MDP and Reinforcement Learning Large state spaces and approximations

Nicolas Gast

October 23, 2023

Nicolas Gast - 1 / 24

Reminder: Tabular MDP

```
We want to find Q(s, a) \approx Q^*(s, a).

\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{arg max}} Q(s, a).
```

Two types of methods:

• MC methods:

$$Q^{\pi}(s,a) = \frac{1}{K} \sum_{k=1}^{K} G^{(k)}$$

• TD methods (SARSA / Q-learning)

Reminder: Tabular MDP

We want to find $Q(s, a) \approx Q^*(s, a)$.

 $\pi(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s, a).$

Two types of methods:

• MC methods:

$$Q^{\pi}(s,a) = \frac{1}{K} \sum_{k=1}^{K} G^{(k)}$$

• TD methods (SARSA / Q-learning)

Does it scale? The complexity is $\Omega(|\mathcal{S}||\mathcal{A}|)$.

Q(s,a)	a_1	<i>a</i> 2	a 3	
<i>s</i> ₁				
<i>s</i> ₂				
<i>s</i> 3				
<i>S</i> 4				
÷				

What are typical state space sizes? The curse of dimensionality

Managing a portfolio of 10 types of product, with 100 product each max.

- $|S| = 100^{10} = 10^{20}$.
- $A = \text{possible orders} (=10 \times 100?)$

What are typical state space sizes? The curse of dimensionality

Managing a portfolio of 10 types of product, with 100 product each max.

- $|S| = 100^{10} = 10^{20}$.
- $A = \text{possible orders} (=10 \times 100?)$

Game of go

• $|S| = 3^{19 \times 19}$ (19 × 19 board game).

• $|\mathcal{A}| = 19 \times 19$.

There are $\approx 10^{170}$ *Q*-values.

What are typical state space sizes?

The curse of dimensionality

Breakout (1976) Atari games • $|S| = 8^{84 \times 84}$ (84 × 84 screen, 8 colors). • |A| = 2 (left, right). There are $\approx 10^{2000}$ Q-values.

What are typical state space sizes?

The curse of dimensionality

Breakout (1976) Atari games • $|S| = 8^{84 \times 84}$ (84 × 84 screen, 8 colors). • |A| = 2 (left, right). There are $\approx 10^{2000}$ Q-values.

Starcraft \bullet alphastar \bullet $|\mathcal{S}| \gg |\mathcal{A}| \approx +\infty??$

We need approximations.

Outline

1 Value function approximation and Deep Q-Learning

2 Policy gradient

TD-learning and function approximation

The tabular TD-learning or Q-learning algorithm is:

$$V(S_t) := V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$
$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t) \right).$$

This does not scale if |S| (or |A|) are large.

Function approximation

We replace the exact Q-table (or value function V) by an approximation:

 $Q(S,A) \approx q_w(S,A),$

where w is a vector parameter to be found.

Function approximation

We replace the exact Q-table (or value function V) by an approximation:

 $Q(S,A) \approx q_w(S,A),$

where w is a vector parameter to be found.

• (classic): Use a linear approximation. For instance:

 $Q(S,A) = w^T \phi(s,a),$

where $\phi(s, a)$ is a feature vector.

Function approximation

We replace the exact Q-table (or value function V) by an approximation:

 $Q(S,A) \approx q_w(S,A),$

where w is a vector parameter to be found.

• (classic): Use a linear approximation. For instance:

 $Q(S,A) = w^T \phi(s,a),$

where $\phi(s, a)$ is a feature vector.

• ("modern"): q_w is a deep neural network.

Convolutional Agent

From Q-learning to deep Q-learning

The original *Q*-learning uses that:

$$Q(S_t, A_t) = \mathbb{E}\left[R_{t+1} + \max_{a \in \mathcal{A}} Q(S_{t+1}, a)
ight].$$

We want to find w such that $\underbrace{q_w(S_t, A_t)}_{\text{predictor}} \approx \underbrace{\mathbb{E}\left[R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)\right]}_{\text{target}}.$

From Q-learning to deep Q-learning

The original *Q*-learning uses that:

$$Q(S_t, A_t) = \mathbb{E}\left[R_{t+1} + \max_{a \in \mathcal{A}} Q(S_{t+1}, a)\right].$$

We want to find w such that $\underbrace{q_w(S_t, A_t)}_{\text{predictor}} \approx \underbrace{\mathbb{E}\left[R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)\right]}_{\text{target}}$

Deep *Q*-learning minimizes the L_2 norm and use gradient descent:

$$\mathsf{w} := \mathsf{w} + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_{\mathsf{w}}(S_t, a) - q_{\mathsf{w}}(S_t, A_t) \right) \nabla_{\mathsf{w}}(q_{\mathsf{w}}(S_t, A_t)).$$

Example of breakout

Why is vanilla unstable?

We want to find w such that $\underbrace{q_w(S_t, A_t)}_{\text{predictor}} \approx \underbrace{\mathbb{E}\left[R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_w(S_{t+1}, a)\right]}_{\text{target}}$.

For that, we do:

$$\mathsf{w} := \mathsf{w} + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_{\mathsf{w}}(S_t, a) - q_{\mathsf{w}}(S_t, A_t) \right) \nabla_{\mathsf{w}}(q_{\mathsf{w}}(S_t, A_t)).$$

Why is vanilla unstable?

We want to find w such that $\underbrace{q_{w}(S_{t}, A_{t})}_{\text{predictor}} \approx \underbrace{\mathbb{E}\left[R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_{w}(S_{t+1}, a)\right]}_{\text{target}}.$

For that, we do:

$$\mathsf{w} := \mathsf{w} + \alpha \left(R_{t+1} + \gamma \max_{a \in \mathcal{A}} q_{\mathsf{w}}(S_t, a) - q_{\mathsf{w}}(S_t, A_t) \right) \nabla_{\mathsf{w}}(q_{\mathsf{w}}(S_t, A_t)).$$

Problems:

- Target and sources are highly correlated
- Target changes as we learn.
- Exploration is not guaranteed.

Learning algorithm can be unstable.

Possible solution: replay buffer or separate target network

Vanilla *Q*-learning uses a single network

DDQN uses a slow learning target network and a fast learning q-network.

Applications of Deep RL

- Resource management (energy)
- Computer vision and robotics
- Finance
- . . .

Fundamental idea is simple but making the system stable and fast is an issue. Also, delayed actions or sparse rewards is difficult.

Outline

1 Value function approximation and Deep Q-Learning

2 Policy gradient

3 Conclusion and other methods

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

 $\pi_{\mathsf{w}}(a \mid s) \propto \exp(\mathsf{w}^{\mathsf{T}} \phi(s, a)),$

where $\phi(s, a)$ is a feature vector.

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

 $\pi_{\mathsf{w}}(a \mid s) \propto \exp(\mathsf{w}^{\mathsf{T}} \phi(s, a)),$

where $\phi(s, a)$ is a feature vector.

Let $J(w) := V^{\pi_w}(s_0)$ be its performance. We want to find w that maximizes J(w).

Policy search

We are given a family of policies π_w parametrized by $w \in \mathcal{W}$. Typically:

$$\pi_{\mathsf{w}}(a \mid s) \propto \exp(\mathsf{w}^{\mathsf{T}}\phi(s, a)),$$

where $\phi(s, a)$ is a feature vector.

Let $J(w) := V^{\pi_w}(s_0)$ be its performance. We want to find w that maximizes J(w).

- Sometimes, this works well with direct methods (brute-force)
- We can also use policy gradients:

$$\mathsf{w} := \mathsf{w} + \alpha \nabla_{\mathsf{w}} J(\mathsf{w}).$$

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example https://www.youtube.com/watch?v=cQfOQcpYRzE

On an example $_{\tt https://www.youtube.com/watch?v=cQf0QcpYRzE}$

(0.7) * (3) + (0.3) * (10) + (0.7 * 0.4) * (-10) + (0.7 * 0.6 * 0.1) * (-10) + (0.7 * 0.6 * 0.9) * (0) + (0.7 * 0.6 * 0.9 * 0.8) * (0) +(0.7 * 0.6 * 0.9 * 0.2) * (10)

Expected Return (G) =

Nicolas Gast - 15 / 24

On an example $_{\tt https://www.youtube.com/watch?v=cQf0QcpYRzE}$

 $(0.7) \times (3) +$ $(0.3) \times (10) +$ $(0.7 \times 0.4) \times (-10) +$ $(0.7 \times 0.6 \times 0.1) \times (-10) +$ $(0.7 \times 0.6 \times 0.9) \times (0) +$ $(0.7 \times 0.6 \times 0.9 \times 0.8) \times (0) +$ $(0.7 \times 0.6 \times 0.9 \times 0.2) \times (10)$

Expected Return (G) =

Nicolas Gast - 15 / 24

On an example $_{\tt https://www.youtube.com/watch?v=cQf0QcpYRzE}$

(0.7) * (3) +	
(0.3) * (10) +	
(0.7 * 0.4) * (-10) +	
(0.7 * 0.6 * 0.1) * (-10)	+
(0.7 * 0.6 * 0.9) * (0) +	
(0.7 * 0.6 * 0.9 * 0.8) *	(0) +
(0.7 * 0.6 * 0.9 * 0.2) *	(10)

Expected Return (G) =

Nicolas Gast - 15 / 24

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once. The probability of choosing *a* in state *s* is $\pi(a|s)$.

$$egin{aligned}
abla_{\pi(a|s)} \mathbb{E}\left[G_0
ight] &= \mathbb{P}(ext{attaining } s)Q(s,a) \ &= rac{1}{\pi(a|s)} \mathbb{P}(ext{observing } (s,a))Q(s,a) \end{aligned}$$

How to estimate the gradient with trajectories?

Assume for simplicity that each state is visited only once. The probability of choosing *a* in state *s* is $\pi(a|s)$.

$$egin{aligned}
abla_{\pi(a|s)} \mathbb{E}\left[G_0
ight] &= \mathbb{P}(ext{attaining } s)Q(s,a) \ &= rac{1}{\pi(a|s)} \mathbb{P}(ext{observing } (s,a))Q(s,a) \end{aligned}$$

Algorithm: We want to compute gradient $(S, A) = \nabla_{\pi(a|s)} \mathbb{E}[G_0]$.

- Run a trajectory and observe S_t, A_t .
- For each *t*:

$$\widehat{gradient}(S_t, A_t) = \frac{1}{\pi(A_t|S_t)}G_t.$$

Theorem. For all s, a:
$$\mathbb{E}\left[\widehat{gradient}(s,a)\right] = \nabla_{\pi(a|s)}\mathbb{E}\left[G\right]$$
.

The policy gradient theorem

Assume that $\pi(a|s) = f_w(s, a)$. We have:

$$abla_{\mathsf{w}}\mathbb{E}\left[\mathsf{G}_{\mathsf{0}}
ight] = \sum_{s,\mathsf{a}}
abla_{\mathsf{w}}\pi(\mathsf{a}|s)
abla_{\pi(\mathsf{a}|s)}\mathbb{E}\left[\mathsf{G}_{\mathsf{0}}
ight]$$

The policy gradient theorem

Assume that $\pi(a|s) = f_w(s, a)$. We have:

$$\nabla_{\mathsf{w}}\mathbb{E}\left[G_{0}\right] = \sum_{s,a} \nabla_{\mathsf{w}}\pi(a|s)\nabla_{\pi(a|s)}\mathbb{E}\left[G_{0}\right]$$

Hence, an unbiased estimate of the gradient $\nabla_w \mathbb{E} \left[G_0 \right]$ is

$$\sum_t \frac{(\nabla_w \pi(A_t|S_t))}{\pi(A_t|S_t)} G_t.$$

By using that $\nabla log(y) = \nabla(y)/y$, we get:

An unbiased estimate of the gradient is:

$$abla_{\mathsf{w}}\mathbb{E}\left[G_{0}\right] = \mathbb{E}\left[\sum_{t} (\nabla_{\mathsf{w}}\log\pi(A_{t}|S_{t}))G_{t}\right].$$

Why is $\nabla \log \pi(a|s)$ easy to compute?

Reminder: if $p_i = e^{u_i} / \sum e^{u_j}$, then

$$\frac{\partial}{\partial u_j}\log p_i=\mathbf{1}_{\{i=j\}}-p_j.$$

Why is $\nabla \log \pi(a|s)$ easy to compute?

Reminder: if $p_i = e^{u_i} / \sum e^{u_j}$, then

$$\frac{\partial}{\partial u_j}\log p_i=1_{\{i=j\}}-p_j.$$

If $\pi(a|s) \propto \exp(w^T \phi(s, a))$, then it means that $\pi(a|s) = \frac{\exp(w^T \phi(s, a))}{\sum_{a'} \exp(w^T \phi(s, a'))}$.

As a consequence:

$$abla_w \pi_w(a|s) = \phi(a,s) - \sum_{a'} \phi(a'|s) \pi_w(a'|s).$$

The REINFORCE algorithm

REINFORCE

- 1: Initialize w.
- 2: while True do
- 3: Simulate a trajectory (from t = 1 to T)
- 4: for t = T to t = 1 do
- 5: $G_t := \sum_{t'=t}^{T} R_{t'}$.
- 6: $\nabla J := G_t \nabla \log \pi(A_t | S_t).$
- 7: $\mathbf{w} := \mathbf{w} + \alpha \nabla J.$
- 8: end for
- 9: end while

Recall that $\nabla \log \pi(a|s)$ is easy to compute when $\pi(a|s) \propto w^T \phi(s, a)$.

Variance reduction

Problem: Monte-Carlo sampling can have a large variance. Ex: if $Q(s, a_1) = 8 \pm 1$ and $Q(s, a_2) = 8.5 \pm 1$, is a_2 better than a_1 ?

Variance reduction

Problem: Monte-Carlo sampling can have a large variance. Ex: if $Q(s, a_1) = 8 \pm 1$ and $Q(s, a_2) = 8.5 \pm 1$, is a_2 better than a_1 ?

Solution: add a baseline $h : S \to \mathbb{R}$. Indeed, using the same log-trick:

$$\mathbb{E}\left[h(s_t)\nabla\log\pi(a_t|s_t)\right] = \mathbb{E}\left[\sum_{a\in\mathcal{A}}h(s_t)\nabla\pi(a|s_t)\right]$$
$$= 0$$

This shows that for any function h, one has:

$$abla_{\mathsf{w}} J(s_0) \propto \sum_t \mathbb{E}\left[(G_t - h(s_t))
abla \log \pi(a_t | s_t) \right] \}.$$

Choosing a h close to G_t reduces the variance of the estimator.

Outline

Value function approximation and Deep Q-Learning

2 Policy gradient

Classes of learning algorithms

We have seen two classes of RL methods:

- Value-based (SARSA, Q-learning, Deep QL)
- Policy-based (Policy gradient, REINFORCE)
- Value-based learning can be unstable but uses samples efficiently.
- Policy-based tend to be more robust.

Classes of learning algorithms

We have seen two classes of RL methods:

- Value-based (SARSA, Q-learning, Deep QL) =Critic
- Policy-based (Policy gradient, REINFORCE) = Actor
- Value-based learning can be unstable but uses samples efficiently.
- Policy-based tend to be more robust.

Actor Critic method

Actor Critic method

Basic Actor Critic

- 1: Initialize parameters $w^{(a)}$ (Actor) and $w^{(c)}$ (Critic)
- 2: while True do
- Initialize S 3.

4: for
$$t = 1$$
 to $t = T$ do

- $A_t \sim \pi_w(S)$ and simulate R, S'5:
- 6:
- 7: S := S'

- 8: end for 9:
- 10: end while

Going further

Extra-reading:

- Introduction to Reinforcement Learning (Sutton-Barto, 2018 last ed.)
- Algorithms for Reinforcement Learning (Szepesvari, 2010)
- Deep Reinforcement learning: hands on (Maxim Lapan, 2020)