
Cryptographic Simulator Synthesis Using Program Logics
Toward a Framework for Mechanizing Cryptographic Reductions

Adrien Koutsos
Inria Paris

Aymeric Fromherz
Inria Paris

September 2025

Location: The internship will take place at Inria Paris, in the Prosecco team.
Contact information:

• Adrien Koutsos: adrien.koutsos@inria.fr
• Aymeric Fromherz: aymeric.fromherz@inria.fr

Expected abilities of the student. The student will need a strong background in
logics, proof theory and program verification. Knowledge in security and cryptogra-
phy is a plus, but is not required: the necessary background will be acquired during
the internship if needed.

Computer-aided cryptography. Cryptography is vital to protect communica-
tions: for example, the TLS protocol ensures the security of all HTTPS communi-
cation. Unfortunately, cryptographic designs are routinely found flawed (e.g. [9, 1],
to cite but a few TLS attacks). Formal verification can be used to obtain strong
guarantees on the security of cryptographic designs, by formally proving their secu-
rity. Computer-aided verification, where the proof of security itself is mechanized
and verified by a dedicated tool, provides the highest level of guarantees.

The field of computer-aided cryptographic verification is now established, with
several tool being actively developed and used (e.g. EasyCrypt [11] and Squirrel [12]).
Verifying cryptographic programs requires to deal with a number of aspects, includ-
ing concurrency (protocols are intrinsically asynchronous), probabilities (randomness
is pervasive in cryptography), and complexity analysis (bounding the run-times of
adversary is needed, e.g. to guard against brute-force attacks). Further, a verifi-
cation framework with higher-order features are desirable, to allow for proof-reuse

1

https://www.inria.fr/fr/centre-inria-de-paris
https://team.inria.fr/prosecco/
adrien.koutsos@inria.fr
aymeric.fromherz@inria.fr

and modular reasoning. The combination of all these features makes computer-aided
cryptography a challenging sub-field of program verification.

The security of a cryptographic design is often expressed using games. A game
G = (G0,G1) is a pair of programs: typically, G0 could represent the execution of a
protocol, and G1 may be an idealized version of the protocol where security is obvi-
ous by construction (e.g. G1 could be the target protocol, except that all messages
exchanged over the network have been replaced by zeroes, ensuring their confiden-
tiality). A game is secure iff. no adversary (formally, a polynomial-time probabilistic
program) can distinguish between them, except with negligible probability1:

∀A : ptime. |Pr(A(G0) = 1)− Pr(A(G1) = 1)| ≤ ϵnegl. (1)

The goal of a cryptographic proof is to formally establish such probability bounds.
This kind of proofs are complex, and mechanizing them requires significant manual
proof efforts (proofs are regularly thousands of lines long, e.g. the security proof for
SHA3 of [3] is around 17 kLoC). To tackle this issue, it is useful to design logics which
are as elegant and usable as possible, reducing the proof-burden put on users. As an
example from program verification, separation logics allow to facilitate reasoning on
the heap in a way that is modular and amenable to automation. We have similar
aims, but for the verification of cryptographic proofs.

Cryptographic reductions. A prime candidate for this are cryptographic reduc-
tions : assuming the security of some hardness game H = (H0,H1), we can prove
that another game G is secure by exhibiting an adversary against H that can sim-
ulate G; indeed, an adversary for G composed with that simulator would yield an
adversary for H. That is, to reduce G to H, we must exhibit a single simulator S
such that, roughly:

(proba.) S(H0) = G0 and S(H1) = G1 (complexity) S is ptime.

Writing simulators in detail is tedious and error prone, involving a lot of boilerplate
code for a few interesting steps: we want an approach reducing the necessary user
inputs to a minimum. More precisely, we want dedicated logics that can synthesize
correct cryptographic simulators.

1Very roughly, negligible means exponentially small in the security parameter η (typically, η is
the length of the cryptographic keys).

2

State-of-the-art and limitations. In [6], a logic has been proposed to do exactly
that: the logic features a judgement #(⃗h0; h⃗1)▷#(g0; g1) called bi-deduction, which
essentially states that there exists a simulator S such that S (⃗hi) = gi for any i ∈
{0, 1}. Then, [6] proposed a proof-system for bi-deduction, which serves as basis of
an automated proof-search procedure. But this logic and associated proof-system
suffer from several limitations and drawbacks:

• Non-standard. The logic formulation is non-standard, limiting its adoptions.
In particular, the target program Gi and the simulated execution S(Hi) are
usually not equal, but only need to yield identical probabilistic distributions for
their outputs. The logic of [6] does this by indirectly establishing the existence
of a probabilistic coupling [7] through so-called name constraints. A more direct
approach would be more intuitive and thus desirable.

• Complexity. The proof-system only supports target program (g0, g1) with
bounded loops of the form for i = 0 to N , where N is a constant independent
from the security parameter η. This restricts the logic to proving parametric
security [5], which is weaker than the polynomial security as stated in Equ. (1).

• Approximated simulation. The bi-deduction ▷ requires that the simulator S
exactly computes the target program. This could be weakened by allowing
for a negligible probability of error during simulation. But this must be done
carefully, so as to avoid the error to increase by more than a negligible quantity.
We note that the interaction of negligible errors and loops with a polynomial
number of interactions is delicate [13].

• Higher-order. The games are restricted to first-order programs: it would be
interesting to extend this to a higher-order setting.

Internship Goals. During this internship, we will aim to design a logic over-
coming the limitations described above while operating under the following design
constraints:

• Implicit simulators. The logic should allow to build simulators without making
them explicit. A syntax-directed approach that exploits as much as possible
the shape of the target programs to simulate seems particularly adapted.

• Elegant. The logic should be elegant and intuitive to use. To that end, a
standard-looking program logic, e.g. taking the form of a probabilistic Rela-
tional Hoare Logic [8] (pRHL), seems desirable. Such a logic would be standard

3

only on the surface, e.g. we expect it to capture relations between four differ-
ent programs (the two target games, and the two executions of the simulators
being built), instead of the usual two of pRHL.

• Usable. The logic should be usable and modular: we believe that separation
logic could be the way to go.

• Amenable to proof automation. Automation allows to reduce boilerplate by re-
quiring user intervention only for the most intricate steps (e.g. loop invariants).
As opposed to [6], we do not aim for full automation, which might limit the
planned extensions.

• Mechanizable. As we target computer-aided cryptography, the logic should be
mechanizable in existing proof assistants. This should not be an issue, as Hoare-
style separation logics are well-suited for this. While this is the end-goal, we
do not expect this internship to go all-the-way to mechanization.

Proposed organization of the internship. In order to simplify the task of the
intern and reduce the risk of failure, we propose a gradual approach, attacking each
limitations of the state-of-the-art in isolation, one after the other, while operating
under the design constraints presented above.

⋄ Task 1). The first task will be to design an initial bare-bone version of the logic
taking the form of a Hoare-style separation program logic. This will draw the general
shape of the logic, and serve as basis for the following steps.

⋄ Task 2). The next task could be to extend this base logic with: i) either support
for more advanced complexity reasoning (e.g. using time-credits [10, 4]); ii) or to allow
for approximations during simulation (e.g. using error credits [14, 2]). In both cases,
we would rely on separation logic predicates, explaining why the base logic should
be a separation logic. Both sub-tasks can be tackled in any order.

⋄ Task 3). Finally, it could be interesting to move to a higher-order setting,
allowing for more modular reasoning. We expect this to bring additional difficulties,
e.g. for higher-order complexity reasoning. Still, this should be possible [14], though
it may be non-trivial.

It seems unlikely that all tasks could be completed during the internship: de-
signing a logic which either support advanced complexity reasoning or approximated
simulation — i.e. tasks 1) plus 2.i) or 2.ii) — would be a satisfactory outcome. Com-
pleting this program, and then moving toward mechanization, could possibly be done
during follow-up work, e.g. as part of a PhD (for which funding is available).

4

References
[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santi-
ago Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy: How
diffie-hellman fails in practice. In CCS, pages 5–17. ACM, 2015.

[2] Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei
Li, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars Birkedal. Error
credits: Resourceful reasoning about error bounds for higher-order probabilistic
programs. Proc. ACM Program. Lang., 8(ICFP):284–316, 2024.

[3] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,
François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Al-
ley Stoughton, and Pierre-Yves Strub. Machine-checked proofs for cryptographic
standards: Indifferentiability of sponge and secure high-assurance implementa-
tions of SHA-3. In CCS, pages 1607–1622. ACM, 2019.

[4] Robert Atkey. Amortised resource analysis with separation logic. In ESOP,
volume 6012 of Lecture Notes in Computer Science, pages 85–103. Springer,
2010.

[5] David Baelde, Caroline Fontaine, Adrien Koutsos, Guillaume Scerri, and Théo
Vignon. A probabilistic logic for concrete security. In CSF, pages 324–339.
IEEE, 2024.

[6] David Baelde, Adrien Koutsos, and Justine Sauvage. Foundations for crypto-
graphic reductions in CCSA logics. In CCS, pages 2814–2828. ACM, 2024.

[7] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal cer-
tification of code-based cryptographic proofs. In POPL, pages 90–101. ACM,
2009.

[8] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Probabilistic
relational hoare logics for computer-aided security proofs. In MPC, volume 7342
of Lecture Notes in Computer Science, pages 1–6. Springer, 2012.

[9] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. Triple handshakes and cookie cutters: Break-
ing and fixing authentication over TLS. In IEEE Symposium on Security and
Privacy, pages 98–113. IEEE Computer Society, 2014.

5

[10] Arthur Charguéraud and François Pottier. Verifying the correctness and amor-
tized complexity of a union-find implementation in separation logic with time
credits. J. Autom. Reason., 62(3):331–365, 2019.

[11] The Easycrypt development team. The EasyCrypt Prover repository, accessed
august 2025. https://github.com/EasyCrypt/easycrypt/.

[12] The Squirrel development team. The Squirrel Prover repository, accessed august
2025. https://github.com/squirrel-prover/squirrel-prover/.

[13] Marc Fischlin and Arno Mittelbach. An overview of the hybrid argument. IACR
Cryptol. ePrint Arch., page 88, 2021.

[14] Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede
Gregersen, Joseph Tassarotti, and Lars Birkedal. Approximate relational rea-
soning for higher-order probabilistic programs. Proc. ACM Program. Lang.,
9(POPL):1196–1226, 2025.

6

https://github.com/EasyCrypt/easycrypt/
https://github.com/squirrel-prover/squirrel-prover/

