Internship proposal:
Formal verification of Rust programs

Advisor: Son Ho
Team Prosecco – Inria
son.ho@inria.fr

Head of department: Karthikeyan Bhargavan
Team Prosecco – Inria
karthikeyan.barghavan@inria.fr

Location of the internship: Paris, France

Context. Program verification is a notoriously difficult and time-consuming task, in particular when reasoning about pointer aliasing and mutable state. This indeed requires dedicated tooling and logics [15, 9, 12, 16], an expert knowledge of the verification tools and the target languages, as well as a huge amount of work [10, 15, 9], impeding large-scale verification efforts.

Rust is a young programming language with an affine type system and an ownership mechanism, which allow fine control of memory with a low overhead like C, while providing strong type and memory safety guarantees similarly to high-level languages typically relying on a garbage collector like OCaml [3]. This combination of fine control and strong guarantees has made it a language of choice for more and more industrial projects [4, 1], and has triggered a growing trend to leverage its type system to simplify reasoning about stateful programs [5, 13].

Goals. While the growing interest for Rust has led to the development of several dedicated verification frameworks [5, 11, 14, 8, 17, 2], the successful application of such frameworks to the verification of large real-world Rust programs is yet to be explored.

Accordingly, the goal of this internship will be to apply verification techniques to programs written in Rust and targeting real world applications, a potential candidate being the efficient implementation of a cryptographic protocol such as MLS [6]. A first step might be to use the Hacspec [14] subset of Rust to write and specify such a program, then expand this analysis with more advanced tooling to use a larger subset of Rust, or reason about non-functional properties such as security guarantees [7].

As progress is made on the verification work, the intern will be encouraged to identify shortcomings in the existing techniques as well as possible improvements, potentially leading to contributions to the tools themselves if time allows.

Qualifications. This internship of 6 months or less would be hosted by the team Prosecco at Inria Paris. The preferred qualifications for the student at the beginning of the internship would be:

- fluency with the Rust programming language;
- fluency with a functional programming language like OCaml;
- some experience with at least one theorem prover (Coq, F*, LEAN, HOL4, Isabelle/HOL, ...);
References


