MDP and Reinforcement Learning

Large state spaces and approximations

Nicolas Gast

October 23, 2023

Nicolas Gast — 1 / 24

Reminder: Tabular MDP

We want to find Q(s, a) =~ Q*(s, a).

7(s) = argmax Q(s, a).
acA

Two types of methods:
@ MC methods:

1 K
Qﬂ'(s’ a) — R Z G(k)
k=1

@ TD methods (SARSA / Q-learning)

Nicolas Gast — 2 / 24

Reminder: Tabular MDP

We want to find Q(s, a) =~ Q*(s, a).

7(s) = arg max Q(s, a). Does it scale?

acA The complexity is Q(|S||Al).
Two types of methods: Q(s;a) [a1 a» a3
@ MC methods: %1
52
m L= o >
Q7(s,a) = X Z G sS4
k=1 .

@ TD methods (SARSA / Q-learning)

Nicolas Gast — 2 / 24

What are typical state space sizes?

The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

e |S| = 10010 = 10%°.
e A = possible orders (=10 x 100?)

Nicolas Gast — 3 / 24

What are typical state space sizes?

The curse of dimensionality

Managing a portfolio of 10 types of product,
with 100 product each max.

e |S| =100% = 1020,
e A = possible orders (=10 x 1007?)

Game of go
o |S| = 319%19 (19 x 19 board game).
o |Al =19 x 19.

There are ~ 10170 Q-values.

Nicolas Gast — 3 / 24

What are typical state space sizes?

The curse of dimensionality

— Breakout (1976)

o |S| = 88484 (84 x 84 screen, 8 colors).
o |A| =2 (left, right).
There are =~ 1029 Q-values.

Nicolas Gast — 4 / 24

https://gym.openai.com/envs/#atari
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

What are typical state space sizes?

The curse of dimensionality

— Breakout (1976)

o |S| = 88484 (84 x 84 screen, 8 colors).
o |A| =2 (left, right).
There are =~ 1029 Q-values.

Starcraft
o [S| > |A|l = +00??

We need approximations.)

Nicolas Gast — 4 / 24

https://gym.openai.com/envs/#atari
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Outline

© Value function approximation and Deep Q-Learning

Nicolas Gast — 5 / 24

TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:
V(St) = V(St) + « (Rt+1 -+ ’}/V(St+1) — V(St))

Q(St, At) = Q(5¢, Ar) + <Rt+1 + v Tea% Q(St+1,a) — Q(ShAt)) .

This does not scale if |S]| (or |A]) are large.

Nicolas Gast — 6 / 24

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

Nicolas Gast — 7 / 24

Function approximation
We replace the exact Q-table (or value function V) by an approximation:

Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

@ (classic): Use a linear approximation. For instance:
Q(S,A) =w'¢(s, a),

where ¢(s, a) is a feature vector.

Nicolas Gast — 7 / 24

Function approximation

We replace the exact Q-table (or value function V) by an approximation:
Q(S,A) = qu(S, A),

where w is a vector parameter to be found.

@ (classic): Use a linear approximation. For instance:

Q(Sv A) = WT¢(57 a)7

where ¢(s, a) is a feature vector.

e ("modern"): gy, is a deep neural network.

input
image

Convolutional Agent

}8U [BINBU [BUOHN|OAUCD

possible
actions

Nicolas Gast — 7 / 24

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(S:, Ae) =E |:Rt+1 + fan;i(Q(St+1, 3)] .

We want to find w such that gy (5S¢, A:) =~ E |:Rt+]_ + v max gw(St+1, a)})
—_—— acA

predictor
target

Nicolas Gast — 8 / 24

From Q-learning to deep Q-learning

The original Q-learning uses that:

Q(S:, Ae) =E |:Rt+1 + ran;i(Q(St+1, 3)] .

We want to find w such that gy (5S¢, A:) =~ E |:Rt+]_ + v max gw(St+1, a)})
—_—— acA

predictor

target

Deep Q-learning minimizes the L, norm and use gradient descent:

Wi=Ww+ « <Rt+1 + ’YTEE% Gw(St, a) — qW(St)At)) Vw(gw(St, At))

Nicolas Gast — 8 / 24

Example of breakout

1st hidden
layer

8x8x4 filt

stride 4

84x84x4

20x20x16

2nd hidden 3rd hidden

layer layer output
Q(s¢,a")
Q(st,a')
fully fully Q(S' (12)

connected :connected :

4x4x16 filter .

stride 2 W
9x9x32 256 4~18

Nicolas Gast — 9 / 24

Why is vanilla unstable?

We want to find w such that gy (5S¢, Ar) =~ E |:Rt+1 + v max gw(St+1, a)} }
—_——— acA

predictor ~~
target

For that, we do:

Wi=Ww+ o <Rt+1 + 7 max qw(Se, a) — qw(shAt)) Vuw(qw(St, Ar)).

Problems:

Nicolas Gast — 10 / 24

Why is vanilla unstable?

We want to find w such that gy (5S¢, Ar) =~ E |:Rt+1 + v max gw(St+1, a)} }
—_——— acA

predictor ~~
target

For that, we do:

WIi=W -+« (Rt+1 + ’YTE% qw(st, 3) - qw(shAt)) vw(qw(st; At))~

Problems:
@ Target and sources are highly correlated
@ Target changes as we learn.

@ Exploration is not guaranteed.

Learning algorithm can be unstable.

Nicolas Gast — 10 / 24

Possible solution: replay buffer or separate target network

Vanilla Q-learning uses a
single network

DDQN uses a slow learning
target network and a fast
learning g-network.

Nicolas Gast — 11 / 24

Applications of Deep RL

Resource management (energy)
Computer vision and robotics

Finance

Fundamental idea is simple but making the system stable and fast is an
issue. Also, delayed actions or sparse rewards is difficult.

Nicolas Gast — 12 / 24

Outline

© Policy gradient

Nicolas Gast — 13 / 24

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),

where ¢(s, a) is a feature vector.

Nicolas Gast — 14 / 24

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),
where ¢(s, a) is a feature vector.

Let J(w) := V™(sp) be its performance. We want to find w that
maximizes J(w).

Nicolas Gast — 14 / 24

Policy search

We are given a family of policies 7, parametrized by w € W. Typically:
mw(a | s) oc exp(w’ (s, a)),
where ¢(s, a) is a feature vector.

Let J(w) := V™(sp) be its performance. We want to find w that
maximizes J(w).

@ Sometimes, this works well with direct methods (brute-force)

@ We can also use policy gradients:

w=w+ aV,J(w).

Nicolas Gast — 14 / 24

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

2 obs = [2, 1]

<
policy(obs):
) 8 1

© +3 \ © +10

1 obs = [1, 0] 3| os-13, 1

o reward = = | reward =

i Gone L Fatse done Trie
=
poticy(obe):
(\. ceny (\‘

4
10 oo 63 sl © o
0 obs = [0, 0] 0 obs = [@, 0] 2 obs = [2, 0]

done = True done = 7 done = False
policy (obs):
® ® & Lo

e 9 - ~,

1 obs = 11, 0] 3| ows-13, 0

Nicolas Gast — 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

O n an exam p | (S https://www.youtube.com/watch?v=cQf0QcpYRzE

2

obs = [2, 1]
b policy(obs):
/\‘ ! .
0.7 0.3
© +3 ~. © +10
1 obs = 1, 6] 3

reward =

i done = False &/ Gone < True
=
poltcy(obs):
(\.) A.

@ -10

obs = [6, 0]
» reward =

obs = [6, 0] 2
» reward = s | . reward =
done = True

done = 7 done = False
policy (obs):
® ® & Lo

obs = [2, 0]

® o /0.8 0. 2\ ® +10
1 obs = [1, 0] 3| os=13, 0
o reward - o reward -

Nicolas Gast — 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

2

Expected Return (G) =

0.7) * (3) +
(0.3) * (10) +
obs = [2, 1]
(0.7 % 0.4) * (-10) +
(\,‘ potiey(obe): (0.7 * 0.6 * 0.1) * (-10) +
(0.7 * 0.6 x 0.9) * (0) +
0.3
\ © +10 (0.7 x 0.6 x 0.9 * 0.8) x (0) +
3| bs-3 1 (0.7 % 0.6 * 0.9 *x 0.2) * (10)
| reward =

0.7
o +3
1
policy(obs):
[e.4, 1
0.4 0.6

obs = [0, 0]
reward =

dane = True
\illll
&

done = False

policy(obs):
[0.8]

0‘2\ @ +10
3 obs = [3,
o revard -

Gone = True
(\‘

1

Nicolas Gast — 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

Expected Return (G) =

0.7) * (3) +
(0.3) * (10) +
2 obs = [2, 1]
o (0.7 * 0.4) * (-10) +
K
policy(obs): -
(\‘ ; i (0.7 * 0.6 * 0.1) * (-10) +
(0.7 % 0.6 % 0.9) % (0) +
0.7 0.3
@ +3 —_— \ © +10 (0.7 *x 0.6 * 0.9 * 0.8) * (0) +
1 obs = [1, 6 3| bs-3 1 (0.7 * 0.6 * 0.9 % 0.2) * (10)
= rewara | reward -
” done < False done = True
3
policy(obs):
(\ [e.4, 1 (s
® -10
0 obs = [0, 0] S} obs = [0, 0] 2 obs = 2, 0]
~| reward - | reward - w1 | rewrd -
done = Truc done = False
policy(obs):
ﬂ [0.8]
©:2
~.,
3 obs = [3, 0]

= | reward =

Gone = True
(\‘

Nicolas Gast — 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

O n a n exa m ple https://www.youtube.com/watch?v=cQf0QcpYRzE

Expected Return (G) =

(0.7) * (3) +
(0.3) * (10) +
2 obs = [2, 1]
| 5 (0.7 *x 0.4) * (-10) +
A‘ potiey(obe): (0.7 * 0.6 * 0.1) * (-10) +
(0.7 x 0.6 * 0.9) * (0) +
o = 0.7 0~3\ w +10 (0.7 * 0.6 * 0.9 % 0.8) * (0)
.7 % 0.6 x 0.9 % 0. * &
1 . 3| ws-13, 1 (0.7 * 0.6 * 0.9 * 0.2) * (10)
=] reward | reward =

v done = False done = True
<
policy(obs):
(4] et ()

0 abs = [0, 0] 0 abs = 0, 0] 2 obs = (2, 0]

o reward = o reward = s | o reward =

et g done' ™ Fatse
poticy (obs):
a a & R

@ © +10

obs = [3,

1

Nicolas Gast — 15 / 24

https://www.youtube.com/watch?v=cQfOQcpYRzE

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is 7(als).

Vr(als)E [Go] = P(attaining s)Q(s, a)

1 .
= (@) P(observing (s, a))Q(s, a)

Nicolas Gast — 16 / 24

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once.
The probability of choosing a in state s is 7(als).

Vr(als)E [Go] = P(attaining s)Q(s, a)
= 7r(‘;LS)]P’(observing (s,a))Q(s, a)

Algorithm: We want to compute gradient(S, A) = V() E [Go].
@ Run a trajectory and observe S;, A;.
@ For each t:

— 1
gradient(S¢, At) = ————G;.

W(At‘st)
Theorem. For all s,a: E [g@t(s, a)| = Vi) E[G].

Nicolas Gast — 16 / 24

The policy gradient theorem

Assume that 7(a|s) = f, (s, a). We have:

VwE [GO] = Z VWW(Q‘S)VW(Q‘S)E [GO]

s,a

Nicolas Gast — 17 / 24

The policy gradient theorem

Assume that 7(a|s) = f, (s, a). We have:

VwE [GO] = Z vwﬂ-(a‘s)vﬂ'(a\s)E [GO]

s,a

Hence, an unbiased estimate of the gradient V,,[E [Gp] is

Vur(A:S;
Z((Ae|St))

G;.
7T(At|5t) ¢

By using that Viog(y) = V(y)/y, we get:

An unbiased estimate of the gradient is:

VuE [Go] =E | Y (Vw log m(A¢[St)) G | -

t

Nicolas Gast — 17 / 24

Why is V log m(al|s) easy to compute?

Reminder: if p; = e/ > e, then

0
87111- log pi =]-{i:j} - pj-

Nicolas Gast — 18 / 24

Why is V log m(al|s) easy to compute?

Reminder: if p; = e/ > e, then
i |og pl f— 1 . . —_— p
uj i {i=jy = Fi

exp(w ¢(s,a))
o exp(w’¢(s,a))

m(als) oc exp(w ' é(s, a)), then it means that 7(als) =

As a consequence:

Vurw(als) Zqﬁ |s)mw(a

Nicolas Gast — 18 / 24

The REINFORCE algorithm

REINFORCE

1: Initialize w.
2: while True do
3: Simulate a trajectory (from t =1to T)

4. fort=Ttot=1do

5: G =3} _, Re.

6: VJ:= GV log m(A¢|St).
7 w:=w+ aVJ.

8: end for

9: end while

Recall that V log 7(als) is easy to compute when 7(als) o w ' ¢(s, a).

Nicolas Gast — 19 / 24

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s,a1) =8+ 1 and Q(s,a2) =8.5=+1, is a» better than a;7?

Nicolas Gast — 20 / 24

Variance reduction

Problem: Monte-Carlo sampling can have a large variance.
Ex: if Q(s,a1) =8+ 1 and Q(s,a2) =8.5=+1, is a» better than a;7?

Solution: add a baseline h: § — R. Indeed, using the same log-trick:

E [h(s:)V log m(at|st)] = E [Z h(st)VW(a]st)]

acA
=0

This shows that for any function h, one has:
VwJ(%0) ZE [(Ge — h(st))V log m(ase)]}-

Choosing a h close to G; reduces the variance of the estimator.

Nicolas Gast — 20 / 24

Outline

© Conclusion and other methods

Nicolas Gast — 21 / 24

Classes of learning algorithms

We have seen two classes of RL methods:
@ Value-based (SARSA, Q-learning, Deep QL)
@ Policy-based (Policy gradient, REINFORCE)

@ Value-based learning can be unstable but uses samples efficiently.
@ Policy-based tend to be more robust.

Nicolas Gast — 22 / 24

Classes of learning algorithms

We have seen two classes of RL methods:

o Value-based (SARSA, Q-learning, Deep QL) =Critic

@ Policy-based (Policy gradient, REINFORCE) =Actor
@ Value-based learning can be unstable but uses samples efficiently.
@ Policy-based tend to be more robust.

P & r 5 B
~ Value Fungtion Palicy

Value-Based | Aclc_!r | Policy-Based
\ Critic /[

h,
\-\.

Nicolas Gast — 22 / 24

Actor Critic method

Action

Values

Critic

Nicolas Gast — 23 / 24

Actor Critic method

Values

Critic

Basic Actor Critic

1: Initialize parameters w(?) (Actor) and w(¢) (Critic)
2: while True do
3: Initialize S
4: fort=1tot=T do
5: At ~ my(S) and simulate R, S’
6: w(©) = wl) 4 al)(R + v, (S") — v,y (S)) # TD-update
7 w(@ = wl(@ 1+ oy (S)V log n(a;ls:) # Policy-gradient
8 S:=S'.
9: end for
10: end while

Nicolas Gast — 23 / 24

Going further

Extra-reading:
@ Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
@ Algorithms for Reinforcement Learning (Szepesvari, 2010)

@ Deep Reinforcement learning: hands on (Maxim Lapan, 2020)

Nicolas Gast — 24 / 24

	Value function approximation and Deep Q-Learning
	Policy gradient
	Conclusion and other methods

