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Abstract

While the traffic matrix is used as basic data for many network planning tasks, it must be
recognized that its inference in IP networks is particularly difficult and error prone. This pa-
per discusses the issue of defining representative traffic demands and surveys proposed techniques
for directly measuring elements of the traffic matrix or inferring their value from link measurements.
Key words: Traffic matrix, inference, traffic measurement, statistical estimation, origin-destination
matrix.

1 Introduction

The traffic matrix quantifies the demand between all pairs of origin and destination nodes in a network.
Consider the network represented by the 12-node, 19-edge graph in Figure 1 where each node is a
potential traffic source or sink and each edge represents two one-way links. The traffic matrix in this
example would specify demand on the 132 routes linking distinct nodes. The way demand is expressed
depends on the type of network in question and its traffic characteristics. For the Internet, as discussed
in the next section, demand can generally be summarized in terms of the overall bit rate generated
by all user applications, averaged over a busy period typically of length one hour.

The traffic matrix is necessary for many network planning functions. It is clearly essential to know
the volume of expected demand in order to size the network adequately to handle that demand with
satisfactory quality (low delay and loss of transmitted data). Demand on any link of the network
depends on the way traffic is routed. In current IP networks, the path of a given origin-destination
route is the shortest path where the “length” of a link is an administratively assigned weight. Routing
for a given origin-destination demand is thus fixed and it is consequently very important to carefully
plan route assignments to ensure that the demand on any link is within capacity. To plan these
assignments means appropriately choosing the administrative weights (Fortz & Thorup 2000). Since
link sizes are upgraded in large discrete steps (e.g., link capacity is typically increased by a factor of
4 in moving from one level of the optical transmission hierarchy to the next), it is not possible to
dissociate sizing and routing optimization.

Unfortunately, it proves particularly difficult to derive the traffic matrix for meshed IP networks
like that of Figure 1. A significant source of difficulty is the lack of correspondence between IP
addresses and geographical locations. To deduce the route to which a packet belongs it is necessary to
apply routing protocols (so-called internal and external gateway protocols) to the configuration data
in the routers at the time the packet was observed. The amount of traffic observed on links is not
sufficient to deduce the amount of traffic on the routes. For instance, in Fig. 1, it would be necessary
to deduce 132 route traffics from only 38 link measurements. Finally, it is well known that IP traffic
is highly volatile both in time and in space. The traffic matrix can change significantly due both to
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rapid growth and to changing traffic source locality. Frequently changing inter-domain routing policies
(BGP advertisements), often beyond the control of those planning the network in question, also cause
the relation between route and link traffic to be particularly unstable.

There are some similarities between the problem of traffic matrix inference in IP networks and
the derivation of origin-destination trip matrices for transportation planning purposes. In both cases
link measurements are much more readily available than direct estimations of end to end flows. The
common objective is to anticipate and avoid potential points of congestion although the potential for
re-sizing and route optimization is clearly much greater in IP networking. Nevertheless, the techniques
developed over the years in the transportation context constitute an interesting source of inspiration
for the communication network planner.

Our objective in the present paper is to more clearly identify the issues faced in inferring the
traffic matrix of an IP network. We first discuss the nature of IP traffic and how it can be adequately
represented for network planning purposes. We then briefly survey the inference techniques proposed
in the literature, distinguishing direct observation methods and approaches relying on inference from
link measurements. Since all methods seem to have an inevitably high degree of imprecision, we
briefly discuss in a concluding section how the network might be better designed to deal with demand
uncertainty.

2 Characteristics of IP traffic

Traffic in an IP network results from a very wide variety of user applications producing data flows of
many different forms. Traffic characteristics change continually as new applications gain popularity
with two recent remarkable examples being the Web and peer to peer applications like Napster.
However, it remains true that this traffic can be divided into two main categories: streaming flows,
produced by audio and video applications, and elastic flows, produced by all applications involving the
transfer of some form of digital document. From this perspective, evolutions in usage simply change
the volumes and proportions of the two types of flow. Elastic traffic (which uses TCP) currently
contributes around 90 to 95 percent of transported bytes.

The amount of data traffic observed at a given measurement point in successive intervals of time
is notoriously variable making it difficult to characterize and measure (Leland et al. 1994). However,
relative variability decreases as smaller streams are aggregated on network links (as predicted by
the central limit theorem). Practical experience suggests that it is possible to define a mean “busy
hour” traffic on high capacity links which is roughly stable on successive working days. This traffic is
expressed as a bit rate equal to the volume of data observed divided by the length of the observation
interval. Figure 2 shows the evolution over one week and one day of incoming and outgoing traffic on
a high capacity IP network link. The curves plot traffic averaged over successive 5 minute intervals.
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Figure 1: Network topology
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The link capacity is 10 Gbit/s and is quite uncongested, like most links in present IP backbones. The
measured traffic is thus a true representation of expressed demand.

It is clear that the busy period is well defined and that traffic in this period is roughly the same
on successive working days. It is meaningful in this case to speak of a representative traffic matrix.
If the network is sized and routing is optimized to handle this traffic without congestion, it may be
assumed that the network will provide adequate quality at all times. In some regions like North
America, the fact that a network spans several time zones may be exploited by planning the network
to accommodate a number of representative traffic matrices. This is current practice for the telephone
network but not for the Internet.

Figure 2: Weekly and daily demand profiles on an OC192 link, February 2002 (in & out traffic)

Recent results on modelling the performance of elastic traffic demonstrate that knowing just the
average traffic offered is sufficient to determine the most significant quality of service measures such as
the expected response time of a document transfer (Ben Fredj et al. 2001). Should streaming traffic
grow significantly in relative volume it may be necessary to characterize demand with additional
parameters describing the traffic mix (the different rates of audio and video flows, for instance).
However, for present purposes, we assume that the only data required for each route is a representative
expected offered traffic in bits/s.

There are currently no well-established rules for defining the representative traffic to be used
for IP network planning. One current practice, mainly for billing purposes, is to measure traffic in
successive 5 minute intervals and to select as representative value the 95-th percentile of these values.
ITU recommended practice for traffic measurements in the telephone network precisely defines daily,
weekly and monthly representative values to be used for planning purposes (ITU Rec. E.500). This
practice is not obviously adaptable to the context of the Internet, however, due notably to the current
extremely high growth rate.

The traffic matrix can be defined using these representative values. However, frequent changes in
routing protocols due to changes in peering agreements or shifts in the location of preferred traffic
sources suggest that the traffic matrix can vary frequently. Figure 3 shows an example of such vari-
ations on a backbone link in a period of one month where traffic in one direction (the darker line)
changes significantly between weeks 47 and 49. This volatility suggests the need for simple traffic
matrix inference methods and for robust engineering approaches.

3 Direct measurement of the traffic matrix

A direct method for evaluating the traffic matrix consists in observing packets at their origin on
an ingress router and deducing their egress from the destination IP address. The latter deduction
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Figure 3: Demand variation over one month on an OC48 link, December 2001.

is not straightforward, however, since there is no strict correspondence between IP addresses and
geographical locations. It is necessary to deduce the location from knowledge of the internal and
external gateway routing protocols of the considered domain. The routing information necessary to
fix the destination is much more complete and complex than that necessary for packet forwarding
which simply specifies the next hop. A two-step process is necessary:

• traffic data is collected during the network busy period;

• an off-line destination analysis is applied using the routing tables effective when the measure-
ments were made.

This direct approach is advocated by Feldmann et al. (2000) who collect incoming and outgoing
traffic statistics on just the peering links of the considered AT&T IP backbone. From this data they
can deduce the traffic matrix for routes having origin or destination outside their backbone. They rely
on the Netflow tool to gather packets into flows having the same origin and destination (IP addresses
and transport level port numbers) (Netflow 2002). The collected flow data is exported at 15 minute
intervals to a central storage point to be analysed off-line using additional data collected from router
configuration files and forwarding tables. This approach has significant disadvantages. The amount
of data to be transported to the central storage device is very high and the activation of Netflow
(or similar software) in routers is known to consume a non-negligible amount of CPU time and can
compromise router performance.

An alternative method of gathering traffic data is used by Sridharan et al. (2001) in a study of
routing strategies for the Sprint backbone. This is not advocated as an operational procedure but is
still worthy of mention. The authors have performed extremely detailed analyses of traffic entering and
leaving the network via one PoP (point of presence). Specialized equipment records the salient details
of all packets observed on all ingress and egress interfaces. Post-processing allows the reconstitution
of flow data at any required granularity. By associating known BGP routing tables it is possible to
deduce the proportions of traffic between that PoP and all the other PoPs of the Sprint network. This
allows them to constitute one row and one column of a PoP-to-PoP traffic matrix. To complete the
matrix, they then apply an ad hoc extrapolation method. To derive an accurate traffic matrix it would
be necessary to perform similar measurements at every PoP. While this method thus appears clearly
too complex for routine operational purposes, it is certainly useful in identifying some interesting
particularities of IP traffic such as the very high variability in the size of point to point flows, also
noted by Feldmann et al. (2000).

The need to know the routing tables which are valid at the time the traffic measurements are made
can be a significant constraint. This requirement is avoided with a technique proposed by Duffield and
Grossglauser (2000). They point out that the trajectories of flows through a network can be observed
directly by means of a particular sampling technique. A small proportion of packets is sampled on all
network links by means of a hash function of the invariant packet content yielding 1 (packet sampled)
or 0 (packet ignored). Data for all sampled packets are collected and analysed off line to reconstitute
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a “photograph” of the flow of traffic through the network. If a packet is sampled at one router, it
is necessarily also sampled at all other routers and it is possible to identify its path. The number of
sampled packets must be chosen as a trade-off between accuracy and generated overhead. A significant
drawback with this approach is the requirement to instrument all observed router interfaces.

4 Inference from link traffic measurements

In contrast to the difficulty involved in obtaining direct measurements on end-to-end flows, it is
routine in IP networks to derive traffic counts on all router interfaces via SNMP (the simple network
management protocol). These data can be used to infer elements of the traffic matrix. Recent studies
in the present area of IP networks have been inspired by earlier work on traffic inference from link
counts in road transportation.

In road transportation, it is difficult to obtain Origin-Destination matrices by measurements,
interviews or surveys. Various approaches to estimating the traffic matrix using traffic counts on
links have been developed. The objective is to obtain the most likely matrix causing the observed
link counts. Some models solve this problem by using deterministic techniques to find the most likely
matrix given a general model of trip distribution or a prior estimated traffic matrix while other models
adopt statistical inference techniques. The purpose of this section is to provide a brief survey of some
of these approaches. A recent publication provides a comparative evaluation (Medina et al. 2002).

4.1 Deterministic inference

We assume that traffic on network links is known precisely and that we also know the paths followed
by all end-to-end routes. Let the number of links be L and the number of routes R. Let yl denote the
traffic on link l for 1 ≤ l ≤ L, and xr the traffic on end-to-end route r for 1 ≤ r ≤ R. Note that for
convenience we represent the traffic matrix here as a vector X = {xr}. The volumes are defined by
the vector Y = {yl}.

Network paths are defined by a matrix A = [arl] where arl represents the proportion of route r
traffic that uses link l. In networks with fixed routing we would have arl ∈ {0, 1}. Current IP networks
allow either fixed routing or load sharing over a set of equal cost paths in which case the arl would be
equal for the links composing those paths.

Each route r corresponds to an end-to-end demand of volume xr such that:

R∑
r=1

arlxr = yl, for 1 ≤ l ≤ L. (1)

Or equivalently:
Y = AX. (2)

Since L � R, the above equations for the unknowns xr are largely under-specified (i.e., a large
range of traffic matrices produces the same set of link traffics). To determine the “best” solution, it is
usual to make use of additional information in the form of an initial traffic matrix {x̃r}. This may, for
example, be derived from historical data or from additional knowledge about the user population. The
objective is to find the solution to (1) which minimizes some metric measuring the distance between
{xr} and {x̃r} under the constraints expressed in equation (1).

The above problem has been considered in some detail in the context of road traffic, (e.g., Bell
1983, Bierlaire & Toint 1994, Van Zuylan & Willumsen 19801). Methods differ depending on the
metric used. A popular approach is to preserve the “information content” of the matrix {x̃r} by
maximizing entropy (Van Zuylan & Wiliamson 1980). The objective is to find the traffic matrix {xr}

1We have not attempted to provide a complete survey but simply cite some significant contributions which usefully
illustrate the different techniques.
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that adds as little information as possible to the information in the initial traffic matrix {x̃r}. This
leads to a distance metric of the form

∑
xr(log xr/x̃r − 1) . An alternative distance metric is the sum

of squares
∑

(xr − x̃r)2 yielding a traffic matrix {xr} that is as close as possible to the initial matrix
{x̃r}.

A deterministic inference technique well-known in telephone network planning is the method of
Kruithof (Krupp 1979). It is assumed here that we dispose of measurements of the aggregate traffic
entering and leaving all terminal nodes together with an initial estimate {x̃r}. The elements of {x̃r}
are successively adjusted first to match the outgoing traffic measurements (row sums) and then the
incoming traffic measurements (column sums). The process is repeated until convergence is obtained.
This method is not well suited to the topology of an IP network, however, since routes are typically
much longer than in the telephone network, and fails to make use of readily available link traffic data.

4.1.1 Evaluation

To illustrate the usefulness of deterministic inference we consider a simple example using the sum of
squares distance metric. The problem to solve is the following:

Minimize
R∑

r=1

(xr − x̃r)2 (3)

subject to :
R∑

r=1

arlxr = yl, for 1 ≤ l ≤ L and xr ≥ 0. (4)

We first define a traffic matrix for the network illustrated in Figure 1 by randomly selecting traffic
volumes distributed between 0 and 200 Mbit/s for all 132 node pairs. This traffic is routed over fixed
routes and the link loads are calculated. To represent the initial estimate of the traffic matrix {x̃r},
we perform a random perturbation of the true matrix. The perturbation consists in multiplying each
traffic volume xr by a random factor uniformly distributed between −a and a. The parameter a gives
the level of perturbation. Non-uniformly distributed factors have also been tested.

We then calculate the matrix {xr} satisfying equations (4) and minimizing the sum of squares (3).
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Figure 4: Differences between the true and the estimated matrix before and after correction.

Results for a particular experiment are illustrated in Figure 4. The graph on the left shows the
initial perturbation with error terms of up to 60 Mbit/s. The result of the optimization on the right
shows that the errors are significantly reduced, all being less than 30 Mbit/s in this case. These
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results are typical of many similar experiments using different initial data and different perturbations,
as shown in Table 1.

Initial matrix Corrected matrix
Average error Max error (Mb/s) Average error Max error (Mb/s)

Uniform perturbation 31,49 151 20,73 92
11,72 57 7,02 32
3,86 19 2,39 10

Non-Uniform perturbation 44,64 157 27,09 143
16,90 59 6,79 33
5,84 20 2,11 9

Table 1: Differences between the true and the estimated matrix before and after correction.

4.2 Statistical inference

Some recent work on traffic matrix inference for IP networks makes use of statistical techniques, again
pioneered in the field of road transportation planning, (e.g., Spiess 1987, Tebaldi & West 1998, Willum-
sen 1984). The data available are sets of traffic measurements for each link obtained in successive time
periods. Such measurements might, for example, be derived by polling the router management infor-
mation data base at 5 minute intervals using SNMP.

Given an initial assumption about the form of the distribution of the size of the end-to-end traffic
flows, the objective is to determine the most appropriate values of its parameters, given the set of
traffic measurement data.

The most popular approach is the maximum likelihood method (Spiess 1987). The prior traffic
matrix and the traffic counts are regarded as observations resulting from the true traffic matrix. The
method consists in maximizing the likelihood of observing X̃ = {x̃r} and Y = {yr} conditional on
X = {xr}. Assuming that {x̃r} and {yr} are independent, this can be expressed as :

L(X̃, Y |X) = L(X̃|X).L(Y |X) (5)

In (Spiess 1987), the likelihood is calculated under the assumptions that the matrix {x̃r} follows
either a multinomial distribution when the sampling size is assumed small or a Poisson distribution
when the sampling size is large. A Poisson distribution is also assumed for the link counts. The traffic
matrix estimation consists in maximizing the obtained likelihood over all possible traffic volumes {xr}
given by the constraints in (1).

Another approach is the Generalised Least Squares method where X̃ is supposed to be obtained
from X with a probabilistic error term ε with zero mean and finite covariance (Cascetta 1984, Bell
1991). This leads to the minimization of a distance between X̃ and X involving the covariance matrix.

In an alternative method, Vardi supposes the end-to-end traffic flow volumes X = {xr} have
a Poisson distribution (X ∼ Poisson(λ)) and calculates the respective mean rates by means of a
maximum likelihood estimation (Vardi 1996). The goal here is to estimate the vector λ = {λr} based
on the observed link counts. Assuming K repeated observations of the link volumes denoted by
Y k = {yk

r }, the maximum likelihood estimation yields the following equation:

λ =
1
K

K∑
k=1

Eλ[Xk|Y k = AXk]. (6)

Expectation-Maximisation can be used to estimate the parameter λ by applying the following
iteration:
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λn+1 =
1
K

K∑
k=1

E[Xk|Y k, λn]. (7)

However, this requires finding all solutions of AX = Y . In order to solve this problem, one
possibility consists in using an approximation for Y based on the central limit theorem:

Ȳ =
1
K

K∑
k=1

Y k → N(Aλ,
1
K

AΛA′) with Λ ≡ diag(λ). (8)

The method consists then in maximizing the likelihood expressed as follows:

l(λ) = −log|AΛA′| − K(Ȳ − Aλ)′(AΛA′)−1(Ȳ − Aλ) (9)

This approach has been refined by Cao et al. (1999, 2000). In this work the authors suppose a
normal distribution for the xr, accounting for the observed fact that the distribution of traffic volumes
is generally more variable than Poisson. The authors also propose methods to account for intensities
which vary over the sampling period. The methods proposed in (Cao et al. 1999) are somewhat
complex and suitable for small networks only. A decomposition approach is proposed in (Cao et al.
2000) allowing an extension to large networks.

Still more general assumptions about the form of the traffic distribution are possible using the
Bayesian approach proposed by Tebaldi and West (1998). These authors notably identify a problem
of bias with classical maximum likelihood methods which tend to significantly overestimate the traffic
on low intensity routes. The authors show that a choice of informed priors p(λ) (deduced from an initial
estimate of the traffic matrix, as in Section 4.1) considerably improves the accuracy of estimations
when the end-to-end traffic flow volumes X = {xr} follow a Poisson distribution (X ∼ Poisson(λ)):

p(X, λ) = p(λ)
R∏

i=1

λxi
i exp(−λi)/xi! (10)

The goal is to compute the likelihood of observing X = {xr} conditional on Y = {yr}. This
distribution is related to the two posterior distributions p(λ|X, Y ) and p(X|λ, Y ) through:

p(X|Y ) = p(X|λ, Y )p(λ)/p(λ|X, Y ) (11)

The computation of these two posterior distributions involves iterative simulation methods such
as Markov chain Monte Carlo (MCMC) sampling for generating λ and X.

The evaluations performed by Medina et al. (2002) show that the expectation maximization
approach of Cao et al. (2000) outperforms the Bayesian methods of Tebaldi and West (1998). However
all inference methods appear to suffer from significant inaccuracy. An important determining factor
is the precision of the initial estimation of the traffic matrix {x̃r}.

4.3 The initial estimates

The above inference methods clearly rely on the accuracy of the initial estimate of the traffic matrix
{x̃r}. This estimate can be derived from a variety of sources including historical data on traffic
distributions or from sampling measurements performed using techniques like those in (Sridharan et
al. 2001) or (Duffield & Grossglauser 2000). A promising approach is to use a so-called gravity model
for the traffic distribution in the network (Kowalski & Warfield 1995, West 1994) . The classical
gravity model relates the traffic on route r linking origin i and destination j to the user populations
Mi and Mj and the distance dij between i and j, as follows:
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x̃r = α
MiMj

dβ
ij

(12)

with appropriate choice of model parameters α and β.
This particular formulation can be applied to the estimation of telephony traffic (Kowalski &

Warfield 1995) or road traffic (West 1994) but is less valid in the case of IP networks where distance
has a smaller impact on traffic.

However, the gravity model can be adapted using alternative factors such as total incoming and
outgoing traffic (as in Kruithof’s method) or factors reflecting structured features such as the location
of peering points or customers for an access backbone. The so-called choice models proposed by
Medina et al. (2002) produce encouraging results.

5 Conclusions: dealing with uncertainty

The problem of traffic matrix inference in IP networks is difficult and yet extremely important for
network planning. The direct observation method presented by Feldmann et al. (2000) appears as the
most accurate solution but implementation is complex and currently relies on proprietary software.
Inference from more readily available link measurements is simpler and can readily be used to improve
imprecise preliminary estimates. The accuracy of these inference methods depends significantly on
the precision of the initial estimated traffic matrix.

However, it does appear that the derived traffic matrix can never constitute a very accurate long
term measure of demand. This is because of the inherent volatility of IP traffic, due notably to the
instability of routing protocols and to frequent changes in traffic patterns as the location of preferred
data sources shifts. This volatility is largely beyond the control of the network planner and must be
taken into account in developing more robust engineering methods.

The network architecture might also be revised to facilitate traffic fluidity. Current routing pro-
tocols are designed more to ensure logical connectivity than to guarantee the efficiency and quality
of user transactions. Use of MPLS would allow greater control over traffic routing and also provide
scope for direct route traffic measurement when the route coincides with a label switched path (Rosen
et al. 2001). At longer term, one might envisage the use of traffic aware adaptive routing, as in the
telephone network, to ensure that flows are routed over paths with sufficient capacity to handle them.
If adaptive routing were employed, precise knowledge of the traffic matrix is less critical since traffic
flows automatically find the paths with sufficient capacity.

The art of estimating IP network traffic matrices is still in its infancy. Lessons learned in the field
of transportation, as well as in that of traditional telecommunications networks, are extremely useful
but do not provide a complete solution. The specific constraints arising from the nature of IP traffic
and the way it finds its way through the network via the routing protocols makes this a particularly
important and challenging research issue.
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