PreMeDICaL: Personalized Medicine by Data Integration and Causal Learning

Team Inria-Inserm; Institut Desbrest d'épidémiologie et de Santé Publique (IDESP): UMR 1318 Inserm - Université de Montpellier (UM).

Julie Josse. Senior Researcher Inria 2020-; Prof. Polytechnique Paris 2016-2020; researcher Google AI, Stanford Univ.

presentations are made available using the creative commons licence cc-by-sa

Interdisciplinary team: clinical, bio-stat, machine learning skills

- ▷ <u>Aurélien Bellet</u>: DR Inria. Federated learning, privacy, fairness
- $ightharpoonup Pascal Demoly: PU-PH, director of IDESP. Prof. of pulmonology/asthma <math>\Rightarrow$ Public health issue: WHO predicts in 2050 1/2 person with allergies
- ▷ Julie Josse (PI): DR Inria. Missing values, causality, multi-modal data
- ▷ <u>Nicolas Molinari</u>: PU-PH. Prof. of biostatistics University Hospital
- ▶ 10 PhD students (including medical doctors), 6 postdoc, 3 interns Grant MUSE (Montpellier Université d'Excellence), Programme et Equipements Prioritaires de Recherche digital health & Cybersecurity, Contracts with companies (Capgemini Invent, Elixir, L'oreal, Sanofi, Theremia, Withings, etc.)

Research axes

Personalized medicine by optimal prescription of treatment

- ▷ Causal inference for (dynamic) policy learning: allocating the best treatment for each person at the right time
- Design the **future of trials**: bring treatments to market faster

Personalized medicine by integration of different data sources

- ▷ Challenges of missing values/modalities, distributional shifts
- ▶ Federated learning: learn from decentralized data

Personalized medicine with privacy and fairness guarantees

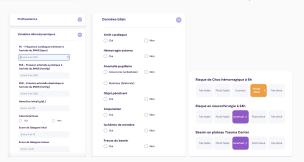
- ▶ Confidentiality: ensure models do not leak sensitive information
- ▶ Fairness: learn models with similar performance across groups
- ⇒ Push methodological innovation up to patients, clinicians, regulators
- ⇒ Collaborative effort: leveraging ML, data, clinical expertise

(Online) Decision support tool with quantified uncertainty

Ex: Traumatrix project¹: Reducing under and over triage for improved resource

allocation in trauma care

Major trauma: brain injuries, hemorrhagic shock from car accidents, falls, stab wounds ⇒ requires specialized care in "trauma centers" Patients misdirected: human/ economical costs



Clinical trial launched in 2025: real-time implementation of Machine Learning models in ambulance dispatch via a mobile data collection application

¹www.traumabase.eu - https://www.traumatrix.fr/

Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

Center	Accident	Age	Sex	Weight	Lactacte	Blood	TXA.	Y
						Press.		
Beaujon	fall	54	m	85	NA	180	treated	0
Pitie	gun	26	m	NA	NA	131	untreated	1
Beaujon	moto	63	m	80	3.9	145	treated	1
Pitie	moto	30	W	NA	NA	107	untreated	0
HEGP	knife	16	m	98	2.5	118	treated	1
:								٠.

 \Rightarrow Estimate causal effect (with missing values²): Administration of the treatment tranexamic acid (TXA), given within 3 hours of the accident, on the outcome (Y) 28 days in-hospital mortality for trauma brain patients

²Mayer, I., Wager, S. & J.J. (2020). Doubly robust treatment effect estimation with incomplete confounders. *Annals Of Applied Statistics. (implemented in R package grf)*.

Randomized Controlled Trial (RCT)

- same covariate distributions in treated and control groups
 - \Rightarrow High **internal** validity

Randomized Controlled Trial (RCT)

- ⊳ **gold standard** (allocation 🦫)
- ▷ same covariate distributions in treated and control groups
 ⇒ High internal validity
- - ⇒ No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

Randomized Controlled Trial (RCT)

- ▷ same covariate distributions in treated and control groups
 ⇒ High internal validity
- - ⇒ No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

- ▷ low cost
- ▷ large amounts of data (registries, biobanks, EHR, claims)
 - ⇒ patient's heterogeneity
- representative of the target populations
 - ⇒ High external validity

Randomized Controlled Trial (RCT)

- > same covariate distributions in treated and control groups
 - \Rightarrow High **internal** validity
- ▷ expensive, long, ethical limitations
- - ⇒ No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

- ▷ "big data": low quality
- lack of a controlled design opens the door to confounding bias
 - ⇒ Low internal validity
- ▷ low cost
- ▷ large amounts of data (registries, biobanks, EHR, claims)
 - ⇒ patient's heterogeneity
- representative of the target populations
 - ⇒ High **external** validity

Leverage both RCT and observational data

RCT

- + No confounding
- Trial sample different from the population eligible for treatment

(big) Observational data

- Confounding
- + Representative of the target population

We can use both to 3 . . .

- ▷ ...improve estimation of heterogeneous treatment effects
- ...generalize the treatment effect to a target population (data fusion, transportability, recovery from selection bias)⁴,⁵

³Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. *Statistical Science*.

⁴Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. *PNAS*. ⁵Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for Extending Causal Inferences From a RCT to a Target Population *American J. of Epidemiology*.

Leverage both RCT and observational data

RCT

- + No confounding
- Trial sample different from the population eligible for treatment

(big) Observational data

- Confounding
- + Representative of the target population

We can use both to 3 . . .

The FDA has greenlighted the usage of the drug *Ibrance* to men with breast cancer, though clinical trials were performed only on women.

→ Reduce drug approval times and costs

³Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. *Statistical Science*.

⁴Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. *PNAS*. ⁵Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for Extending Causal Inferences From a RCT to a Target Population *American J. of Epidemiology*.

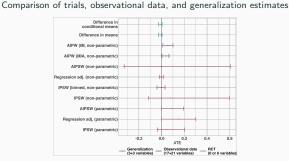
Generalization from trial to Observational data⁶ ^{7 8 9}

CRASH3

- > 9000 individuals develp. countries
- Positive effect

Traumabase

- ▷ Observational sample
- ⊳ 8200 patients with brain trauma
- ▷ Deleterious/No evidence effect



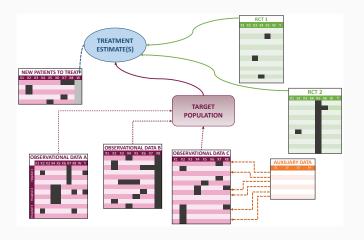
x-axis: Estimation of the Average Treatment Effect, Confidence intervals with bootstrap y-axis: Estimation methods (nuisances: parametric: logistic regression - non parametric: forests)

⁹Colnet, **J.J** et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize?

⁶Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. *J. of Causal Inference*.
⁷Mayer, J.J. 2021. Generalizing effects with incomplete covariates *Biometrical Journal*.

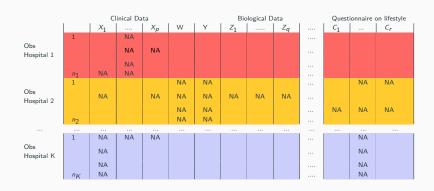
 $^{^8}$ Colnet, **J.J** et al. 2023. Reweighting the RCT for generalization: finite sample analysis. *JRSSC*.

Personalized medicine by data integration & causal learning



Missing values in multi-source/modalities data

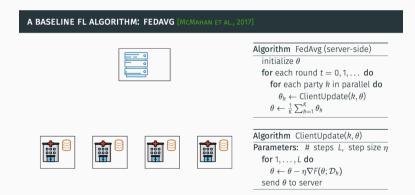
Missing data: important bottleneck in statistical practice <u>Inferential aim</u>¹⁰, Matrix completion aim¹¹¹², <u>Predictive aim</u>¹³¹⁴¹⁵



 ¹⁰ Jiang, J. et al. Logistic Regression with Missing Covariates CSDA. 2019. - misaem package
 ¹¹Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
 ¹² Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.
 ¹³ J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024.
 ¹⁴ Le morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.

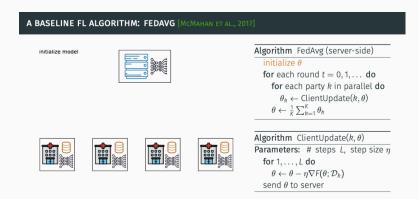
¹⁵Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. *ICML 2023*.

Difficult to share individual-level data due to data silos & regulations



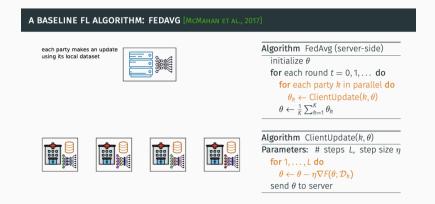
 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



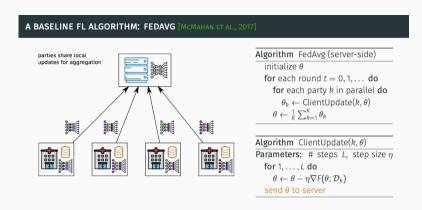
 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



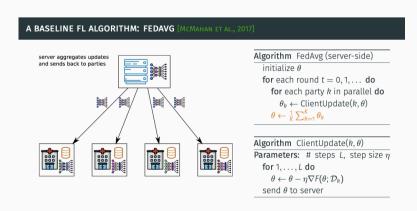
 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



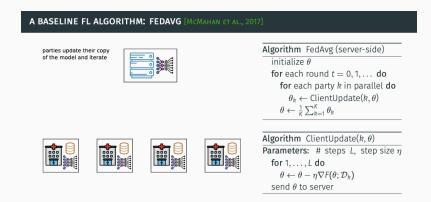
 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



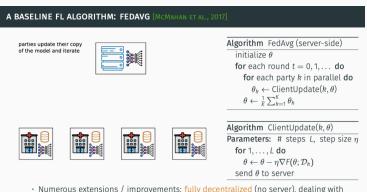
 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

Difficult to share individual-level data due to data silos & regulations



 Numerous extensions / improvements: fully decentralized (no server), dealing with highly heterogeneous data, privacy, fairness, compression... [Kairouz et al., 2021]

 $^{^{16}}$ Khellaf R, Bellet, A. & J.. Multi-study ATE estimation beyond meta-analysis. AISTATS 2025

▶ Al models may embed information about individual data points used to train them

Al models may embed information about individual data points used to train them: someone with access to a model may be able to predict whether a point was in the training set

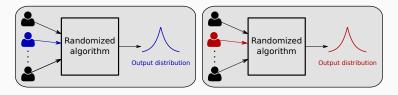
Al models may embed information about individual data points used to train them: someone with access to a model may be able to predict whether a point was in the training set and even reconstruct some of the training points

Al models may embed information about individual data points used to train them: someone with access to a model may be able to predict whether a point was in the training set and even reconstruct some of the training points



→ when trained on personal data, Al models cannot in general be considered as "anonymous"

Training models with robust privacy guarantees



- Differential Privacy (DP) requires that changing one data point does not change the algorithm's output distribution too much
- Comes with strong and robust privacy guarantees, but requires adding noise to data-dependent computations
- Goals: design algorithms that provide the best privacy-utility trade-off, translate theoretical guarantees into protection against concrete attacks
- ▷ Ex: tight privacy guarantees for releasing a (deep) model¹⁷

 $^{^{17}\}mathrm{T}$ Cebere, A Bellet, N Papernot. Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model. ICLR 2025

Premedical projects

Translate research into clinically actionable solutions

Ongoing projects

- ▷ Private causal inference, privacy of synthetic data

Al adoption challenges

- \Rightarrow Human-algorithm interaction
- \Rightarrow Algorithm evaluation: trust in LLMs; context is required consider impact on stakeholders