a
presentation of the necessary data structure and does not
consider the measurement-based algorithm that would be
implemented to determine admissibility conditions. The pa-
per concludes with a brief discussion of the advantages of
the flow-aware networking paradigm and the perspectives
for implementation.

2. PER-FLOW FAIR QUEUEING
The advantages of per-flow fair queueing have long been

recognized [17, 6]. As well ensuring protection against ma-
licious use, network assured fairness frees applications from
the current requirement to be “TCP-friendly”. It would
be possible, for example, to introduce more efficient high
speed transport protocols without concern that they might
be unfair to legacy TCP connections. Max-min fairness also

provides low latency to the packets of flows that have a peak
rate less than the current fair rate. This realizes an implicit
service differentiation on recognizing that most streaming
applications fall into this category. The latency of low rate
flows is further reduced in the implementation described in
Section 2.3.

We present the design of a reduced complexity fair queue-
ing scheduler based on Deficit Round Robin [21, 11]. We
have performed similar developments for the self-clocked
time stamp based scheduler Start-time Fair Queueing [9]
but omit details for the sake of conciseness.

2.1 Scalability
The huge amount of research on fair queueing since Na-

gle’s pioneering proposal in [17] has mainly been concerned
with devising schemes that realize tight fairness and delay
bounds for a given set of rate controlled sources. Our focus
is rather on ensuring approximate fairness for a highly dy-
namic population of active flows identified on the fly. The
main objective is to realize fair queueing with low complex-
ity.

Two broad classes of schedulers can be used: self-clocked
fair queueing where packet emissions are ordered according
to an assigned time stamp (exemplified by Start-time Fair
Queueing (SFQ) [9]) and round-robin algorithms where dy-
namically constituted queues are visited in cyclic order (ex-
emplified by Deficit Round Robin (DRR) [21]). Weighted
fairness can be applied in the present context if the class of
a flow can be determined on the fly from packet headers.

The complexity of SFQ and DRR depends on the number
of flows that need to be scheduled. This in turn depends
mainly on the offered link load equal to the flow arrival rate
× average flow size / link capacity. For loads of up to 90%,
it has been shown that with high probability this number
does not exceed a few hundreds, for any link rate [12, 13,
11]. In Section 2.3 below, it is shown that the number can
be further reduced to around 100.

Most flows in an IP network are short lived. The number
of flows in progress at any instant on a high speed link is a
variable that can attain a value measured in tens or hundreds
of thousands. However, the flows that need to be accounted
for by a fair queueing scheduler are considerably fewer. The
scalability of fair queueing derives from the fact that most
in-progress flows enter the schedule rarely, only when they
have a packet to emit.

The schedule only concerns flows that have a packet in the
router buffer. This fact makes per-flow scheduling scalable
since the number of such flows is largely independent of the
link rate and is measured only in hundreds [10, 12, 13, 11].

Some of the flows to be scheduled are bottlenecked in that
they could attain a higher rate if the link in question had
unlimited capacity. Traffic models predict that the number
of bottlenecked flows in progress is less than 100 with high
probability as long as link load is not higher than 90%.

Most flows in progress at any instant are not bottlenecked.
Their rate is limited by other constraints on their path (ac-
cess links, notably) to a peak value less than the fair rate
offered by the link. Only the bottlenecked flows strictly
need scheduling. We explore how DRR can be modified to
separate out the other flows leading to a less onerous imple-
mentation.

1. on arrival of l-byte packet p of flow f :
2. if f ∈ ActiveList do
3. update FIFO.f
4. Queue.f + = l
5. else
6. add f to ActiveList
7. initialize FIFO.f
8. Queue.f = l
9. Deficit.f = 0
10. add f at end of DRR schedule

11. transmit packets in DRR schedule order

12. when flow f is scheduled:
13. Deficit.f + = Quantum.f
14. while (Queue.f > 0)
15. get head packet from FIFO.f ; l = packet size
16. if (l > Deficit.f) skip while loop
17. else
18. emit packet
19. Queue.f − = l
20. Deficit.f − = l
21. if (Queue.f = 0) remove f from ActiveList

Figure 1: Pseudocode of DRR with a dynamic list
of active flows.

2.2 DRR scheduling for a dynamic set of active
flows

Flows that need to be accounted for by the DRR scheduler
are logged in a table called ActiveList. Necessary per-flow
state for a given flow f using DRR is as follows:

• Identifier.f - the flow identifier (possibly a hash of the
relevant header fields)

• Queue.f - current length in bytes of flow f queue

• Quantum.f - value of flow f quantum (≥ MTU bytes)

• Deficit.f - current flow deficit

• FIFO.f - addresses of head and tail packets of a linked
list forming the flow f FIFO

• Next.f - the next flow in the DRR schedule following
flow f .

Succinct pseudo-code for DRR is given in Figure 1. Flows
are temporarily logged in ActiveList when they first emit
a packet after a period of inactivity and remain there until
they have no packets to emit at the end of one of their sche-
duled service quanta. A given in-progress flow may enter and
leave ActiveList several times during its lifetime. In parti-
cular, non-bottlenecked flows enter and leave this structure
once for every packet.

The ActiveList data for one flow in a typical realization
amounts to some 16 bytes of memory. The overall memory
requirement depends on the maximum number of flows that
need to be recorded at any time. To limit this require-
ment we propose to add an additional data structure and

1. on arrival of l-byte packet p of flow f :
2. if f ∈ ActiveList
3. update FIFO.f
4. Queue.f+ = l
5. else
6. compute the NewFlows address i of flow f
7. if (Bytes.i = 0)
8. Bytes.i = 1
9. send packet p to priority queue
10. else
11. add f to ActiveList
12. initialize FIFO.f
13. Queue.f = l
14. Deficit.f = 0
15. add f at end of DRR schedule

Figure 2: Modified DRR packet enqueueing pseu-
docode using NewFlows.

modify the scheduling algorithm to distinguish between bot-
tlenecked and non-bottlenecked flows, as described in the
next section. Since ActiveList can then be limited to a ca-
pacity of around 100 flows (see below), it is feasible to use
content addressable memory allowing rapid consultation of
flow status in line 2 of Figure 1.

2.3 Identifying bottlenecked flows
We aim to identify non-bottlenecked flows and avoid in-

serting their packets in the DRR schedule. In addition, we
seek to emit the packets of these flows with priority, ahead
of the packets of bottlenecked flows. As explained in [10]
and [11], this allows a form of implicit service differentiation
since streaming flows typically have a peak rate less than the
fair rate and thus naturally fall into the non-bottlenecked ca-
tegory. Their packets are forwarded with very low latency.
The maximum flow rate for which low latency is assured can
be engineered by choosing admission control thresholds that
maintain the fair rate high enough, even under overload.

To identify bottlenecked flows, we use an additional data
structure called NewFlows. NewFlows is an array of M
words of b bits. For each flow f there corresponds a unique
NewFlows word i, determined by a hash function applied
to the flow identifier. The word content Bytes.i counts the
number of bytes emitted by flows that map to that address.
We assume the NewFlows address of a given flow is dis-
tributed uniformly between 1 and M .

All NewFlows words are reset to zero at particular instants
(defined below) such that the count for a flow would exceed
a certain threshold between two resets if that flow were bot-
tlenecked. Thus, with a certain degree of imprecision, any
packet that does not lead to overflow is considered to belong
to a non-bottlenecked flow and is sent to the priority queue.

It is possible to perform the above operations using a flow
dependent quantum when defining the bottlenecked status
(i.e., when DRR is used to perform weighted sharing). In
the absence of permanent flow state, this weight would need
to be derived from packet header fields determining the flow
class of service. A flow mapping to word i would be deemed

bottlenecked on a packet arrival if the packet size added to
the current value of Bytes.i exceeds the flow quantum.

The choice of word size b determines the precision of the
bottlenecked/non-bottlenecked classification. To maximize
precision for a given b, the increment for a packet of length
l would be d(2b − 1)l/Quantume.

In fact, the simplest option of setting b = 1 works satisfac-
torily on the traces we have tested. NewFlows is then simply
a bitmap and any flow, whatever its quantum, is deemed to
be bottlenecked and included in ActiveList if more than one
packet arrive between two resets. The modification to the
pseudo-code for DRR packet enqueueing with this choice of
b is shown in Figure 2. Note that this choice of b facilitates a
hardware implementation avoiding the potential complexity
of the reset to zero operation.

Packets sent to the priority queue are served until the
queue empties. Service then passes to the ActiveList flow
that is currently at the head of the DRR schedule. This flow
emits its quantum according to lines 12 to 21 in Figure 1.
Service returns to the priority queue if necessary between
the quanta of two successive bottlenecked flows.

NewFlows is reset at times tn, n = 1, 2, . . . Epoch tn+1 is
determined iteratively as follows:

tn+1 = tn + 8MTU/FairRate(tn)

where FairRate(tn) is an estimate of the fair rate in bits/s
currently realized by the DRR scheduler. By fair rate, we
mean the rate that would currently be realized by a bottle-
necked flow with the minimal quantum of MTU bytes.

The fair rate estimate can be realized in several ways.
In our experiments, we evaluate the rate a fictitious bot-
tlenecked flow could have achieved in successive constant
length intervals and perform an exponentially weighted ave-
rage of these rates. The choice of interval length and smoo-
thing parameter settings is not highly critical. It is pre-
ferable to average out random fluctuations that occur on
the scale of the DRR cycle time while remaining responsive
to significant changes in the flow make up. For the results
reported below we have used an interval of 100ms and a
smoothing parameter of 0.9 (i.e., new average = 0.9 × old
average + 0.1 × new measure).

2.4 Accuracy
The identification of bottlenecked flows is necessarily im-

perfect. The above algorithm introduces both false positives
(a flow is wrongly supposed to be bottlenecked) and false
negatives (a bottlenecked flow is not detected as such).

False positive errors occur in the following cases:

• a small word size b leads to an overestimation of the
number of emitted bytes;

• two or more flows map to the same NewFlows address
and jointly lead to overflow.

The probability of the first type of error depends on traffic
characteristics and the relative quanta of different flows. For
trace data we have tested, a single bit is almost as effective
as 8 when all quanta are equal (see Section 2.5). A greater
value may be necessary in weighted sharing if it is neces-
sary to preserve low packet latency for flows doted with a
relatively large quantum.

The probability of the second type of error can be cont-
rolled by the choice of the number of elements in the array

NewFlows. Consider a bitmap realization (b = 1) and as-
sume n packets arrive from distinct flows in some NewFlows
reset interval. These arrivals give rise to x false positives
if their images map into exactly n − x elements. The pro-
bability of this event can be derived from classical results
on occupancy theory [8, page 102]. The number of false
positives has approximately a Poisson distribution of mean
n2/2M .

We discuss typical values of n is Section 2.5 with respect
to trace data. It turns out that a small bitmap of a few
thousand bits is sufficient to limit the rate of false positives
to a fraction of 1%. The memory requirement for a given
rate of false positives can of course be minimized by using
Bloom filters [2] or multistage filters [7], at the expense of
calculating several addresses for each flow identity.

Note that the consequence of a false positive on perceived
performance is slight. The impact on bottlenecked flows
is negligible since their packet latency is slightly improved.
Only the latency of wrongly classified non-bottlenecked flow
packets is greater that what it would have been in the pri-
ority queue. However, this latency is not high (one DRR
round) and still low enough for most applications.

False negative errors can occur for a flow whose incoming
rate is slightly larger than the fair rate. This is illustrated in
Figure 3 where the flow is only recognized as being bottle-
necked when two packets arrive in the same reset interval.
Clearly, only flows whose rate is marginally greater than the
fair rate are affected by this kind of error. The impact is to
extend somewhat the grey area where flows are sometimes
bottlenecked and sometimes not because of fluctuations in
the fair rate. This imprecision occurs naturally due to the
statistical nature of traffic, whatever the scheduling algo-
rithm.

packets from flow f

reset intervals

time

The flow has a rate slightly greater than the fair rate but
is only detected when it emits two packets in the third reset
interval.

Figure 3: Delayed detection of a bottlenecked flow
(b = 1)

2.5 Performance
To evaluate the effectiveness of the NewFlows structure

in reducing the number of flows to be scheduled we have
performed simulations using trace data with flows defined
by the usual 5-tuple. Two traces are used:

• ADSL: five minutes of traffic recorded on a backhaul
link concentrating the traffic of a large group of ADSL
users: link rate 155 Mbps, utilization 28%, total num-
ber of flows 8.5 × 105;

• Abilene: five minutes of traffic recorded on the Abilene
link between Indianapolis and Kansas: link rate 2.5
Gbps, utilization 13%, total flows 2.3 × 106.

We input the trace data to links of reduced capacity to
artificially augment utilization. Figure 4 plots the comple-
mentary distribution of the number of flows in the DRR
ActiveList for the two traces at load 90% for three configu-
rations: without NewFlows, with a NewFlows structure with
one byte words (b = 8), with a NewFlows bitmap (b = 1).
All flows have the same quantum of MTU bytes.

0 100 200 300 400 500

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

n

P
{A

ct
iv

eL
is

t s
iz

e
>

 n
}

b=1
b=8
all flows

(a) ADSL

0 100 200 300 400 500

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

n

P
{A

ct
iv

eL
is

t s
iz

e
>

 n
}

b=1
b=8
all flows

(b) Abilene

Figure 4: Complementary distribution of ActiveList
size from trace driven simulations at utilizations
90%

The results show a dramatic reduction in ActiveList size
for ADSL traffic. This is due to the fact that the peak rate of
all flows is limited by their access line to less than 1 Mbps.
No flow is bottlenecked in this case (and FIFO queueing

would have been sufficient!). The reduction for the Abilene
trace is roughly by a factor of 3. The bitmap works almost
as well as an array of one-byte counters.

The above results were obtained with a NewFlows dimen-
sion M = 16000 resulting in a negligible proportion of false
positives. Similar distributions are obtained with M = 1000,
the rate of false positives increasing to around 5 × 10−3 for
both traces. The formula in Section 2.4 predicts a rate per
reset interval of n/2M where n is the number of arriving pa-
ckets. In the simulations, for both traces, the mean value of
n is between 10 and 20 with rare peaks of 100. The formula
thus predicts the empirical result.

The value of n depends on the arrival rate of packets from
non-bottlenecked flows and the length of the reset interval.
Using the queueing models presented in [13], the average
fair rate at 90% link utilization should not be less than
0.1C giving an average reset interval of at most MTU/0.1C.
Assuming a mean size of non-bottlenecked flow packets of
γMTU (γ = 0.3, say), the packet arrival rate is less than
0.9C/γMTU. The product of these two terms is 9/γ (or 27
if γ = 0.3).

Mean packet delay for flows handled by the scheduler is
0.82 ms for the Abilene trace (the transmission time of an
MTU-sized packet is 33 µs). Packets sent with priority have
a mean latency of only 0.05 ms. The penalty of a false
positive for a non-bottlenecked is thus very small in this
example.

By dimensioning ActiveList for a maximum of 100 flows,
say, it will occasionally occur that a new flow should be
added when the table is already full (with probability 10−3

for the Abilene trace). This flow might be allowed to con-
tinue transmitting its packets with priority (at the risk of
longer latency for competing flows) or be constrained to
share quanta with other bottlenecked flows. One approach
would be to add the packets of such flows to the ActiveList
flow that is currently last in the DRR cycle.

3. PER-FLOW ADMISSION CONTROL
Per-flow fair queueing is feasible, as explained above, as

long as link load can be controlled. In overload, when de-
mand exceeds capacity, congestion is manifested by an in-
creasing number of active flows and a decreasing fair rate.
In addition to significant quality degradation for all flows,
this would clearly stress the performance of the scheduler.
To avoid this situation, the flow-aware network applies ad-
mission control at flow level. In this section we discuss the
data structures necessary to distinguish the packets of new
flows from those belonging to flows already in progress. The
measurement-based algorithms used to determine when a
new flow should be rejected are beyond present scope.

3.1 Implicit admission control
Based on measurements of the current level of congestion

provided by the scheduler (estimated fair rate, link load),
admission control is used as necessary to ensure that the
performance of all in-progress flows is protected. This is
generally only necessary in case of overload, occurring in si-
tuations of failure, for example. Flow level admission control
can be performed without the need for explicit signalling or
resource reservation.

Though identification of SYN and SYNACK packets has
been used successfully to perform implicit admission control
for TCP connections [14, 16], this solution cannot be genera-

lized to the present definition of flow (see Introduction). To
detect a new flow it is necessary to maintain a data structure
that records the identity of the flows currently in progress,
i.e., those having last emitted a packet on the considered
link within the time out interval TimeOut. A packet be-
longs to a new flow if its identifier is not already present in
this structure.

If the link is currently in congestion, the packet of any new
flow is simply discarded. The discard of the first packet, or
packets, of a flow is the implicit signal to the user that the
link is congested. We expect applications to be designed to
react appropriately to this implicit signalling, by emitting
probe packets during a connection establishment phase, for
example. In the absence of congestion, the packet is for-
warded and the flow added to the protected flow list.

The protected flow list is soft state with entries updated
on the arrival of a packet from the corresponding flow. State
expires when no packet is observed in an interval of length
TimeOut. The appropriate value of TimeOut is a compro-
mise between the need to limit memory requirements and
the desire to avoid interrupting flows that can naturally have
a long inter-packet interval. A choice of around 2 seconds
may be appropriate for admission control bearing in mind
that applications like conversational voice can be designed to
emit keep-alive packets to maintain protection during pro-
longed silences.

Flow blocking is clearly un undesirable outcome for any
affected user and may not always be preferred to the low
level of performance that would result if admission control
were not applied. However, it should be noted that ad-
mission control is a measure performed only in exceptional
overloads and arguably leads to a state that is globally pre-
ferable to generalized congestion.

The case for admission control is reinforced by the obser-
vation that admission refusal on some link does not neces-
sarily imply definitive blocking. It may be possible to route
the flow over an alternative path by applying some form of
load sensitive routing. Admission refusal on the first tested
path is the necessary signal that an alternative path should
be used. The potential for realizing load sensitive routing
by exploiting the admission control mechanism is a further
advantage of flow-aware networking.

3.2 Detection of new flows
It is important to note that admission control tolerates a

certain imprecision in the detection of new flows. The objec-
tive of admission control is to protect the quality of service
of on-going flows by reducing the arrival rate of new flows in
times of congestion. Given the self-correcting properties of
measurement-based admission control, it is generally suffi-
cient that a reasonably high proportion of flows be rejected.
Congestion will be relieved as long as the departure rate of
flows in progress remains greater than the residual arrival
rate when admission control is (imperfectly) applied. It is
important on the other hand that no in-progress flow be
falsely identified as a new flow. This could lead to interrup-
tion of the flow in question in the event of congestion.

The size of the required data structure is clearly a concern
for reasons of scalability. Note, however, that this structure
is local to the interface on which admission control is per-
formed and only needs to record a subset of flows handled
by the router. It is possible to reduce the required size by
further partitioning flows into independent structures. For

example, a table of flows in progress might be maintained for
each combination of incoming and outgoing interfaces. This
possibility notably facilitates the search operation necessary
to determine if a given flow is currently in progress.

3.3 A table of flow identifiers
The obvious approach is to maintain a table containing

a list of flow identifiers together with the epoch of the last
packet to have been emitted.

A table of flows in progress may have other uses than
just admission control, including service accounting, traf-
fic regulation and policy routing, as discussed by Xu and
Singhal [22]. These applications motivate the design of flow
table architectures capable of holding data for several mil-
lion flows with a combined bit rate of 100 Gbps. These
data obviously include more than just the last packet epoch
in order to meet the requirements of the considered appli-
cations. A major challenge in such designs, related to the
general problem of garbage collection, is to purge expired
flows from the structure.

One particularly interesting use of the flow table is as a
route cache. The outgoing interface for a given flow only
needs to be determined for the first flow packet. All sub-
sequent packets read this interface from the flow table. As
well as improving forwarding efficiency, route caching can
be used to perform adaptive flow routing: if admission cont-
rol detects congestion on one route, an alternative can be
chosen allowing the flow to proceed.

Caspian Networks actually implement a flow table in their
router [4]. The table implemented on OC 192 (10 Gbit/s)
line cards is capable of storing some 6 million flows with a
flow arrival rate of 2 million flows/sec. Admission control
and route caching are among the applications implemented
by Caspian. NetFlow [18] and similar router software use
flow tables for multiple purposes but are not designed to be
used for admission control.

While the implementation of a flow table may be costly (in
terms of required memory and the complexity of operations
in the fast path), its multiple potential uses might justify
the investment providing leverage for our admission control
application. In case this investment is not forthcoming, we
have sought and defined a simpler ad hoc data structure, as
described next.

3.4 A directly addressed protected flow list
Finding the appropriate entry in a flow table typically

relies on a combination of direct addressing and searching.
A hash of the flow identifier locates a section of the me-
mory and an intelligent search is then conducted among the
flows mapping to this section [22]. In the present approach,
addressing is entirely direct: a hash of the flow identifier de-
termines the “register” of a particular flow. For this solution
to be economical, the register contains just the data neces-
sary to determine whether the flow is in progress of not. We
propose two realizations, one using a bitmap, the second an
array of words. Both avoid the costly requirement to purge
expired flows. This structure also exploits the tolerance to
imprecision of the admission control application mentioned
in Section 3.2.

3.4.1 Bitmap
The in-progress status of a flow can be specified by a sin-

gle bit: the bit is set to 1 when the flow in question is in

progress. To account for the time dimension we form a two-
dimensional array of bits. The number of columns is the
number N of possible values returned by the flow identifier
hash function. The number of rows is a system parameter
L.

The bit map represented in Figure 5 is updated as follows:

1. on a packet arrival, determine the flow address j and
set all bits in column j to 1;

2. at times iτ , set the bits of row i modulo(L) to zero.

A flow mapping to column j is deemed not in progress if
all bits in this column are zero. Step 1 is performed for
in-progress flows and any new flow that is accepted by ad-
mission control.

N1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0 0 0 0 0 0 0 0 0 0 0 0 01 1

0 0 0 0 0 0 0 0 0 0 0 0 0

1
RowPointer

1

L001

j

All bits of column j are set to 1, indicating that a packet with
a flow identifier mapping to j has arrived since the last row
reset action. The variable RowPointer points on the next
row to reset.

Figure 5: Bitmap representation

The choice of τ and L determine the value and precision
of the time out used to determine that a flow has expired.
A flow expires time T after the last packet arrival such that
(L−1)τ < T ≤ Lτ . We can thus choose (L−1)τ = TimeOut,
the flow time out. The cost of imprecision determined by
the granularity L is the need to record flows longer than is
strictly necessary, by τ/2 on average (see Fig. 6).

time

reset instants of rows 0 and 1 alternately

flow f expires packets from flow f

(i−1) i (i+1)τ τ τ

In this example L=2, hence τ = TimeOut. The last packet
of the flow f arrives in the interval (i−1)τ, iτ , and the flow
actually expires at reset instant (i + 1)τ . The imprecision
in detecting the expiration of a flow depends on the arrival
instant of its last packet in the current reset interval.

Figure 6: Delayed detection of an expired flow

A false positive error occurs when the first packet of a new
flow that should be blocked is wrongly assimilated to a flow
in progress. This will occur when the new flow maps to the
same address as another flow currently in progress. Assu-
ming the hash function maps flows to addresses uniformly,

the rate of false positives is E[FlowsInProgress]/N and can
be controlled by the choice of N .

As discussed in Section 3.2, a reasonably high rate of false
positives, of 10% say, is not harmful for measurement-based
admission control. Note, on the other hand, that there are
no false negatives: any flow mapping to a column of zeros is
certainly a new flow. This is important since no in-progress
flow will then be wrongly interrupted by admission control.

In fact, only two rows of bits are required. By Little’s rule,
for a given rate of false positives, E[FlowsInProgress]/N ,
N must be set in proportion to the average flow sojourn
time (FlowDuration + TimeOut + τ/2). Given that τ =
TimeOut/(L − 1), it is easy to verify that NL, the overall
size of the bitmap, is minimized in all cases when L = 2.

A possible realization of this bitmap in terms of logic gates
is shown in Figure 7.

S(1) S(N)S(2)

R(1)

R(2)

O(1) O(2) O(N)

Two latch circuits in column i are set to 1 by a pulse on
S(i) on a packet arrival; each row of circuits is reset to
0 alternately by signals on R(1) and R(2) at intervals of
TimeOut; output O(i) is 0 when no flow mapping to i is in
progress (the time since the last packet is between TimeOut
and 2 × TimeOut).

Figure 7: Realizing the bitmap of flows in progress

3.4.2 An array of words
An alternative structure better suited to realization in

software is an array of N words each of b bits. Word j
contains the epoch of the last arrival of a packet whose flow
identifier maps to address j. The flow is not in progress if
the difference between this time and the current clock value
is greater than M . The clock is a counter coded on b bits
that is incremented every σ seconds.

The choice of M and σ determine the value and precision
of the time out used to determine flow expiration. A flow
will expire after time T such that (M − 1)σ < T ≤ Mσ.
Thus M and σ have the same relation to TimeOut as L and
τ in the bitmap of Section 3.4.1.

In addition to false positives due to two flows mapping to
the same address, it is possible to wrongly classify a flow as
in-progress if the time since the last packet is between 2bK
and 2bK + M for some integer K. Assuming the flow and
clock values are independent, the false positive probability
is M/2b (e.g., an error rate of 3% for b = M = 8). To pre-
vent a malicious user seeking to profit from this type of error
by emitting successive packets until the timing condition is
met, it would be sufficient to indicate by a flag bit that the
stored time is out of date whenever at least one packet map-

ping to the corresponding word has been rejected. Figure 8
illustrates this data structure.

Clock

epoch(1)

1 j N

epoch(j)

epoch(N
)

flag(1)

flag(j)

flag(N
)

Each register is composed of an epoch coded on b bits and a
one bit flag.

Figure 8: Array of words representation

3.4.3 Load sensitive routing
The above structures do not allow route caching. To per-

form load sensitive routing without this, it would be possible
to proceed as follows. Perform load balancing by choosing
between two or more links to forward a packet using a hash
function applied to the flow identifier. This identifier in-
cludes a user chosen field such as the IPv6 flow label or
transport protocol port numbers. If the chosen link is con-
gested, the application on noting packet discard could reat-
tempt using a different flow identifier (i.e., by changing the
user chosen field). Load balancing thus enables a rando-
mized route selection and can be exploited by applications
to avoid blocking on a congested link. It clearly remains
to more fully define this approach to load sensitive, flow by
flow routing.

3.5 Randomized protection
We can further exploit the error tolerance of admission

control by only protecting new flows with a certain probabi-
lity p. Thus, for instance, a fraction (1− p) of single packet
flows will not give rise to an entry in the flow table or di-
rectly addressed structure. On the other hand, long flows
will be protected after emitting (1−p)/p packets on average.

Given the heavy-tailed nature of flow size and duration
[23], a choice of p = 0.1, say, would considerably reduce the
number of times new flows are recorded. For example, using
the trace data Abilene and ADSL described in Section 2.5,
we find p = 0.1 leads to only 15% of flows being recorded in
both cases.

On the other hand, the flows that are recorded are the
longer-lived flows so that the reduction in the arrival rate of
new flows does not translate into a proportionate decrease
in the required flow table size. Applying randomized pro-
tection with p = 0.1 to the Abilene data and the ADSL data
with a timeout of 2 seconds, we observe a 70% reduction in
the average number of protected flows in the Abilene case,
and 63% in the ADSL case.

Note that the gain in occupation increases with the value
of TimeOut. Table 1 gives the average and maximum flow
list occupation for TimeOut equal to 0, 2 and 20 seconds,
together with a measure of the gain G. G is the difference
in occupation as a result of applying randomized admission
control, divided by the occupation when systematic protec-

tion is performed. The results show a significant gain can
be obtained.

The gain must be weighed against the impact of the re-
sulting classification errors which can lead to flows being in-
terrupted after having successfully emitted several packets.
The resulting ambiguity complicates the realization of appli-
cations that must interpret packet discard as flow rejection.

Table 1: Average and maximum occupation for dif-
ferent TimeOut (TO) values, p = 0.1

Abilene ADSL

avg max G avg max G

TO=0 s 4455 4638 0.37 4244 4434 0.46
TO=2 s 6764 7072 0.70 5072 5300 0.63
TO=20 s 27547 28109 0.83 12499 13027 0.81

3.6 Sizing the tables
It is necessary to size the flow table or the directly ad-

dressed structure to limit the probability of saturation to
a manageable level. The flow table is saturated when it is
impossible to find a free memory location for a newly arri-
ving flow that needs protection. Saturation in the directly
addressed structure is less well-defined.

Saturation may be said to occur when the rate of false
positive errors exceeds what is judged tolerable. Assuming
a maximum false positive rate of p, the structure is saturated
when the register occupancy ratio exceeds p. In other words,
the latter structure requires 1/p times more registers than
the number of possible entries in the flow table. However,
of course, the registers are typically very small (e.g., only 2
bits in the solution of Sec. 3.4.1) in comparison to the size
of the table entries.

The average number of flows in progress may be written
FlowArrivalRate × (FlowDuration + TimeOut) and thus
depends on the relative value of the latter two terms. For
admission control purposes, a TimeOut value of 2 sec would
be sufficient. For the Abilene trace, mean flow duration is
856 ms (many flows have one packet only) and the average
size is 5205 bytes.

Extrapolating these characteristics to an OC192 (10Gbps)
link loaded to 90% leads to an average of just less than
62000 flows. From simulation results the variance is roughly
four times higher. Assuming a Gaussian distribution, the
saturation probability is less than 10−3 for a table of capa-
city 640001 . The directly addressed structure would require
some 640000 registers to meet an assumed tolerable false
positive rate of 10%.

The impact of a saturated flow table is that some flows
may not be immediately protected. Their packets will be
forwarded, however, unless the link is congested and requires
admission control. In the directly addressed structure the
impact would be to increase the false positive ratio, dimini-
shing the effectiveness of admission control in the event of
overload.

Saturation can be controlled for a given protected flow list
capacity by dynamically modifying TimeOut. If saturation
threatens, a reduction in the value of TimeOut would reduce
the average number of flows in progress. The price is the

1For an analysis of capacity requirements for a more complex
table, see [22]

possible interruption of flows in progress that have an inter-
packet interval greater than the new value of TimeOut.

4. CONCLUSION AND PERSPECTIVES
The present work builds on a proposal to enhance the cur-

rent best effort Internet by making it flow-aware in sharing
bandwidth and in controlling accessibility in overload. We
have proposed reduced complexity per-flow scheduling and
admission control mechanisms and evaluated their perfor-
mance using trace driven simulation.

We have shown how the complexity of fair queueing, ex-
emplified by Deficit Round Robin, can be reduced by iden-
tifying bottlenecked flows in a separate data structure. The
size of the DRR schedule can then be limited to around
100 flows, this capacity being attained with low probability
(10−3) at relatively high loads (90% utilization). To identify
the bottlenecked flows requires an additional low capacity
data structure. A memory of just 1000 bits is sufficient for
the trace simulations reported in this paper.

To realize the envisaged implicit admission control it is
necessary to identify the set of flows that are currently in
progress. This can be done using a flow table containing the
flow identifier and the epoch of its last packet. The latter
could be included in a general purpose flow table used for
a variety of applications. Alternatively, in case this is too
costly, we have proposed a reduced complexity structure de-
voted specifically to admission control. In one realization,
this structure takes the form of a two-tier bitmap that can
be realized simply in hardware. Capacity requirements can
be reduced on exploiting the tolerance to imprecise identifi-
cation of new flows that is inherent to the admission control
application.

The flow-aware networking paradigm conforms to the ori-
ginal Internet design philosophy recorded by Clark [5].

• It preserves the flexibility for edge-based service cre-
ation of the current Internet since the user-network
interface is unchanged. Potential for designing new
end-to-end applications is increased since fairness no
longer needs to be built into the transport protocol.

• Network survivability characteristics are enhanced by
the possibilities for load sensitive routing brought by
admission control. Admission control is not just an
alternative quality degradation to reduced throughput
but a key element of any adaptive routing scheme.

• Type of service differentiation between delay sensitive
streaming applications and throughput sensitive elas-
tic data applications is assured without the need for
explicit class of service marking. The packet latency
of real time flows is particularly small in the fair queue-
ing implementation proposed in this paper.

• While it remains necessary to more thoroughly evalu-
ate the potential for new attacks brought by the flow-
aware mechanisms, we believe the greater awareness of
network traffic they bring reduces vulnerability. Know-
ledge of traffic at flow level is a frequent requirement
for effective intrusion detection schemes.

• Congestion control algorithms, like those of TCP, re-
main essential for users to adjust emissions to the cur-
rent fair rate. Network assured fairness makes it easier

to introduce new transport protocols, better adapted
to data transfer at very high speed, for example.

• Last in the list of features identified in [5], flow-aware
networking may be considered to improve cost-effectiveness
and accountability by realizing assured performance
without the considerable operational complexity of tra-
ditional QoS architectures.

We believe, therefore, that flow-aware networking repre-
sents a more desirable enhancement to the best effort In-
ternet than current plans for a QoS architecture based on
Diffserv-aware traffic engineering using MPLS. We hope the
designs presented here will incite vendors to envisage more
seriously this alternative and to implement the proposed
mechanisms in their routers.

5. REFERENCES
[1] S. Blake, et al., An Architecture for Differentiated

Services, RFC 2475, IETF, 1998.

[2] B. Bloom, Space/time tradeoffs in hash coding with
allowable errors, Commun. ACM, vol. 13, no. 7, pp.
422-426, July 1970.

[3] B. Braden, et al., Integrated Services in the Internet
Architecture: an Overview, RFC 1633, 1994.

[4] Caspian Networks. Flow-Based Routing: Rationale
and Benefits. White paper, 2003
http://www.caspiannetworks.com/documents/Apeiro
Flow State.pdf .

[5] D. Clark, The design philosophy of the DARPA
Internet protocols, Proceedings of Sigcomm ’88,
August 1988.

[6] A. Demers, S. Keshav, S. Shenker, Analysis and
simulation of a fair queueing algorithm,
Internetworking: Research and experience, Vol 1, 3-26,
1990. (Also in proceedings of ACM Sigcomm 89).

[7] C. Estan, G. Varghese, New directions in traffic
measurement and accounting, Proceedings of ACM
Sigcomm 2002.

[8] W. Feller, Introduction to probability theory and its
applications: Vol I, Wiley International, 1968.

[9] P. Goyal, H. Vin, H. Cheng. Start-time fair queueing:
A scheduling algorithm for integrated services packet
switching networks. IEEE/ACM ToN, Vol 5, No 5,
Oct 1997.

[10] A. Kortebi, S. Oueslati, J. Roberts, Cross-protect:
implicit service differentiation and admission control,
Proceedings of HPSR’04, Phoenix, 2004.

[11] A. Kortebi, S. Oueslati, J. Roberts, Implicit service
differentiation using deficit round robin, Proceedings
of ITC19, Beijing, 2005.

[12] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts, On
the Scalability of Fair Queueing, In Proc. of ACM
HotNets III, 2004.

[13] A. Kortebi, L. Muscariello, S. Oueslati, J. Roberts,
Evaluating the number of active flows in a scheduler
realizing fair statistical bandwidth sharing, In Proc. of
ACM Sigmetrics 05, 2005.

[14] A. Kumar, M. Hegde, S. Anand, B. Bindu, D.
Thitumurthy and A. Kherani. Non-intrusive TCP
connection admission control for bandwidth
management of an Internet access link. In IEEE
Comm. Mag. Vol 38, No 5, pages 160-167, 2000.

[15] F. Le Faucheur, et al., Requirements for Support of
Differentiated Services-aware MPLS Traffic
Engineering - RFC 3564, IETF, 2003.

[16] R. Mortier, I. Pratt, C. Clark, and S. Crosby. Implicit
Admission Control. In IEEE Journal on Selected
Areas in Communications, December 2000.

[17] J. Nagle, On Packet Switches with Infinite Storage,
RFC 970, IETF, 1985.

[18] Cisco Systems, Netflow Version 9, 2003

[19] S. Oueslati, J. Roberts, A new direction for quality of
service: Flow aware networking, NGI 2005, Rome,
April 18-20, 2005.

[20] J. Roberts, Internet Traffic, QoS and Pricing,
Proceedings of the IEEE ,Volume: 92 ,Issue: 9 ,Sept.
2004, Pages:1389 - 1399,

[21] M. Shreedar, G. Varghese, Efficient fair queuing using
Deficit Round Robin, IEEE/ACM Transactions on
Networking, Volume: 4 ,Issue: 3 ,June 1996 Pages:375
385.

[22] J. Xu, M. Singhal, Cost-Effective Flow Table Designs
for High-Speed Routers: Architecture and
Performance Evaluation. IEEE Transactions on
Computers, Vol. 51, No. 9, September 2002.

[23] Y. Zhang, L. Breslau, V. Paxson, S. Shenker, On the
characteristics and origins of Internet flow rates, In
Proc. of ACM SIGCOMM 2002.

