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1 Context

Modern evidence-based medicine puts Randomized Controlled Trial (RCT) at
the core of clinical evidence. In practice, almost all new drugs are authorized
through such trials (after a pre-clinical study). Indeed, randomization enables
to estimate the Average Treatment Effect by avoiding confounding effects of
spurious or undesirable associated factors. In other words, RCTs are the current
gold-standard to empirically measure a causal effect of a given intervention on
an outcome. But more recently, concerns have been raised on the limited scope
of RCTs: stringent eligibility criteria, unrealistic real-world compliance, short
timeframe, limited sample size, etc. Such limitations threaten the external
validity of RCT studies to other situations or populations [17]. The usage of
complementary non-randomized data, referred to as observational or from real
world, brings promises as additional sources of evidence, in particular combined
to trials. Transportability (also known as generalization, recoverability from
sampling bias, or data-fusion [20, 16]) allows to generalize or transport the trial
findings toward a target population of interest, potentially subject to a covariate
distributional shift.

As a recent extreme example, the Food and Drug Administration (FDA) has
greenlighted the use of palbociclib to men with breast cancer, though clinical
trials were performed only on women. Authorizing such extensions would help
reducing the time to approve a drug for patients who could benefit
from it. Hence, the societal impact of these methods to improve patient care
but also to reduce costs (in France, the price of drugs depends among other
things on their effectiveness) is huge. Yet, they raise some concerns, especially
when the target population is very different from the RCT cohort. In addition,
such methods are still in a prototype stage, with a wide gap between theory
and practice and the confrontation with data give rise to many methodological
challenges. Theoretical, methodological and applied developments and valida-
tions are needed to better understand and leverage the speed-safety balance
and to design future RCTs.
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2 Generalization of different causal measures

We use the potential outcome framework to characterize treatment (or causal)
effects. This framework has been proposed by Neyman in 1923 [English trans-
lation in 19], and popularized by Donald Rubin in the 70’s [8, 7]. It formalizes

the concept of an intervention by studying two possible values Y
(1)
i and Y

(0)
i

for the outcome of interest (say the pain level of headache) for the two different
situations where the individual i has been exposed to the treatment (Ai = 1) or
not (Ai = 0) –we will only consider binary exposure. The treatment has a causal
effect if the potential outcomes are different, that is testing the assumption:

E
[
Y (1)

]
?
= E

[
Y (0)

]
, (1)

where E[Y (a)] is the expected counterfactual outcome had all individuals in
the population received the treatment level a. A common measure to test this
assumption is the absolute difference (usually referred to as the Risk Difference
- RD):

τRD := E
[
Y (1)

]
− E

[
Y (0)

]
.

This quantity depends on the population with respect to which the expectation
is taken. More precisely, for a given set of covariates X, one can write

τRD := E
[
E
[
Y (1) − Y (0)|X

]]
,

which depends on the distribution of X, that is the considered population on
which the conditional treatment effect E

[
Y (1) − Y (0)|X

]
is averaged.

Several estimators have been proposed to estimate this quantity in a target
population, based on information resulting from an RCT. These generalization
estimators use weighting (Inverse Propensity of Sampling Weighting, IPSW),
outcome modeling, or combine the two in doubly robust approaches with Aug-
mented IPSW (AIPSW) [see 4, 1, for a survey, and consistency proofs]. Depend-
ing on the output type (typically binary or continuous), other causal measures
than Risk Difference, such as Risk Ratio, may be more appropriate [3]. How-
ever, there is little theory to adapt the previous classes of estimators to other
metrics such as the Risk Ratio, and there is no theoretical guarantee to explain
their empirical performance.

First axis of the PhD: Extend the different classes of estimators to classical
causal measures (as the Risk Ratio) different from the Risk Difference and derive
theoretical guarantees as in [1, 2], in particular finite-sample guarantees.

Moving beyond the consistency of such estimators (IPSW, outcome modeling
and AIPSW) for the Risk Difference, we analyzed in a finite sample regime the
IPSW estimator, which consists of re-weighting the trial so that it resembles
the observational sample [see 2]. In particular, we established finite sample
bias and variance (the literature mostly focuses on asymptotic results) and
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upper bound on the risk of different versions of the estimator: oracle, semi-
oracle, etc. We highlighted different regimes regarding the sample sizes of the
trials and observational data, which can lead to practical recommendations in
terms of data collection (doubling the size of the observational data leads to
a smaller asymptotic variance than doubling the size of the trial). Extending
these analyses to the case of binary outcomes could provide practical guidance
when dealing with discrete output. A major improvement will also be to derive
the variance of the estimators for different sets of variables (treatment effect
modifiers, prognostic variables, etc.).

Second axis of the PhD: Handling missing values and unmeasured covari-
ates

The problematic of missing values is ubiquitous in data analysis practices and
it is exacerbated when aggregating data of different sources. Naive approaches
such as complete-case analysis which can lead to important bias, cannot be
applied in high-dimensional settings when almost all data can be deleted
(with only 300 features, and a probability to be missing for each individual and
feature of 0.01%, complete case analysis would result in keeping around 5% of
the rows). There exists an abundant literature on the topic [12, 21, 10, 14]
and many methods available either to estimate some parameters (EM, multi-
ple imputation) or to do supervised learning with missing values [9]. However,
in the context of causal inference the literature is scarce, [13, 18, 11, 15] and
these works only consider the case of a single dataset — or potentially multiple
datasets with the same data distribution, i.e., sampled from the same population
of interest – and do not treat the case of generalizing a treatment effect from an
RCT to a target distribution defined with an observational dataset. So as far as
we know, this issue, although predominant in practice, has never been addressed.

We will develop methods to handle both sporadic missing data (missing
data for some individuals on some features) in the RCT and in the observational
data, but also the so-called systematic missing data when a variable is
not available in either the RCT or the observational data. The first case
already requires establishing new conditions of identifiability with missing data
and deriving estimators that handle missing values in the spirit of [15], who
suggested Augmented IPW estimators using two random forests adapted to
missing data. As for the second case, depending on which variables are missing,
it may be necessary to turn to sensitivity analyses because the hypotheses of
ignorability will no longer be verified. This problem is reminiscent of the highly
challenging problem of unobserved confounding in classical observational
studies.

Third axis of the PhD: Meta-Analyses to provide a better estimation of
the causal measure of interest.

Combining information from different data sources is an intrinsic difficult
task, notably due to the variability in the collected information (different vari-
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ables, missing information due to merging. . . ). Combining different studies
(observational or clinical) in order to obtain a better estimation of the causal
measure of interest (Risk Difference or Risk Ratio) is definitely a promising
avenue. A proper understanding of the causal measure properties would allow
us to aggregate directly the causal measure computed on each study, instead of
needing to access the data from each study separately. Whereas this last axis
is a long-term project with many technical challenges, we believe it constitutes
an important direction for the future.

3 Application context and objective: decisions
in medical emergencies

The Premedical team has different medical collaborations. One of the oldest
collaboration is with the Traumabase group of APHP (Public Assistance - Hos-
pitals of Paris) on polytraumatized patients. This project is mature in that we
are testing real-time cell phone applications in the ambulance to help clinicians
make decisions.

Major trauma denotes injuries that endanger the life or the functional in-
tegrity of a person. TheWHO has recently shown that major trauma, –including
road-traffic accidents, interpersonal violence, falls– remains a world-wide public-
health challenge and a major source of mortality and handicap. An effective
and timely management of trauma is crucial to improve outcomes, as delays or
errors entail high risks for the patient.

A motivating application for this work is the generalization to a French
target population – represented by the Traumabase registry – of the CRASH-3
trial [5], evaluating Tranexamic Acide (TXA) to prevent death from Traumatic
Brain Injury (TBI).

CRASH-3 A total of 175 hospitals in 29 different countries participated to the
randomized and placebo-controlled trial, called CRASH-3 [6], where adults with
TBI suffering from intracranial bleeding were randomly administrated TXA [5].
Primary outcome was mortality (binary) after 28 days and secondary outcome
is the Disability Rating Scale after 28 days of injury (ordinal indicator ranging
from 0 to 29)

Traumabase To improve decisions and patient care in emergency depart-
ments, 30 French Trauma centers are collecting detailed clinical data from the
scene of the accident to the exit of the hospital. The resulting database, the
Traumabase, comprises to date 30 000 trauma admissions, and is permanently
updated. The data are of unique granularity and size in Europe. However,
they are highly heterogeneous, with both categorical (sex, type of illness...) and
quantitative (blood pressure, hemoglobin level...) features, multiple sources,
and many missing data. In fact 98% of the individuals have missing values.
The cause of missing information is also coded, such as technical hurdles with
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the measurement, or impossibility due to the severity of the patient’s state. The
Traumabase currently comprises around 8,270 patients suffering from TBI.

We have in mind this particular application when defining the different axis
of the PhD thesis. However the methods are generic and can be applied for
many other questions whether in the medical domain or in other domains such as
economy, etc. In addition, even if the project is motivated by practical questions,
the project requires strong methodological and theoritical contributions. Each
contribution could help to have a better understanding of the treatment effect,
as other causal measures than the Risk Difference are reported in the literature.

4 Laboratory - contact

The candidate will be supervised by both Julie Josse (expert in Missing Values
and Causal Inference) and Erwan Scornet (expert in Random Forest, Statistical
Learning, Missing Values). Julie Josse has many international connections in
causal inference (she was invited to the semester on causality in Berkeley, to
the Rousseeuw prize in Belgium, etc.) and often sends her PhD students to do
research internships abroad, in particular with the Department of Statistics at
Stanford University with whom she has many connections.

Premedical Team - Inria Montpellier The Premedical (Precision Medicine
by Data Integration and Causal Learning) team1, is a recent Inria-Inserm team
located in Montpellier. It is an interdisciplinary team composed of statisticians,
biostatisticians, machine learners, and clinicians. Premedical develops meth-
ods for optimal treatment policy (drug efficacy, who gets treated and when,
etc.) from heterogeneous data (clinical trials, observational data) that come
with methodological challenges. In particular, Premedical develops methods
for causal inference, statistical learning, management of missing data, federated
learning, etc. Premedical holds the missing data and causality research group2

and has created a taskview on causal inference methods. The candidate will
also be able to participate in the activities of the Inserm team, Idesp, special-
ized among others on respiratory diseases such as asthma and also specialists in
the exposome.

References

[1] Bénédicte Colnet, Julie Josse, Erwan Scornet, and Gaël Varoquaux. Gener-
alizing a causal effect: sensitivity analysis and missing covariates. Journal
of Causal Inference, 2021.

[2] Bénédicte Colnet, Julie Josse, Gaël Varoquaux, and Erwan Scornet.
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