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Policy learning

Learning a treatment assignment policy is pivotal across various
domains, for instance:

• individualized treatment rule in precision medicine
• personalized advertising in marketing
• educational/training programs in public policy

Basic causal setup:1

• data O = (X,A, Y) ∼ P with covariates X ∈ X , treatment A and
outcome Y

• complete data O = (X,A, Y(0), Y(1)) ∼ P
w/ potential outcomes Y(0), Y(1)

• policy d : X → A = {0, 1}
1Athey, S., & Wager, S. (2021). Policy learning with observational data. Econometrica,
89(1), 133-161.
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Main approaches

(A) Heterogeneous treatment effects estimation:

x 7→ CATEP(x) = EP[Y(1)− Y(0) | X = x]
⇝ dopt(x) = I{CATEP(x) > 0}

(B) Direct policy search:
define value function d 7→ VP(d) = EP[Y(1)d(X) + Y(0)(1− d(X))]

dopt = argmax
d∈D

VP(d)

= argmax
d∈D

EP[(Y(1)− Y(0))d(X) + Y(0)]

= argmax
d∈D

E[CATEP(X)d(X)]

Possibly subject to application-specific constraints, such as budget,
fairness, simplicity
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Direct policy search - identification

Under consistency, unconfoundedness and positivity:

• inverse probability weighting (IPW):

VP(d) = EP
[

Y I{A = d(X)}
PrP(A = d(X) | X)

]
• outcome regression (OR):

VP(d) = EP {EP[Y | A = d(X), X]}

• Augmented IPW (AIPW):

VP(d) = E
{
I{A = d(X)}
PrP(A | X)

(Y− EP[Y | A = d(X), X]) + EP[Y | A = d(X), X]
}

Consistency, excess risk bound, (minimax) regret bound etc. can be established2

2Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. Journal
of the American Statistical Association, 107(499), 1106-1118.
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Main Contributions



Research articles & projects
Publication and preprints:

• A Semiparametric Instrumented Difference-in-Differences Approach to Policy
Learning. Major revision at Biometrika. IMS Hannan Graduate Student Award

• Positivity-free Policy Learning with Observational Data. Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, PMLR
238:1918-1926, 2024.

• Efficient and robust transfer learning of optimal individualized treatment regimes
with right-censored survival data. R & R at Journal of Machine Learning Research.

• Learning, Evaluating and Analysising An Individualized Decision Support Rule
with Application to Early Intervention in Intensive Care Unit. In preparation.

Ongoing projects:

• w/ Yifan Cui (Zhejiang University): Variable Importance for Heterogeneous
Treatment Effects with Survival Data and Nonparametric Inference at the
Parameter Space Boundary.

• w/ Oliver Dukes & Stijn Vansteelandt (Ghent University): Orthogonal Statistical
Learning for Nonparametric Instrumental Variables.

• w/ Oliver Dukes & Bo Zhang (Fred Hutch): Estimating the risk and relative
vaccine efficacy of updated vaccine regimens using historical phase 3 clinical
trials and immunobridging data. 4



Other activities

Software:

• CRAN Task View: Causal Inference
• R package missSuperLearner
• R implementation of all projects available on GitHub:
https://github.com/panzhaooo

Academic visit at Ghent University w/ Oliver Dukes & Stijn
Vansteelandt.

Talks:

• contributed: IDESP 2021, JDS 2022, IMS ICSDS 2023
• invited: JSM 2023, Ghent Causal Meeting, IMS APRM 2024, AISTATS
2024
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Introduction to Instrumental
Variable



IV setup and DAG

Basic setup:

• observed data O = (X, Z,A, Y) ∼ P: binary instrument Z and
treatment A, covariates X and outcome Y

• unmeasured confounder U
• complete data O = (X,U, Z,A(0),A(1), Y(0), Y(1)) ∼ P
w/ potential outcomes: Y = Y(1)A+ Y(0)(1− A),
A = A(1)Z+ A(0)(1− Z)

Z A Y

X

U

Figure 1: DAG for instrumental variable setup (red: not allowed). 6



Imbens & Angrist 1994

Causal assumptions for IV: under P,

• exclusion: Y(a) = Y(a, z) for a, z ∈ {0, 1}
• independence: Z ⊥ {Y(0), Y(1),A(1),A(0)}
• relevance: E[A | Z = 1] > E[A | Z = 0]
• monotonicity: A(1) ≥ A(0)

• “Always taker” A(1) = A(0) = 1
• “Complier” A(1) = 1, A(0) = 0
• “Defier” A(1) = 0, A(0) = 1
• “Never taker” A(1) = A(0) = 0
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Local average treatment effect

WaldP
def
=
EP[Y | Z = 1]− EP[Y | Z = 0]
EP[A | Z = 1]− EP[A | Z = 0] = EP[Y(1)− Y(0) | A(1) > A(0)]

Simple proof:

• by independence, EP[A | Z = 1]− EP[A | Z = 0] = EP[A(1)− A(0)]
• similarly,

EP[Y | Z = 1]− EP[Y | Z = 0]
= EP[(Y(1)− Y(0))A(1) + Y(0) | Z = 1]
− EP[(Y(1)− Y(0))A(0) + Y(0) | Z = 0]

= EP[(Y(1)− Y(0))(A(1)− A(0))]

• by monotonicity
EP[(Y(1)− Y(0))(A(1)− A(0))]

EP[A(1)− A(0)] = EP[Y(1)− Y(0) | A(1) > A(0)]
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From LATE to CATE – Wang & Tchetgen Tchetgen 2018

CATEP(x)=defEP[Y(1)− Y(0) | X = x]

=
EP[Y | Z = 1, X = x]− EP[Y | Z = 0, X = x]
EP[A | Z = 1, X = x]− EP[A | Z = 0, X = x]

Causal assumptions: under P,

• exclusion: Y(a) = Y(a, z) for a, z ∈ {0, 1}
• independence: Z ⊥ U | X
• relevance: Z 6⊥ A | X
• Y(A) ⊥ {A, Z} | {X,U}
• either no additive U−Z interaction

EP[A | Z = 1, X,U]−EP[A | Z = 0, X,U] = EP[A | Z = 1, X]−EP[A | Z = 0, X]

or no additive U−a interaction

EP[Y(1)− Y(0) | X,U] = EP[Y(1)− Y(0) | X]

Regression, IPW and efficient multiply robust estimators are provided
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IV for policy learning - Cui & Tchetgen Tchetgen 2018

Let δP(X) = PrP(A = 1 | Z = 1, X)− PrP(A = 1 | Z = 0, X)

Causal assumptions: under P,

• exclusion, independence, relevance
• no unmeasured common effect modifier:

CovP{PrP(A = 1 | Z = 1, X,U)− PrP(A = 1 | Z = 0, X,U), EP[Y(1)− Y(0) | X,U] | X} = 0

→ identification of the optimal policy:

dopt = argmaxd∈D EP
[
(2Z−1)(2A−1)Y I{A=d(X)}

δP(X)PrP(Z|X)

]
= argmaxd∈D EP

[
Y I{Z=d(X)}
δP(X)PrP(Z|X)

]
• independent compliance type:

δP(X) = PrP(A = 1 | Z = 1, X,U)− PrP(A = 1 | Z = 0, X,U)

→ identification of the value function:

VP(d) = EP
[
(2Z− 1)(2A− 1)Y I{A = d(X)}

δP(X)PrP(Z | X)

]
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Introduction to
Difference-in-Differences



Difference-in-Differences

Basic setup:

• two time points T ∈ {0, 1}
• covariates X, treatments A ∈ {0, 1} or (A0,A1) ∈ {0, 1}2, outcomes
Y or (Y0, Y1)

• potential outcomes Yt(a), t,a ∈ {0, 1}

Two observed data structures:

• repeated cross-section data: O = (X,A, Y, T), with Y = YT(A)
• panel data: O = (X,A0, Y0,A1, Y1), with Yt = Yt(At), t ∈ {0, 1}

The complete and observed laws are P and P
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DiD illustration

Time T

Outcome Y

control

treatment

ATT

Figure 2: A simple illustration of DiD identification.
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Parallel trends & average treatment effect on the treated

(Conditional) parallel trends assumption:

EP[Y1(0)− Y0(0) | A = 1, X] = EP[Y1(0)− Y0(0) | A = 0, X]

Simple proof:

ATTP
def
= EP[Y1(1)− Y1(0) | A = 1]
= EP[Y1(1)− Y1(0) + Y0(0)− Y0(0) | A = 1]
= EP[Y1(1) | A = 1]− EP[Y1(0)− Y0(0) | A = 0]− EP[Y0(0) | A = 1]
= EP[Y1 − Y0 | A = 1]− EP[Y1 − Y0 | A = 0]
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Instrumented
Difference-in-Differences



Instrumented DiD setup

First introduced by Ye et al. 2022 for (conditional) ATE, also structural
mean models by Vo et al. 2023

Basic setup:

• two time points T ∈ {0, 1}
• binary instrument Z and treatment A ∈ {0, 1} or (A0,A1) ∈ {0, 1}2

• covariates X and unmeasured confounder U = (U0,U1)
• potential outcomes Yt(a), t,a ∈ {0, 1}

Two observed data structure:

• repeated cross-section data O = (X, Z,A, Y, T), with Y = YT(A)
• panel data O = (X, Z,A0, Y0,A1, Y1), with Yt = Yt(At), t ∈ {0, 1}

The complete and observed laws are P and P
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Instrumented DiD DAG: trend scale

Z (A1 − A0) (Y1 − Y0)

X

U0,U1

Figure 3: DAG for instrumented DiD on the trend scale.
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Instrumented DiD DAG: two time points

Z A0 Y0 A1 Y1

X

U0 U1

Figure 4: DAG for instrumented DiD over two time points.
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Motivation & example

• IV for DiD: e.g. haphazard encouragement targeted at a
subpopulation toward faster uptake of the exposure or a
surrogate of such encouragement (Ye et al. 2022)

• Longitudinal randomized experiment: after a baseline period,
some individuals are randomly selected to be encouraged to
take the treatment regardless of treatment history

• See Ye et al. 2022 for an analysis of the effect of cigarette
smoking on lung cancer mortality
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Instrumented DiD to Policy
Learning



Recap on policy learning

Optimal policy given by

dopt
t = argmax

d∈D
VP,t(d) = argmax

d∈D
EP[CATEP,t(X)d(X)].

• assume stable treatment effect over time
• directly maximize some functional d 7→ VP(d) similarly
• CATE-based approaches
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Causal assumptions

Let πP(t, z, x) = PrP(T = t, Z = z | X = x). Under P,

• consistency: A = AT(Z) and Y = YT(A)
• positivity: c1 < πP(t, z, x) < 1− c1 for some 0 < c1 < 1/2
• random sampling:
T ⊥ {At(z), Yt(a) : t = 0, 1, z = 0, 1,a = 0, 1} | X, Z

• stable treatment effect over time:
EP[Y0(1)− Y0(0) | X] = EP[Y1(1)− Y1(0) | X]

• trend relevance:
EP[A1(1)− A0(1) | Z = 1, X] 6= EP[A1(0)− A0(0) | Z = 0, X]

• independence & exclusion restriction:
Z ⊥ {At(1),At(0), Yt(1)− Yt(0), Y1(0)− Y0(0) : t = 0, 1} | X

• no unmeasured common effect modifier:
CovP{At(1)− At(0), Yt(1)− Yt(0) | X} = 0 for t = 0, 1
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Identification of optimal policy

For C ∈ {A, Y}, let µP,C(t, z, x) = EP[C | T = t, Z = z, X = x], and
δP,C(x) = µC(1, 1, x)− µC(0, 1, x)− µC(1, 0, x) + µC(0, 0, x)

• CATE-based approach:

dopt = argmax
d∈D

EP
[
δP,Y(X)
δP,A(X)

d(X)
]

• novel IPW formula 1:

dopt = argmax
d∈D

EP
[
(2Z− 1)(2T− 1)(2A− 1)YI{A = d(X)}

πP(T, Z, X)δP,A(X)

]
• novel IPW formula 2:

dopt = argmax
d∈D

EP
[
(2T− 1)YI{Z = d(X)}
πP(T, Z, X)δP,A(X)

]
→ simple plug-in estimators can be constructed
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Semiparametric efficiency

Efficient influence function (Ye et al. 2022)

∆P(O) =
δP,Y(X)
δP,A(X)

+
(2Z− 1)(2T− 1)
πP(T, Z, X)δP,A(X)

{
Y− µP,Y(T, Z, X)−

δP,Y(X)
δP,A(X)

(A− µP,A(T, Z, X))
}
,

Recall the optimization tasks:

argmax
d∈D

EP[W(1)
P I{A = d(X)}], argmax

d∈D
EP[W(2)

P I{Z = d(X)}]

where

W(1)
P =

(2A−1)δP,Y(X)
δP,A(X)

+ (2A−1)(2Z−1)(2T−1)
πP(T,Z,X)δP,A(X)

{
Y− µP,Y(T, Z, X)− δP,Y(X)

δP,A(X)
(A− µP,A(T, Z, X))

}
and

W(2)
P =

(2Z−1)δP,Y(X)
δP,A(X)

+ 2T−1
πP(T,Z,X)δP,A(X)

{
Y− µP,Y(T, Z, X)− δP,Y(X)

δP,A(X)
(A− µP,A(T, Z, X))

}
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Multiple robustness

Optimal policy identified by

argmax
D

EP
[
W(1)
P I{A = d(X)}

]
= argmax

D
EP

[
W(2)
P I{Z = d(X)}

]
= argmax

D
EP [∆P(X)d(X)]

Under the union modelM1 ∪M2 ∪M3

• M1: models for πP and δP,A are correct
• M2: models for πP and δP,Y/δP,A are correct
• M3: models for δP,Y/δP,A and µP,C(0, 0, ·), µP,C(1, 0, ·), µP,C(0, 1, ·)
for C ∈ {A, Y} are correct
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Double/Debiased machine learning

Cross-fitted estimator:

M̂CF =
1
K

K∑
k=1

Pn,k{∆(O; µ̂A,−k, µ̂Y,−k, π̂−k)d(X)},

1. randomly split the data into K folds;
2. for k = 1, . . . , K, learn the nuisance parameters µP,A, µP,Y, πP with

µ̂A,−k, µ̂Y,−k, π̂−k using data excluding the k-th fold; then
evaluate the value on the k-th fold;

3. average the value estimates from the K folds.
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Asymptotic analysis of policy learning

Focus on a class of feasible policies D =
{
x 7→ I{η⊤x > 0} : η ∈ H

}
Policy estimator:

η̂ = argmax
η∈H

M̂(η) = argmax
η∈H

1
n

n∑
i=1

∆̂(Oi)I{η⊤Xi > 0},

where ∆̂ is the estimator of ∆P obtained by substitution.

Under certain regularity and rate of convergence conditions:

• ‖η̂ − η∗‖2 = Op(n−1/3)
•
√
n{M(η̂)−M(η∗)} = op(1)

•
√
n{M̂(η̂)−M(η∗)}⇝ N (0, σ2)
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Extension to panel data: identification

• Analog causal assumptions for panel data
• Alternatively, Vo et al. 2023 consider sequential ignorability for
structural mean model

• We also prove identification if, under P,
• sequential ignorability: Yt(a) ⊥ At | U, X, Z for t, a = 0, 1
• no additive interaction of either

EP[A1 − A0 | X,U, Z = 1]− EP[A1 − A0 | X,U, Z = 0] = EP[A1 − A0 | X, Z = 1]− EP[A1 − A0 | X, Z = 0]

or
EP[Yt(1)− Yt(0) | U, X] = EP[Yt(1)− Yt(0) | X]

→ CATE identified by

CATEP(x)

=
EP[Y1 − Y0 | X = x, Z = 1]− EP[Y1 − Y0 | X = x, Z = 0]
EP[A1 − A0 | X = x, Z = 1]− EP[A1 − A0 | X = x, Z = 0]

def
= τP(x)
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Semiparametric efficiency

EIF given by

ϕpanel,P(o)

=
δP,Y,1(x)− δP,Y,0(x)
δP,A,1(x)− δP,A,0(x)

− z− πP,Z(x)
πP,Z(x)(1− πP,Z(x))(δP,A,1(x)− δP,A,0(x))2

{(y1 − y0)(δP,A,1(x)− δP,A,0(x))

−(a1 − a0)(δP,Y,1(x)− δP,Y,0(x)) + δP,Y,1(x)δP,A,0(x)− δP,Y,0(x)δP,A,1(x)} − τP(x)

Optimal policy:

argmax
D

EP
[
δP,Y,1(X)− δP,Y,0(X)
δP,A,1(X)− δP,A,0(X)

d(X)
]
= argmax

D
EP [∆panel,P(X)d(X)] ,

Asymptotic results can be obtained similarly

26



Simulation

Data-generation process:

X1, X2 ∼ N (0, 1),U0,U1 ∼ Bridge(0.5), T ∼ Bernoulli(0.5) independently
Pr(A0 = 1 | Z,U, X) = expit(2− 7Z+ 0.2U0 + 2X1),
Pr(A1 = 1 | Z,U, X) = expit(−1.5+ 5Z− 0.15U1 + 1.5X2),
(Y0 | Z,U, X, A0) ∼ N (µ0, 1), (Y1 | Z,U, X, A1) ∼ N (µ1, 1)

where

µ0 = 200+ 10(A0(1.5X1 + 2X2 − 0.5) + 0.5U0 + 2Z+ 1.5X1 + 2X2)
µ1 = 240+ 10(A1(1.5X1 + 2X2 − 0.5) + 0.5U1 + 2Z+ 2X1 + 1.5X2)

Evaluate by percentage of correct decisions (PCD) of estimated d̂(x)

1− N−1
N∑
i=1

|d̂(Xi)− dopt(Xi)|

Compare with standard IV methods (Cui & Tchetgen Tchetgen 2018)

Correctly specified parametric models, or random forests (grf)
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Results

Parametric Machine Learning

0.2

0.4

0.6

0.8

1.0

P
C

D

Estimators IV.t0 IV.t1 IPW1 IPW2 Wald MR1 MR2

Figure 5: Results of the estimated optimal policies, using parametric models
(left) or machine learning (right).
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Data application – Australian Longitudinal Survey

• Conducted annually since 1984, mainly on the dynamics of the
youth labour market, including basic demographic, labour
market and background variables, and topics related to the
main labour market theme

• Card 2001: endogeneity of education might partially explain the
continuing interest “in this very difficult task of uncovering the
causal effect of education in labor market outcomes”

• Cross-section data from 1984 and 1985 waves (Vella 1994)

Policies intercept born_australia married uni_mem gov_emp age year_expe
IV.t0 0.4442 −0.4547 0.1311 −0.1179 −0.5181 0.0080 −0.5444
IV.t1 −0.2518 −0.3103 0.2445 −0.6157 −0.1406 0.2015 −0.5840
IPW1 −0.4203 −0.0847 0.5454 −0.3941 −0.5690 0.0299 0.1969
IPW2 −0.2503 −0.0529 0.6051 −0.4384 −0.5801 0.0207 0.1980
Wald 0.5032 0.3891 0.4738 0.5755 −0.1656 −0.0772 0.0793
MR1 −0.0513 0.1341 −0.6039 0.4127 0.5861 −0.0226 −0.3168
MR2 0.5480 −0.3937 −0.4072 0.4393 0.4167 −0.0302 −0.1064

• Coefficients should be interpreted with caution
• Majority vote from Wald, MR1, MR2 estimators
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Discussion

• By monotonicity assumption At(1) ≥ At(0) for t = 0, 1
→ optimal policy for compliers

• Fuzzy DiD in econometrics (De Chaisemartin & d’Haultfoeuille
2018)

• DiD on multiple time points, or continuous time
• Weak IV, continuous IV
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Thank you! & Questions?
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Backup slides I

Positivity-free Policy Learning with Observational Data

Assign treatment 1 with probability

d(x) = δ(x)π(x)
δ(x)π(x) + 1− π(x)
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Backup slides II

Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data

Target super population

(unknown) Source sampling IS (known) Target sampling IT

Complete source sample{
Ti(1), Ti(0), Xi, IS,i = 1, IT,i = 0

}n
i=1

Complete target sample{
Ti(1), Ti(0), Xi, IS,i = 0, IT,i = 1

}n+m
i=n+1

Treatment assignment A
Censoring C Only observe covariates X

Observed source sample{
Xi,Ai,Ui,∆i, IS,i = 1, IT,i = 0

}n
i=1

Observed target sample{
Xi, IS,i = 0, IT,i = 1

}n+m
i=n+1
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