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Composition of the team

. Julie Josse (PI): Advanced researcher, Inria. Topics: Dimensionality

reduction, matrix completion, causal inference, R statistical software

. Pascal Demoly: Director of Idesp. Respiratory physician, allergist, professor

of pulmonology at the University Hospital, head of department

. Pierre Lafaye de Micheaux: Assistant professor (UPVM3). Topics: Measures

of dependences, medical images, R statistical software

. Nicolas Molinari: Co-director of Idesp. Professor in biostatistics at the

University Hospital, head of the statistics department

. 3 PhD students (co-supervised); 1 postdoc, 1 engineer (UM grant)

. Non permanent members: François Husson (Pr), 3 post-doc, 2 PhD

⇒ Interdisciplinary team with clinical, bio-stat & machine learning (ML) skills 2



Application context: respiratory allergy

. Asthma: chronic inflammatory disease of the bronchi which evolves by

crisis, alters the respiratory system and may engage the vital prognosis

. Large variability in its manifestations:

• interaction between the genetic background and the environment

• association with other allergic diseases (like rhinitis, sleep issues)

. Due to environmental (air quality, temperature, biodiversity) &

lifestyles (diets) changes, WHO in 2050, 1/2 person with allergies

. Sources of information: biological, clinical, environmental, etc.

. Underexploited. Today: data collected, new tools for data fusion

. Provide new knowledge (in terms of disease heterogeneity) that may

change guidelines and practice

. New opportunities for new diagnostics and therapeutics, design

personalized solutions, improving patient care and prevention 3



Locks

Data integration comes with methodological challenges

. heterogeneous data:

� for a patient, different nature of data (clinical, images, bio)

� for a pathology, data from different hospitals

� experimental (trials) & non-experimental (observational) data

. missing data: different types (informative), patterns (systematic)

⇒ State-of-the-art ML/causal inference can not handle high dim.

multi-sources data with distributional shifts & missing data

Gap between what is develop and what is used

. superiority of ML methods to parametric methods?

. lack of confidence: lack of uncertainty quantification, repro-

ducibility & training

. lack of involvement of all stakeholders

⇒ Few research translated into clinically actionable solutions
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PreMeDICaL research axes

Personalized medicine by optimal prescription of treatment

. causal inference techniques for (dynamic) policy learning

⇒ who to treat and when

. leverage both randomized control trials (RCTs) and observational data

⇒ launch a drug without running RCTs ?

⇒ rethink evidence needed to bring treatments to the market faster

Personalized medicine by integration of different data sources

. relevance of each data source from different scales

. solutions to handle missing values: complex structure of missing val-

ues, prediction with uncertainties

⇒ Push methodological innovation up to patients, clinicians, regulators

⇒ Collaborative effort: leveraging ML, data, clinical expertise and

existing recommendations
5



Research axis 1:

Precision medecine by optimal

prescription of treatment



Potential Outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect for a binary treatment

. n i.i.d. obs ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Wi , Yi (1),Yi (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

. Individual causal effect of the treatment: ∆i , Yi (1)− Yi (0)

Missing problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Cov. Treat. Out.

X1 X2 X3 W Y

1.1 20 F 1 200

-6 45 F 0 10

0 15 M 1 150

. . . . . . . . .

-2 52 M 0 100

Average Treatment Effect (ATE): τ , E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment
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Data to estimate the treatment effect

Randomized Controlled Trial (RCT)

. gold standard (allocation )

. covariate distributions of treated and

control groups are balanced

⇒ High internal validity

. expensive, long, ethical limitations

. small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

. trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

. “big data”: low quality

. lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

. low cost

. large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

. representative of the target

populations

⇒ High external validity
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Observational data: non random assignment

survived deceased Proportion(survived | treatment) Pr(deceased | treatment)

HCQ 497 (11.4%) 111 (2.6%) 0.817 0.183

HCQ+AZI 158 (3.6%) 54 (1.2%) 0.745 0.255

none 2699 (62.1%) 830 (19.1%) 0.765 0.235

Mortality rate 22.9% - for HCQ 18.3% - non treated 23.5%: treatment helps?

25 50 75 100

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

Age

Mean
Median

Treatment arm

HCQ
Nothing

Comparison of the distribution of Age between HCQ and non treated.

Younger patients (with lower risk of death) are more likely to be treated.

If control group does not look like treatment group, difference in response may

be confounded by differences between the groups.

⇒ Unconfoundness identifiability assumption: {Yi (0),Yi (1)} ⊥⊥Wi |Xi . 8



Leverage both RCT and observational data

RCT

− Narrowly defined population

+ High internal validity

Observational data

− Confounding

+ High external validity

We could use both to 1 . . .

. . . . validate observational methods

. . . . correct confounding bias

. . . . improve estimation of heterogeneous treatment effects

. . . . generalize the Average Treatment Effect to a (broader)

target population (data fusion, transportability, data integration)2

The FDA has greenlighted the usage of the drug palbociclib to men with

breast cancer, though clinical trials were performed only on women

→ Reduce drug approval times and costs for patients who could benefit

1 Colnet, J.J. et al. (2020). Causal inference methods for combining RCT and observational

studies: a review. Statistical Science.
2Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
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Generalization task

S X1 X2 X3 W Y

1 1 1.1 20 5.4 1 24.1

. . . 1 . . . . . . . . .

n − 1 1 -6 45 8.3 0 26.3

n 1 0 15 6.2 1 23.5

n + 1 0 -2 52 7.1 NA NA

n + 2 1 -1 35 2.4 NA NA

. . . 0 . . . NA NA

n + m 1 -2 22 3.4 NA NA

Available data with observed treatment and outcome only in the RCT.

. S indicator of eligibility for the trial

. covariates distribution not the same in the in the RCT & target pop:

fX |S=1 6= fX

⇒ τ1 = E[Y (1)− Y (0)|S = 1]︸ ︷︷ ︸
ATE in the RCT

6= E[Y (1)− Y (0)] = τ︸ ︷︷ ︸
Target ATE

.
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0.4

6 8 10
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Estimators of the average treatment effect by generalization

S X1 X2 X3 W Y

1 1 1.1 20 5.4 1 24.1

. . . 1 . . . . . . . . .

n − 1 1 -6 45 8.3 0 26.3

n 1 0 15 6.2 1 23.5

n + 1 0 -2 52 7.1 NA NA

n + 2 1 -1 35 2.4 NA NA

. . . 0 . . . NA NA

n + m 1 -2 22 3.4 NA NA

Available data with observed treatment and outcome only in the RCT.

. weight the RCT sample so that it ressembles the target pop (IPSW)

. model the conditional outcomes & extrapolate to the target pop (gformula)

. combining the previous two ideas (doubly robust approaches, AIPSW)3

τ̂AIPW , 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) + Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)
with µ(w)(x) , E[Yi (w) |Xi = x ] and e(x) , P(Wi = 1 |Xi = x), ∀ x ∈ X .

⇒ τ̂AIPW consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

⇒ possibility to use any (machine learning) procedure such as random forests,

neural nets, etc. to estimate ê(x) and µ̂(w)(x).

3Chernozukov, Duflot, et al (2018), Double/debiased machine learning for treatment and

structural parameters. Econometrics journal. 11



Exemple of projects in research axis 1

. Violation of the identifiability assumptions (sensitivity analysis)

. Missing values in causal inference

. Survival causal inference

. Policy learning (off-line reinforcement learning)

. CRO-AIT project with ALK (pharmaceutical company specializing in

development of drugs for severe respiratory allergies).

• replacement of Inhaled Corticosteroid Therapy by ’acarizax’ for dust

mite allergic asthma (2 trials 600/800 patients, 1 obs data 6000

patients followed for 12-18 months, questionnaires at 3 times).

• benefit of grazax R© in prevention of asthma in children

12



Research axis 2:

Precision medecine by data

integration



Missing data: important bottleneck in data science
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”One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Samworth, 2019)

Complete case analysis (deletion):

• Loss of information: An n × p matrix, each entry is missing with probability

0.01. p = 5 =⇒ ≈ 95% of rows kept; p = 300 =⇒ ≈ 5% of rows kept

• Bias: Resulting sample not representative of the target population

Due to the pandemic, a lot of patients did not perform some examination
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Missing data: important bottleneck in data science
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Prediction with missing values

X̃ = X � (1−M) + NA�M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6

7.9

8.3

4.6

 X̃ =


9.1 NA 1

2.1 NA 3

NA 9.6 2

NA 5.5 6

 X =


9.1 8.5 1

2.1 3.5 3

6.7 9.6 2

4.2 5.5 6

 M =


0 1 0

0 1 0

1 0 0

1 0 0


Find a prediction function that minimizes the risk.

Bayes rule: f ∗ ∈ arg min
f : R̃d→R

E
[(

Y − f (X̃ )
)2
]
.

f ∗(X̃ ) = E
[
Y | X̃

]
= E

[
Y | Xobs(M),M

]
=

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d)

Le Morvan, J. J, E. Scornet. & G. Varoquaux. Neurips 2021, Neurips 2020 (Oral), Aistat 2020. 14
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Estimation with missing values using imputation

⇒ Incomplete data

X1 X2 X3 ... Y

NA 20 10 ... shock

-6 45 NA ... shock

0 NA 30 ... no shock

NA 32 35 ... shock

-2 NA 12 ... no shock

1 63 40 ... shock

⇒ Completed data

X1 X2 X3 ... Y

3 20 10 ... shock

-6 45 6 ... shock

0 4 30 ... no shock

-4 32 35 ... shock

-2 75 12 ... no shock

1 63 40 ... shock

A single value can’t reflect the uncertainty of prediction

Multiple impute 1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

-2 75 12 no s

1 63 40 s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s

15
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Missing values in multi-source, multi-scale data

Clinical Data Biological Data Questionnaire on lifestyle

X1 .... Xp W Y Z1 ..... Zq .... C1 ... Cr
1 NA ....

Obs

Hospital 1
NA NA ...

NA ...

n1 NA NA ...

1 NA NA ... NA NA

Obs

Hospital 2
NA NA NA NA NA NA NA ...

NA NA ... NA NA NA

n2 NA NA ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1 NA NA NA ... NA

Obs

Hospital K
NA ... NA

NA .... NA

nK NA .... NA

Classical methodologies are not designed to handle high-dimensional data

with selection biais and informative missing data.
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Exemple of projects in research axis 2

. relationship between different sources (measure of dependencies)

. (informative) missing values in time series and structured by blocks

(low rank matrix approximation)

. confidence in machine learning algorithms with missing values

(conformal prediction)

. distributed computing with missing values (low rank matrix

approximation+ optimal transport)

. Benralitrap project. CT air-trapping characterization for the early

identification of Benralisumab responders among eosinophilic asthma

patients.
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Interdisciplinary aspects

Clinicians:

. decide relevant scientific questions

. access to patient databases (hospital, academic and industrial)

. know which methods will be accepted by the community and can lead

to clinically actionable solutions

. make the links with patient associations and with state agencies

. interprete the results generated

⇒ Practice inspires theory, guide the development of methods and theory

may guide the practice

⇒ Bridge two-way translation between model output and real-life data

Work in progress:

. N.M & P.L.M, 1 intern and 1 phD: the Benralitrap project.

. JJ & P.D, 1 phD: AIT-CRO project.
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Organization

Local ecosystem

. ISDM: Institute of Data Science of Montpellier

. IMAG: Institut Montpelliérain Alexander Grothendieck

. Joint group meeting with the research group in ML

. Montpellier Université d’Excellence, MUSE

Location

. Inria: 860 rue Saint Priest

. Idesp: Campus Santé, IURC, 641 avenue du doyen Gaston Giraud
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Short - mid terms objectives

From a methodological point of view

. innovative methods to handle missing values

. new developpement in causal inference

. provide easy-to-use tools (such as R package) and reproducible

pipelines to allow for direct deployment by stakeholders

From a patient/medical point of view

. personalized benefit of treatment (over time)

. identify subgroup of patients

. adoption by the medical community of advanced techniques

PreMeDICaL: bio-statistics and ML, methodological specificities, a rapid

transfer through software development and focus on allergy
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Long terms objectives

From a methodological point of view

. new area for multiple imputation with non random missing values

- inclusion of new data collected by medical devices

. designing future clinical trials supported by authorities (run trials

to test assumptions). Organization of a défi inria

. software as decisions tools

From a patient/medical point of view

. give patient better care and early access to innovation

. guide decisions made by investigators, sponsors and authorities

. better management of resources

PreMeDICaL: bio-statistics and ML, methodological specificities, a rapid

transfer through software development and focus on allergy
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