On the Scalability of Fair Queueing

A. Kortebi L. Muscariello*

S. Oueslati J. Roberts

France Télécom R&D Politecnico di Torino France Télécom R&D France Télécom R&D

ABSTRACT

The scalability of fair queueing depends on the number
of flows that have, or recently have had, packets in the
queue. Applying known facts about statistical traffic
characteristics at flow level, we demonstrate that this
number is typically very small for any link capacity.
This suggests fair queueing may be perfectly feasible
opening interesting possibilities for the development of
the Internet architecture. The evaluation is based on
trace simulations and an analytical traffic model.

1. INTRODUCTION

We consider the use of fair queueing to control link
bandwidth sharing between flows identified “on the fly”
from packet header fields. This is clearly not a new
topic and many scheduler designs have been proposed
since the pioneering work of Nagle [9]. The potential
benefits of imposing fairness in the network remain very
important, however, and continue to stimulate a large
amount of research on possible realizations.

The main objective of the present paper is to study
the scalability of fair queueing in the light of current
understanding of the nature of traffic on a high capac-
ity backbone link. It is frequently stated that per-flow
scheduling is infeasible since the number of in-progress
flows can attain tens or hundreds of thousands and that
this is too many. In fact, fair queueing schedulers op-
erate on the very small proportion of these flows that
are currently active in a precise local sense that is made
clear later. We show that the number of active flows is
typically measured in tens, or at worst hundreds, and
does not depend on link capacity.

The number of active flows is a stochastic process
whose behaviour depends mainly on the overall traffic
intensity and the individual flow rate characteristics.
We study the stationary distribution of this process
using simulation and some analytical modelling. This
evaluation highlights the important distinction between
flows that are bottlenecked at the considered link and
those, the large majority, that have an exogenous rate
limit. Fair queueing is scalable and arguably feasible

*Work done while visiting France Télécom R&D.

because the number of bottlenecked flows is typically
very small.

Network assured fairness would have important archi-
tectural consequences that merit deeper consideration.
For example, fair queueing would allow latency critical
applications to share resources with bursty data trans-
fers without suffering excessive jitter. Transport pro-
tocols, notably for high speed data transfers, could be
developed without the current requirement to be “TCP-
friendly”.

We first recall salient characteristics of IP traffic at
flow level before discussing possible realizations of fair
queueing. We then present an evaluation of the num-
ber of flows that need to be taken into account by the
scheduler, using simulation and analysis. Some conse-
quences of the derived results on implementation are
then discussed. In the conclusion we suggest a number
of outstanding issues for future research.

2. FLOW LEVEL CHARACTERISTICS OF
IP TRAFFIC

A flow for present purposes is the set of packets ob-
served at a given link that relate to a particular docu-
ment transfer or communication. We assume this flow
can be identified from header fields (e.g., the usual 5-
tuple) and the fact that inter-packet time is less than a
certain threshold. We focus in this paper on TCP flows.
They have finite size and occur according to a certain
arrival process. Traffic intensity, equal to the product
of the flow arrival rate and the average flow size, is a
global measure of demand. Realized performance (e.g.,
as measured by flow response times) depends signifi-
cantly on how this intensity compares to link capacity.

A reasonable model of the arrival process is to assume
flows belong to mutually independent sessions that ar-
rive according to a Poisson process. To assume Poisson
session arrivals has sound theoretical and empirical jus-
tifications and has been recognized as one of the rare
invariants of Internet traffic [4]. A session is assumed
to consist of an alternating sequence of flows and think
times [2]. This sequence can have quite general charac-
teristics, regarding the size of flows and their number,

for instance, depending on the underlying applications.
We refer to this as the Poisson session model.

The characteristics of individual flows have been cat-
alogued according to a variety of criteria including size,
rate, duration and burstiness [3, 16, 12]. The most sig-
nificant characteristic for present purposes is the ex-
ogenous flow rate: the rate the flow would have if the
considered link were of infinite capacity. The measure-
ment study by Zhang et al. [16] shows that the rate
varies widely from flow to flow. Most flows have a rel-
atively low average rate but the fastest flows count for
a significant proportion of bytes.

The scalability of fair queueing depends on the num-
ber of flows whose (exogenous) rate is greater than the
current fair rate since these are the flows that actually
need to be scheduled. This is not an intrinsic traffic
characteristic but depends on the nature and intensity
of demand and on available link capacity. To under-
stand this dependence, we perform trace simulations
and some mathematical modelling in Section 4 below.

We used a trace from the NLANR site! collected on
August 14 2002 on the westbound IPLS-CLEV OC48
Abilene link. We extracted a 1 minute sequence (9:20:40—

9:21:40) comprising more than 4 million packets in 111000

5-tuple flows. Average link utilization is a low 16%.
The packet size distribution is approximately tri-modal
with 46% around 40 bytes, 6% around 576 bytes and
48% around 1500 bytes. We observe approximately the
same distribution of flow rates as in [16] with a maxi-
mum of around 10 Mb/s. Assuming a flow is in progress
from the arrival epoch of the first packet to the expira-
tion of a 20s time out after the last, the average number
is around 20000. Some 98% of bytes are in TCP flows.

3. COMPLEXITY OF FAIR QUEUEING

We discuss mechanisms and algorithms for achieving
approximate fairness between flows identified “on the
fly”, distinguishing fair queueing schedulers and more
approximate active queue management (AQM) mecha-
nisms.

3.1 Scheduling

Low complexity schedulers can ensure that the amount
of data transmitted by a backlogged flow never differs
from the ideal amount by more than one maximum sized
packet. We choose to exemplify this class of schedulers
by the Start-time fair queueing (SFQ) algorithm [5].
Deficit round robin provides similar guarantees [13].

An adaptation of SFQ to on the fly flow detection is
summarized in the pseudocode of Figure 1. The com-
plexity of this algorithm is determined by the operations
that add and remove flows from ActiveList and by the
sort operation implicit in line 9. We define flows in-
cluded in ActiveList to be active flows. The complexity

"http://pma.nlanr.net /Traces/long/iplsl.html

on arrival of [-byte packet p of flow f:
if f € ActiveList do
TimeStamp.p = FinishTag. f
FinishTag.f +=1{
else
add f to ActiveList
TimeStamp.p = VirtualTime
FinishTag. f = VirtualTime + [

S I S ol

9. transmit packets in increasing TimeStamp order

10. at the start of transmission of packet p:

11. VirtualTime = TimeStamp.p

12. for all flows f € ActiveList

13. if (FinishTag.f < VirtualTime) remove f

Figure 1: Pseudocode of SFQ with a dynamic
list of active flows.

of the sort in fact depends only on the number of flows
in ActiveList whose first packet has a time stamp differ-
ent to VirtualTime. This is the number of bottlenecked
flows whose packets are transmitted at the current fair
rate.

In any realization, ActiveList has finite capacity and
may already be saturated when a new flow should be
added at line 6. It is important therefore to specify the
default treatment for a packet that cannot be sched-
uled correctly. We assume the packet is emitted as if it
acquired VirtualTime as time stamp. This has no con-
sequence if the flow is not bottlenecked. A bottlenecked
flow will be incorrectly regulated until one of its packets
does trigger its inclusion in ActivelList.

3.2 Approximate fairness

A number of AQM mechanisms have been proposed
with the objective of realizing approximate fair sharing.
These mechanisms are based on dropping packets with
a certain probability determined from an estimate of the
current rate of the flow to which the packets belong.

With CSFQ [14], the rate is assumed to be measured
precisely at an edge router and included in a specific
header field. Complexity is thus minimal at the core
router where sharing is performed. However, implemen-
tation requires changes to the IP header and must be
performed for an entire network. FRED [7], AFD [11]
and RED-PD [8] all require a list of flows and their com-
plexity depends on the size of this list. AFD and RED-
PD seek to identify just the bottlenecked flows. There
is however no discussion in the cited papers of how ac-
curately this set can be identified among the changing
population of in-progress flows.

3.3 Pros and cons

A major advantage of AQM is that packets that are
not dropped are transmitted via a simple FIFO. On
the other hand, the complexity of maintaining virtual
scheduling queues with linked lists is not necessarily an
obstacle if the number of active flows is small.

The precise fairness of schedulers is not crucial for
elastic flows. However, a significant side benefit is that
fair queueing also allows useful guarantees for latency
critical flows (see Section 5.2).

The performance of AQM mechanisms is less clearly
understood than that of schedulers and tends to depend
critically on chosen parameter values.

4. IN-PROGRESS, ACTIVE AND BOTTLE-
NECKED FLOWS

In this section we evaluate the distributions of the
numbers of in-progress, active and bottlenecked flows
using trace simulation and analysis.

4.1 Trace driven simulations

Using the Abilene trace described in Section 2, we
have performed simulations of a link handling this traf-
fic using the SFQ algorithm of Fig. 1. We vary the
capacity of the link to account for a range of loads.

With a capacity of 2.5 Gb/s, there is no real queueing
but the SFQ algorithm identifies flows contributing to
busy periods in the FIFO queue of the Abilene router
and populates the active list appropriately. However,
given the low link utilization of 0.16, the number of
packets in the trace busy periods is very small, never
exceeding 7. When link capacity is reduced, certain
trace busy periods coalesce leading to increased schedul-
ing activity. The exogenous rate of some flows is then
greater than the current fair rate leading to rate reduc-
tion by the scheduler. Buffers are sized to avoid loss
due to this induced congestion.

We have performed simulations with link capacities of
2.5 Gb/s, 1 Gb/s, 500 Mb/s and 450 Mb/s correspond-
ing to utilizations of 0.16, 0.41, 0.84 and 0.93, respec-
tively. Figure 2 presents the empirical complementary
distribution of the active list size for each simulation.
Even under a heavy load of 0.93, the number of active
flows never exceeds 215, a value much smaller than the
number of in-progress flows of around 20000.

4.2 A traffic model for homogeneous flows

To explain the difference in the numbers of in-progress,
active and bottlenecked flows, we introduce the follow-
ing simple model. Flows are generated according to
the general Poisson session model described in Section
2 and share a link of capacity C. We assume all flows
emit data at the same constant rate and, to simplify
the presentation, we choose this rate to be C/m with
m an integer. Let the number of in-progress flows be

— load=0.93

g i load=0.84
=& 7 load=0.41
A - i load=0.16
A v
N v
" , '-'
3g |

I - .
ga
o !
o !

0 E

? 4

g = T T T

Figure 2: Complementary distribution of the ac-
tive list size - trace simulation, link utilizations:
0.16, 0.41, 0.84, 0.93.

N,,. When N, > m, the SFQ scheduler imposes that
each flow realizes the current fair rate on output. We
assume the transport protocol is perfectly efficient in
ensuring each flow is able to emit at this rate.

The above assumptions correspond to the fluid traffic
model considered by Ben Fredj et al. [2]. The distri-
bution of the number of in-progress flows depends only
on the link load p (flow arrival rate x mean size / C)
and the rate parameter m. Denoting this distribution
by mm(n), we have:

() = (1= p)p(p) < { RO s
(1)
where
m |
flp) = m—l(mp) o

(1= p) Sonsy (mp)* /KL + (mp)™ /m!

Let A, represent the number of active flows when a
new entry needs to be added to this list (triggered by a
packet arrival when n < m or a new flow arrival when
n > m). To derive the distribution of A,,, we assume all
packets have the same size. Considering the operation
of SFQ, when N,, is less than m, the number of active
flows is non-zero only in a busy period of the packet
queue. During the busy period, A4,, increases by one on
each packet arrival, these packets coming necessarily
from distinct flows, and is reset to zero at the end of
the busy period. When N, is greater than or equal to
m, the active list always contains exactly N,, flows.

The distribution b,,(i,n) of the number of packets in
a busy period can be derived from known results for
the nD/D/1 queue [15]. We have, for 1 < n < m and

m-—n 72(m -l

. n—1
bm (i) = (z’—1>m—n+1

Let d,,,(j, n) denote the probability of the event A,,, = j,
given N,, = n. We have:

(2)

mn72

n—1

n
) Y bm(in),0<j<n<m
i=j+1
IL,bn>mand j=n, orj=n=0

dm(j’ n) = (1 -

0, otherwise.

The first line derives from the fact that an arriving
packet sees an active list size equal to the number of
packets that have already contributed to the nD/D/1
busy period to which that packet belongs. By a classi-
cal renewal theory result, the probability this number
is equal to j is Pr[busy period > j] / E[busy period
length]. Finally, the distribution of the number of active
flows a,,,(j) is derived by deconditioning with respect to
the distribution (1):

am(j) = de(jan)ﬂ'm(n)- (3)

n>0

Let B,,, denote the number of bottlenecked flows. B,,
is equal to n with probability ,,(n), for n > m+1, and
is 0 with probability Y, .., Tm (7).

Noting that A,, is unbounded, any finite active list
size leads to some probability of overflow. We would
like to know how big the list needs to be to satisfy some
upper limit on this probability. We therefore choose to
represent the performance of this traffic model in terms
of a remote percentile of the distribution.

Figure 3 plots the 99.9% percentile of the distribu-
tions of N, and A,, against link load p for a range of
rate parameters m. When m = 1, all in-progress flows
are active and bottlenecked and Ny, A; and B; have
the same geometric distribution. The percentile of this
distribution is represented as the continuous line in Fig.
3 (a) and (b). We do not plot results for B, since the
percentile is near zero except when p is very close to 1.

The results illustrate two important points about fair
queueing:

1) Scheduling is scalable in that the numbers of active
and bottlenecked flows do not increase with link ca-
pacity C. For a fixed exogenous flow rate and a given
link utilization, the percentile for bottlenecked flows de-
creases as C' increases while that of active flows tends
to a limit.

2) Scheduling is feasible up to high load (utilization
< 90%, say) since the number of active flows remains
small. However, this number explodes as utilization ap-
proaches 100% under demand overload.

4.3 Bottlenecked and non-bottlenecked flows

To more closely model real traffic, it would be nec-
essary to account for the wide range of exogenous flow
rates. Modelling such a system is extremely difficult,
however, and to derive useful formulas we must make
some simplifications. Specifically, we assume there are
just two classes of traffic: flows of the first class are al-
ways bottlenecked and are served at the fair rate; flows
of the second class are never bottlenecked and are repre-
sented as a stream of variable sized packets. To further
simplify, we suppose this stream is Poisson.

Let the traffic intensity of class i flows be A; for
i = 1,2. A reasonable approximation for the distri-
bution of the number of class 1 in-progress flows is de-
rived on assuming they fairly share a constant residual
bandwidth equal to C' — A5. The distribution is then:

m(n) = (1 — peft) Post (4)

where pegg = A1 /(C—Asz). This follows on setting m = 1
in (1).

Given n bottlenecked flows, the number of flows in
the active list can be deduced from an analysis of the
busy period of the M/G/1 queue [10]. A worst case
assumption for the number of active flows is that back-
logged packets have maximum size MTU. In this case,
VirtualTime in SFQ (Fig. 1) evolves as a multiple of
MTU and each distinct value defines a “busy cycle” as
illustrated in Fig. 4: the active flow list contains n flows
at the start of the cycle and increases by one for every
class 2 packet arrival. These flows are all effaced from
the list at the end of the cycle.

The number of such class 2 flows is equal to the num-
ber of customers joining the busy period of an M/G/1
queue that starts with an exceptional customer of size
nxMTU. Formulas for evaluating this system are given
in [10] and can be used to derive the distribution of the
number of active flows, as in Section 4.2.

Bottlenecked Packets (7) from

flows (3) non-bottlenecked flows
(k-1) MTU; VirtualTime = k MTU 3 (k+1) MTU
: busy cycle '
16
active flows
4,_,—,—,—,7 -

3 L

Figure 4: Illustration of the notion of busy cycle.

Using the distribution of packet sizes derived from the
trace, we have evaluated this probability for the link

Percentile
100 1000 10000

10

0.0 0.2 0.4

load

0.6 0.8 1.0

(a) In-progress flows Ny,

Percentile

m=10000 ~

10000
|

I
[}
1
1

1000
|

100
|

0.8 1.0

load

(b) Active flows A,

Figure 3: 99.9 percentiles of flow number distributions against link load: m = 1,100, 1000, 10000.

loads considered in Section 4.1. Proportions of bottle-
necked and non-bottlenecked traffic are those measured
in the simulations. Fig. 5 compares analytical and sim-
ulation results. Agreement is reasonable suggesting the
model provides the basis for a qualitative understanding
of how bottlenecked and non-bottlenecked flows com-
bine to determine the complexity of fair queueing.

N —— Model
g Simulation
I —
(]
—
—~
<
N
E(V)
<3
a1
()
-
n
?
()
—

Figure 5: Complementary distribution of the ac-
tive list size - analysis and simulation.

5. IMPLEMENTATION CONSIDERATIONS

In this section we attempt to draw the consequences
of the above results on the implementation of fair queue-
ing in core routers.

5.1 Sizing the active list

The results in Fig. 5 suggest that, if link utilization
can be maintained less than around 90%, an active list
capacity of some 200 flows could be sufficient. If it were
possible to directly identify bottlenecked flows, the list
capacity could be considerably smaller: by (4), assum-
ing half the traffic intensity comes from bottlenecked
flows, the number of bottlenecked flows at 90% utiliza-
tion is less than 33 for 99.9% of the time.

To reduce the required active list size, the inclusion of
a new flow might be based on a randomized decision. If
the probability of adding a flow were 0.1, say, only 10%
of the non-bottlenecked flows would be included. The
bottlenecked flows, on the other hand, would be identi-
fied as such after the emission of 10 packets on average.
The list size requirement for the example above would
be reduced from 200 to around 50 (334(200—33) x10%).

5.2 Integrating latency critical flows

The SFQ algorithm does not specify the order in
which packets with the same time stamp should be
served. If packets of new flows (i.e., flows not yet in Ac-
tiveList) are given priority over packets of backlogged
flows with the same time stamp, their queueing delay is
reduced. Noting that most audio and video flows have a
relatively low rate and would not be bottlenecked, this
device realizes an implicit service differentiation [6].

5.3 Dealing with overload

Fair queueing is scalable and arguably feasible as long
as link utilization is maintained less than some thresh-
old (90%, say). If a sustained overload occurs, however,
the number of active flows will largely exceed the list
capacity and the scheduler will fail. Note, however, that
no AQM can satisfactorily control queueing at an over-

loaded link either. All systems tend to revert to FIFO
with flow level performance deteriorating significantly.

One possible solution is to avoid overload at all cost
by preventive or reactive traffic engineering. An alter-
native is to perform admission control at flow level [6].

5.4 Buffer requirements

It has recently been observed that the rule of thumb
that router buffers should be able to store some 200 ms
of data at line rate is excessive and unsustainable as link
bandwidth increases [1]. The present discussion on the
numbers of in-progress, active and bottlenecked flows
throws further elucidates typical buffer requirements.

It is shown in [1] that buffer requirements decrease
substantially as the number of in-progress flows increases,
under the assumption that these flows are all bottle-
necked. On the other hand, our analysis demonstrates
that, at normal utilization levels, the number of non-
bottlenecked flows in progress may be large, but the
number of bottlenecked flows remains small.

According to the model of Section 4.3, it is quite prob-
able that only one flow is bottlenecked (i.e., with prob-
ability peg(1 — pegr)) and that it then has a very high
rate. In this case, as shown by the analysis of [1], TCP
would indeed require the router to store a round trip’s
worth of data to fully utilize the available rate.

In fact, if there are flows that can attain rates com-
parable to the link rate (measurements in [16] do not
reveal any!), they will be obliged for the sake of effi-
ciency to use one of the newer very high speed vari-
ants of TCP and buffer requirements would need to be
re-calculated in consequence. The design of a buffer-
economical, high-speed transport protocol and its intro-
duction would, of course, be greatly facilitated if routers
were equipped with fair queueing.

6. CONCLUSIONS

We believe the above analysis throws new light on the
feasibility of implementing per-flow fair queueing in core
routers. Fair queueing is scalable since complexity does
not increase with link capacity. It is also feasible as long
as link load is not allowed to attain saturation levels.
This observation results from a performance evaluation
taking account of known statistical characteristics of TP
traffic at flow level.

The scalability results apply equally for exact sched-
ulers like SFQ and DRR and for approximate AQM-
based mechanisms. It largely remains to evaluate the
optimal compromise between complexity and fairness.
There is scope for simplifying the schedulers, notably by
applying randomization to reduce the number of non-
bottlenecked flows that are unnecessarily included in
the active list.

Our analysis highlights the importance of avoiding
overload since there is little any scheduler or AQM can

do to alleviate the resulting flow level congestion. Per-
flow admission control may be a more effective overload
control than over-provisioning and meticulous traffic en-
gineering.

Fair queueing has the side benefit of allowing perfor-
mance assurances for latency critical applications. An
open issue is to determine how precise these assurances
can be when fairness is approximate, as with the AQM
mechanisms or the randomized scheduler envisaged in
Section 5.1.

The traffic models presented above can be improved
and more extensive trace-based simulations are clearly
desirable. The present analysis illustrates the impor-
tance of taking proper account of the stochastic nature
of traffic at flow level in this evaluation.

7. REFERENCES

[1] G. Appenzeller, I. Keslassy, N. McKeown, Sizing router
buffers, In Proc. of ACM SIGCOMM 2004.

[2] S. Ben Fredj, T. Bonald, A. Proutiére, G. Régnié and J.W.
Roberts. Statistical bandwidth sharing: A study of
congestion at flow level, In Proc. of ACM SIGCOMM 2001.

[3] N. Brownlee, kc claffy, Understanding Internet traffic
streams: Dragonflies and tortoises, IEEE Communications
Magazine, 2002.

[4] S. Floyd, V. Paxson. Difficulties in simulating the Internet,
IEEE/ACM Transactions on Networking, Vol. 9, No. 4,
Aug 2001, pp 392-403.

[5] P. Goyal, H. Vin, H. Cheng. Start-time fair queueing: A
scheduling algorithm for integrated services packet
switching networks. IEEE/ACM Transactions on
Networking, Vol 5, No 5, Oct 1997.

[6] A. Kortebi, S. Oueslati, J. Roberts, Cross-protect: implicit
service differentiation and admission control, Proceedings
of HPSR’04, Phoenix, 2004.

[7] D. Lin, R. Morris, Dynamics of Random Early Detection,
In Proc. of ACM SIGCOMM 1997.

[8] R. Mahajan, S. Floyd, D. Weatherall, Controling
high-bandwidth flows at the congested router, Proceedings
of ICNP 2001.

[9] J. Nagle, On packet switches with infinite storage, RFC
970, IETF, 1985.

[10] S. Niu, R. Cooper, Duality and Other Results for M/G/1
and GI/M/1 Queues, via a New Ballot Theorem.
Mathematics of Operations Research, Vol. 14, No. 2, pp.
281-293, 1989.

[11] R. Pan, L. Breslau, B. Prabhakar and S. Shenker, A Flow
Table-Based Design to Approximate Fairness, in Hot
Interconnects, Palo Alto, California, August 2002.

[12] S. Sarvotham, R. Riedi, R. Baraniuk, Connection-level
analysis and modeling of network traffic, Proceedings of
Internet measurement workshop 2001.

[13] M. Shreedhar, G. Varghese, Efficient fair queueing using
deficit round robin, IEEE/ACM Transactions on
Networking, Vol 4, No 3, June 1996.

[14] I. Stoica, S. Shenker, H. Zhang, Core-Stateless Fair
Queueing: A Scalable Architecture to Approximate Fair
Bandwidth Allocations in High Speed Networks, In Proc.
of ACM SIGCOMM’98, 1998.

[15] J. Virtamo, Idle and busy period distributions of an
infinite capacity N¥D/D/1 queue, Proceedings of ITC 14,
Elsevier, 1994.

[16] Y. Zhang, L. Breslau, V. Paxson, S. Shenker, On the
characteristics and origins of Internet flow rates, In Proc.
of ACM SIGCOMM 2002.

