
MDP and Reinforcement Learning
Large state spaces and approximations

Nicolas Gast

October 23, 2023

Nicolas Gast – 1 / 24

Reminder: Tabular MDP

We want to find Q(s, a) ≈ Q∗(s, a).

π(s) = argmax
a∈A

Q(s, a).

Two types of methods:
MC methods:

Qπ(s, a) =
1
K

K∑
k=1

G (k)

TD methods (SARSA / Q-learning)

Does it scale?
The complexity is Ω(|S||A|).

Q(s, a) a1 a2 a3 . . .
s1
s2
s3
s4
...

Nicolas Gast – 2 / 24

Reminder: Tabular MDP

We want to find Q(s, a) ≈ Q∗(s, a).

π(s) = argmax
a∈A

Q(s, a).

Two types of methods:
MC methods:

Qπ(s, a) =
1
K

K∑
k=1

G (k)

TD methods (SARSA / Q-learning)

Does it scale?
The complexity is Ω(|S||A|).

Q(s, a) a1 a2 a3 . . .
s1
s2
s3
s4
...

Nicolas Gast – 2 / 24

What are typical state space sizes?
The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

|S| = 10010 = 1020.
A = possible orders (=10 × 100?)

Game of go
|S| = 319×19 (19 × 19 board game).
|A| = 19 × 19.

There are ≈ 10170 Q-values.

Nicolas Gast – 3 / 24

What are typical state space sizes?
The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

|S| = 10010 = 1020.
A = possible orders (=10 × 100?)

Game of go
|S| = 319×19 (19 × 19 board game).
|A| = 19 × 19.

There are ≈ 10170 Q-values.

Nicolas Gast – 3 / 24

What are typical state space sizes?
The curse of dimensionality

Breakout (1976) Atari games

|S| = 884×84 (84 × 84 screen, 8 colors).
|A| = 2 (left, right).

There are ≈ 102000 Q-values.

Starcraft alphastar

|S| ≫ |A| ≈ +∞??

We need approximations.

Nicolas Gast – 4 / 24

https://gym.openai.com/envs/#atari
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

What are typical state space sizes?
The curse of dimensionality

Breakout (1976) Atari games

|S| = 884×84 (84 × 84 screen, 8 colors).
|A| = 2 (left, right).

There are ≈ 102000 Q-values.

Starcraft alphastar

|S| ≫ |A| ≈ +∞??

We need approximations.

Nicolas Gast – 4 / 24

https://gym.openai.com/envs/#atari
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Outline

1 Value function approximation and Deep Q-Learning

2 Policy gradient

3 Conclusion and other methods

Nicolas Gast – 5 / 24

TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:

V (St) := V (St) + α (Rt+1 + γV (St+1)− V (St))

Q(St ,At) := Q(St ,At) + α

(
Rt+1 + γmax

a∈A
Q(St+1, a)− Q(St ,At)

)
.

This does not scale if |S| (or |A|) are large.

Nicolas Gast – 6 / 24

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S ,A) ≈ qw(S ,A),

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

Q(S ,A) = wTϕ(s, a),

where ϕ(s, a) is a feature vector.
("modern"): qw is a deep neural network.

Nicolas Gast – 7 / 24

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S ,A) ≈ qw(S ,A),

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

Q(S ,A) = wTϕ(s, a),

where ϕ(s, a) is a feature vector.

("modern"): qw is a deep neural network.

Nicolas Gast – 7 / 24

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S ,A) ≈ qw(S ,A),

where w is a vector parameter to be found.

(classic): Use a linear approximation. For instance:

Q(S ,A) = wTϕ(s, a),

where ϕ(s, a) is a feature vector.
("modern"): qw is a deep neural network.

Nicolas Gast – 7 / 24

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(St ,At) = E
[
Rt+1 +max

a∈A
Q(St+1, a)

]
.

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

Deep Q-learning minimizes the L2 norm and use gradient descent:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).

Nicolas Gast – 8 / 24

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(St ,At) = E
[
Rt+1 +max

a∈A
Q(St+1, a)

]
.

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

Deep Q-learning minimizes the L2 norm and use gradient descent:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).

Nicolas Gast – 8 / 24

Example of breakout

Nicolas Gast – 9 / 24

Why is vanilla unstable?

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

For that, we do:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).

Problems:

Target and sources are highly correlated
Target changes as we learn.
Exploration is not guaranteed.

Learning algorithm can be unstable.

Nicolas Gast – 10 / 24

Why is vanilla unstable?

We want to find w such that qw(St ,At)︸ ︷︷ ︸
predictor

≈ E
[
Rt+1 + γmax

a∈A
qw(St+1, a)

]
︸ ︷︷ ︸

target

.

For that, we do:

w := w + α

(
Rt+1 + γmax

a∈A
qw(St , a)− qw(St ,At)

)
∇w(qw(St ,At)).

Problems:
Target and sources are highly correlated
Target changes as we learn.
Exploration is not guaranteed.

Learning algorithm can be unstable.

Nicolas Gast – 10 / 24

Possible solution: replay buffer or separate target network

Vanilla Q-learning uses a
single network

DDQN uses a slow learning
target network and a fast
learning q-network.

Nicolas Gast – 11 / 24

Applications of Deep RL

Resource management (energy)
Computer vision and robotics
Finance
. . .

Fundamental idea is simple but making the system stable and fast is an
issue. Also, delayed actions or sparse rewards is difficult.

Nicolas Gast – 12 / 24

Outline

1 Value function approximation and Deep Q-Learning

2 Policy gradient

3 Conclusion and other methods

Nicolas Gast – 13 / 24

Policy search

We are given a family of policies πw parametrized by w ∈ W. Typically:

πw(a | s) ∝ exp(wTϕ(s, a)),

where ϕ(s, a) is a feature vector.

Let J(w) := V πw(s0) be its performance. We want to find w that
maximizes J(w).

Sometimes, this works well with direct methods (brute-force)
We can also use policy gradients:

w := w + α∇wJ(w).

Nicolas Gast – 14 / 24

Policy search

We are given a family of policies πw parametrized by w ∈ W. Typically:

πw(a | s) ∝ exp(wTϕ(s, a)),

where ϕ(s, a) is a feature vector.

Let J(w) := V πw(s0) be its performance. We want to find w that
maximizes J(w).

Sometimes, this works well with direct methods (brute-force)
We can also use policy gradients:

w := w + α∇wJ(w).

Nicolas Gast – 14 / 24

Policy search

We are given a family of policies πw parametrized by w ∈ W. Typically:

πw(a | s) ∝ exp(wTϕ(s, a)),

where ϕ(s, a) is a feature vector.

Let J(w) := V πw(s0) be its performance. We want to find w that
maximizes J(w).

Sometimes, this works well with direct methods (brute-force)
We can also use policy gradients:

w := w + α∇wJ(w).

Nicolas Gast – 14 / 24

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

Nicolas Gast – 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

Nicolas Gast – 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

Nicolas Gast – 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

Nicolas Gast – 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

Nicolas Gast – 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is π(a|s).

∇π(a|s)E [G0] = P(attaining s)Q(s, a)

=
1

π(a|s)
P(observing (s, a))Q(s, a)

Algorithm: We want to compute gradient(S ,A) = ∇π(a|s)E [G0].
Run a trajectory and observe St ,At .
For each t:

̂gradient(St ,At) =
1

π(At |St)
Gt .

Theorem. For all s, a: E
[

̂gradient(s, a)
]
= ∇π(a|s)E [G].

Nicolas Gast – 16 / 24

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is π(a|s).

∇π(a|s)E [G0] = P(attaining s)Q(s, a)

=
1

π(a|s)
P(observing (s, a))Q(s, a)

Algorithm: We want to compute gradient(S ,A) = ∇π(a|s)E [G0].
Run a trajectory and observe St ,At .
For each t:

̂gradient(St ,At) =
1

π(At |St)
Gt .

Theorem. For all s, a: E
[

̂gradient(s, a)
]
= ∇π(a|s)E [G].

Nicolas Gast – 16 / 24

The policy gradient theorem
Assume that π(a|s) = fw (s, a). We have:

∇wE [G0] =
∑
s,a

∇wπ(a|s)∇π(a|s)E [G0]

Hence, an unbiased estimate of the gradient ∇wE [G0] is∑
t

(∇wπ(At |St))
π(At |St)

Gt .

By using that ∇log(y) = ∇(y)/y , we get:

An unbiased estimate of the gradient is:

∇wE [G0] = E

[∑
t

(∇w log π(At |St))Gt

]
.

Nicolas Gast – 17 / 24

The policy gradient theorem
Assume that π(a|s) = fw (s, a). We have:

∇wE [G0] =
∑
s,a

∇wπ(a|s)∇π(a|s)E [G0]

Hence, an unbiased estimate of the gradient ∇wE [G0] is∑
t

(∇wπ(At |St))
π(At |St)

Gt .

By using that ∇log(y) = ∇(y)/y , we get:

An unbiased estimate of the gradient is:

∇wE [G0] = E

[∑
t

(∇w log π(At |St))Gt

]
.

Nicolas Gast – 17 / 24

Why is ∇ log π(a|s) easy to compute?

Reminder: if pi = eui/
∑

euj , then

∂

∂uj
log pi = 1{i=j} − pj .

If π(a|s) ∝ exp(wTϕ(s, a)), then it means that π(a|s) = exp(wTϕ(s,a))∑
a′ exp(w

Tϕ(s,a′))
.

As a consequence:

∇wπw (a|s) = ϕ(a, s)−
∑
a′

ϕ(a′|s)πw (a′|s).

Nicolas Gast – 18 / 24

Why is ∇ log π(a|s) easy to compute?

Reminder: if pi = eui/
∑

euj , then

∂

∂uj
log pi = 1{i=j} − pj .

If π(a|s) ∝ exp(wTϕ(s, a)), then it means that π(a|s) = exp(wTϕ(s,a))∑
a′ exp(w

Tϕ(s,a′))
.

As a consequence:

∇wπw (a|s) = ϕ(a, s)−
∑
a′

ϕ(a′|s)πw (a′|s).

Nicolas Gast – 18 / 24

The REINFORCE algorithm

REINFORCE
1: Initialize w.
2: while True do
3: Simulate a trajectory (from t = 1 to T)
4: for t = T to t = 1 do
5: Gt :=

∑T
t′=t Rt′ .

6: ∇J := Gt∇ log π(At |St).
7: w := w + α∇J.
8: end for
9: end while

Recall that ∇ log π(a|s) is easy to compute when π(a|s) ∝ wTϕ(s, a).

Nicolas Gast – 19 / 24

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s, a1) = 8 ± 1 and Q(s, a2) = 8.5 ± 1, is a2 better than a1?

Solution: add a baseline h : S → R. Indeed, using the same log-trick:

E [h(st)∇ log π(at |st)] = E

[∑
a∈A

h(st)∇π(a|st)

]
= 0

This shows that for any function h, one has:

∇wJ(s0) ∝
∑
t

E [(Gt − h(st))∇ log π(at |st)]}.

Choosing a h close to Gt reduces the variance of the estimator.

Nicolas Gast – 20 / 24

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s, a1) = 8 ± 1 and Q(s, a2) = 8.5 ± 1, is a2 better than a1?

Solution: add a baseline h : S → R. Indeed, using the same log-trick:

E [h(st)∇ log π(at |st)] = E

[∑
a∈A

h(st)∇π(a|st)

]
= 0

This shows that for any function h, one has:

∇wJ(s0) ∝
∑
t

E [(Gt − h(st))∇ log π(at |st)]}.

Choosing a h close to Gt reduces the variance of the estimator.

Nicolas Gast – 20 / 24

Outline

1 Value function approximation and Deep Q-Learning

2 Policy gradient

3 Conclusion and other methods

Nicolas Gast – 21 / 24

Classes of learning algorithms
We have seen two classes of RL methods:

Value-based (SARSA, Q-learning, Deep QL)

=Critic

Policy-based (Policy gradient, REINFORCE)

=Actor

Value-based learning can be unstable but uses samples efficiently.
Policy-based tend to be more robust.

Nicolas Gast – 22 / 24

Classes of learning algorithms
We have seen two classes of RL methods:

Value-based (SARSA, Q-learning, Deep QL) =Critic
Policy-based (Policy gradient, REINFORCE) =Actor

Value-based learning can be unstable but uses samples efficiently.
Policy-based tend to be more robust.

Nicolas Gast – 22 / 24

Actor Critic method

Basic Actor Critic
1: Initialize parameters w(a) (Actor) and w(c) (Critic)
2: while True do
3: Initialize S
4: for t = 1 to t = T do
5: At ∼ πw(S) and simulate R,S ′

6: w(c) := w(c) + α(c)(R + γvw(c)(S ′)− vw(c)(S)) # TD-update
7: w(a) := w(a) + α(a)vw(c)(S)∇ log π(at |st) # Policy-gradient
8: S:=S’.
9: end for

10: end while

Nicolas Gast – 23 / 24

Actor Critic method

Basic Actor Critic
1: Initialize parameters w(a) (Actor) and w(c) (Critic)
2: while True do
3: Initialize S
4: for t = 1 to t = T do
5: At ∼ πw(S) and simulate R,S ′

6: w(c) := w(c) + α(c)(R + γvw(c)(S ′)− vw(c)(S)) # TD-update
7: w(a) := w(a) + α(a)vw(c)(S)∇ log π(at |st) # Policy-gradient
8: S:=S’.
9: end for

10: end while
Nicolas Gast – 23 / 24

Going further

Extra-reading:
Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
Algorithms for Reinforcement Learning (Szepesvari, 2010)
Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast – 24 / 24

	Value function approximation and Deep Q-Learning
	Policy gradient
	Conclusion and other methods

