
MDP and RL: Q-learning, stochastic approximation

Nicolas Gast

October 9, 2023

This document is a DRAFT of notes of the second part of the course on MDP and
reinforcement learning given at ENS de Lyon during the academic years 2023-2024 and the
forthcoming 2024-2025.

Contents

1 Monte-Carlo methods and Q-learning 2
1.1 Estimation via Monte-Carlo . 2
1.2 TD-learning . 3
1.3 Relation between MC, TD and DP . 4
1.4 Q-learning and SARSA . 4

2 Stochastic approximation 5
2.1 Introduction and example: the ODE method 5
2.2 Decreasing step-size . 6
2.3 Going further . 8

3 Monte-Carlon Tree Search 9
3.1 Min-max and alpha-beta pruning . 10
3.2 MCTS and exploration . 10

Main references: [2] for Q-learning and variants (Section 1), and [1] (Section 2) for the
stochastic approximation part. The rest is from research papers.

1

1 Monte-Carlo methods and Q-learning

Recall Bellman’s equation:

V ∗(s) = max
a∈A

Q∗(s, a)

Q∗(s, a) = r(s, π(s)) + γ
∑
s′

V ∗(s′)p(s′ | s, a)

Our assumption: we have access to a simulator.

1.1 Estimation via Monte-Carlo

Source: https://fr.wikipedia.org/wiki/Mthode_de_Monte-Carlo#Dtermination_
de_la_valeur_de_%CF%80

Figure 1: Estimation of π via Monte-Carlo.

See Figure 1. Area is π/4. A point (x, y) is in the red zone if x2 + y2 ≤ 1.
Estimation via rollout:

V π(St) = E [Gt | St = s, π] .

• Monte-Carlo = sample Gt by using rollout. Can use every-visit or first-visit.

• Converges in O(1/
√
n)

1.1.1 Monte-Carlo optimzation

π Qπ

Evaluate π

improve π

2

https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_%CF%80
https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_%CF%80

Recall: improve can be done by using greedy :

π(s) = argmax
a∈A

Q(s, a).

Possible problems:

• One may need many samples for all actions.

• Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (previous), importance sampling.

1.2 TD-learning

Bellman’s equation states:

V (St) = E [Rt+1 + γRt+2 + . . .]

= E [Rt+1 + γV (St+1)] .

This is equivalent to

0 = E

Rt+1 + γV (St+1)− V (St)︸ ︷︷ ︸
TD error


The TD learning algorithm uses the updates:

V (St) := V (St) + αt(Rt+1 + γV (St+1)− V (St))),

where α is a learning rate such that
∑

t αt = +∞ and
∑

t(αt)
2 < ∞.

Proof. Main proof: see later. for some ideas:
Let βt(s) be such that

βt(s) =

{
0 if s = St

αt otherwise

Let Vt be the V -table at time t. The definition of βt implies that for all s:

Vt+1(s) := Vt(s) + βt(s)

Rt+1 + γVt(St+1)︸ ︷︷ ︸
=TπVt+noise

−Vt(s)

 .

with
∑

t βt(s) = ∞ and
∑

t β
2
t (s) < ∞.

As Tπ is contracting, Theorem 1 of (On the convergence of stochastic iterative dynamic
programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93) shows that this implies
limt→∞ Vt = V π almost surely.

3

1.3 Relation between MC, TD and DP

V (St) = E [Gt] MC

V (St) = E [Rt+1 + γV (St+1)] TD

V (St) = E [Rt+1] + γ
∑
s′

V (St+1)P(St+1 = s′) DP

(figure from Sutton and Barto)

• MC simulates a full trajectory

• TD samples one-step and uses a previous estimation of V .

• DP needs all possible values of V (s′).

MC: One full trajectory for update TD: Updates take time to propagate
The tradeoff comes by using TD(λ):

• Use n-step returns (see Sutton-Barto, chapter 7).

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γt+nV (St+n).

• TD(λ) (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

Gt(λ) = (1− λ)

T∑
n=1

λn−1Gt:t+n + λTGt.

1.4 Q-learning and SARSA

Bellman’s equations are:

V π(St) = Eπ [Rt+1 + γV π(St+1)] to evaluate π

Q∗(St, At) = E
[
Rt+1 + γmax

a
Q∗(St+1, a)

]
to find the best policy

This leads to two variant of:

4

• Q-learning = off-policy learning.

– Choose At ∼ π.

– Apply TD-learning replacing V (s) by maxa Q(s, a).

• SARSA = on-policy learning:

– Choose At+1 ∼ argmaxa∈A Q(St+1, a).

– Apply TD-learning replacing V (s) by Q(s,At+1).

1.4.1 Q-learning

At ∼ π

Q(St, At) := Q(St, At) + αt

(
Rt+1 + γmax

a∈A
Q(St+1, a)−Q(St, At)

)
.

Theorem 1. Assume that γ < 1 and that:

• Any station-action pair (a, s) is visited infinitely often.

•
∑

t αt = ∞ and
∑

t α
2
t < ∞.

Then: Q converges almost surely to the optimal Q∗-table as t goes to infinity.

1.4.2 SARSA

SARSA (name comes from St, At, Rt+1, St+1, At+1)

At+1 ∼ argmaxQ(St, At) (or ε-greedy)

Q(St, At) := Q(St, At) + αt (Rt+1 + γQ(St+1, At+1)−Q(St, At)) .

Open questions:

• Does it converge (and why?)

• How to choose the step-size?

• How to explore?

2 Stochastic approximation

2.1 Introduction and example: the ODE method

xn+1 = xn + an(f(xn) + noise),

• TD-learning or Q-learning.

5

• Stochastic gradient descent. We are given N couples (X1, Y1) . . . (XN , YN) and a
parametric function gx. We want to find x such that gx(Xi) ≈ Yi for all i. We model
this as an empirical risk minimization by using a loss function ℓ:

F (x) =
1

N

N∑
k=1

ℓ(fx(Xk), Yk) = E [ℓ(fx(X), Y)] ,

where the expectation is taken uniformly over all data.

We want to do xn+1 = xn − an∇xF (x) but this is costly. The stochastic gradient
descent is:

– Pick (Xn, Yn) uniformly at random among all data points.

– Computes xn+1− = an∇xℓ(gxn
(X), Y).

This rewrites as:

xn+1 = xn + an(f(xn) + noise),

where f(x) = ∇xF (x).

In what follows, we want to show that the stochastic system behaves as the solutions
of the ẋ = f(x). This helps us to show where the iterates concentrate.

2.2 Decreasing step-size

xn+1 = xn + an(f(xn) +Mn+1),

We need the assumptions:

1. f : Rd → Rd is Lipschitz-continuous.

2. The step-sizes an ≥ 0 is such that
∑

n an = +∞ and
∑

n(an)
2 = +∞.

3. Mn Martingale difference sequence : E [Mn+1|Fn] = 0 and E
[
||Mn+1||2|Fn

]
≤ σ2.

4. supn ∥xn∥ remains bounded a.s.

We define tn =
∑n−1

k=0 ak and x̄ a piecewise linear function such that x̄(t(n)) = xn. We
also write xs(t) the solution of the ODE ẋ = f(x) with xs(s) = x̄(s).

Theorem 2. For all T > 0, we have:

lim
s→∞

sup
t∈[s,s+T]

∥x̄(t)− xs(t)∥ = 0 almost surely.

The sequence xn converges almost surely to the invariant sets of the ODE ẋ = f(x), that
is, the set A such that if x(0) ∈ A, then x(t) ∈ A for all t > 0. In particular, if the ODE
has a unique attractor x∗, then

lim
s→∞

xn = x∗.

6

Proof. For the first part, we consider s = 0 and use the following tools:

1. We compare the ODE and the discrete ODE yn+1 = yn + anf(xn): to show that at
t(n): ||yn − x̄n|| = O(

∑
k(ak)

2) by Gronwall’s inequality.

Recall the discrete-Gronwall’s lemma: if dn+1 = ε + L
∑n

k=0 akdk, then dn ≤ eLtnε
(proof = recurrence + log is convex).

2. Let Bn =
∑L

k=0 anMn+1. We have var(Bn) ≤
∑

n(an)
2σ2. In particular, P(||Bn|| ≥

ε) ≤
∑

n(an)
2σ2/ε2 (Chebyshev’s inequality). We can extend that to sup by using

Doob’s inequality and use the supermartingale B+
n = maxk≤b Bn?

3. Fix T . The idea is now to consider Kn = minK>n such that t(Kn) = tn + T . By

what the assumption on an, we have
∑Kn

k=1(ak)
2 → 0.

Similar to our way of defining yn, we can define a yk,n that starts at xk when n = k.

Let m(k) be such that
∑m(k)

ℓ=k ≈ T . We can show that:∥∥yk,k+m(k) − xk +m(k)
∥∥ ≤ eLT ε,

with probability at least
∑m(k)

ℓ=k (aℓ)
2σ2/ε2 <

∑∞
ℓ=k(aℓ)

2σ2/ε2.

This probability converges to 0 because
∑∞

ℓ=1(aℓ)
2 < ∞.

For t = +∞, we write A = ∩t≥0∪s≥t{x̄(t)}. If should be clear that xn → A a.s. A is
invariant by using the first part of the lemma and the fact that the flow is invariant.

Note: we can say more (A is chain transitive).

2.2.1 Application to Q-learning

For Q-learning, we can rewrite the ODE in vector form as:

Q̇s,a = rs,a + γ
∑
s′

p(s′|s, a)max
a′∈A

Qs′,a′ −Qs,a︸ ︷︷ ︸
=:fs,a(Q)

The ODE is Q̇ = f(Q), the variable is Q.
We can verify that this satisfy all assumption for the finite case:

• f is Lipschitz-continuous (because max is.)

• Moreover, the noise is i.i.d. if

• – If we apply to “synchronous” Q-learning (for all state s, a); or

– If we apply to “asynchronous” Q-learning with a generative model (we pick one
(st, at)) at random each time.

If we want to treat the general case, the problem is that the noise is not i.i.d.. In
this case, we need to treat that we have a “Markovian” noise. This is out of scope of
this course.

7

For T = +∞, we have:

• f can be written as f(Q) = F (Q) − Q. We know that F is contrating or the ∥∥∞
(see first course on MDP). Hence, it has a unique fixed point Q∗.

• Proving that the ODE converges to Q∗ is more complicated. For that, let us denote
u(t) = Q(t) −Q∗ and assume for now that F is α-contracting for the Lp norm. We
have:

d

dt
∥u(t)∥

=
d

dt
(
∑
i

|ui|p)1/p

=
1

p
(
∑
i

|ui|p)1/p− 1
d

dt
(
∑
i

|ui|p)

= ∥u∥1−p
∑
i

sgn(ui)|ui|p−1(F (Q)−Q).

= ∥u∥1−p


∑
i

sgn(ui)|ui|p−1(Fi(Q)− Fi(Q
∗))−

∑
i

sgn(ui)|ui|p−1 (Qi −Q∗
i)︸ ︷︷ ︸

=ui︸ ︷︷ ︸
=∥u∥p


Recall Hölder: if 1/p+ 1/q = 1, i.e., q = p/(p− 1), we have:∑

i

xiyi ≤ (
∑
i

|xi|p)1/p(
∑
i

|yi|q)1/q.

Using this with xi = Fi(Q)−Fi(Q
∗) and yi = sgn(ui)|ui|p−1, the first term is smaller

than:

∥F (Q)− F (Q∗)∥p (
∑
i

(|ui|p−1)p/(p−1))(p−1)/p = ∥F (Q)− F (Q∗)∥p ∥Q−Q∗∥p−1

≤ α ∥Q−Q∗∥pp
= α ∥u∥p

This shows that d
dt ∥u(t)∥ ≤ (α− 1) ∥u(t)∥.

The proof for p = +∞ comes by continuity of the norm.

2.3 Going further

2.3.1 Fluctuations and averaging

Let us go back to xn+1 = xn + an(f(xn) +Mn+1) and we assume in addition that:

8

• E
[
Mn+1M

T
n+1|Fn

]
= Q(xn)

• f is twice differentiable.

• The ODE has a unique fixed point that is exponentially stable.

The main idea is to use generators. For n ≥ k, let yk,n be the hybrid term:

yk,k = xk

yk,n+1 = yk,n + anf(yk,n).

We have:

xn − yk = yn,n − y0,n

=

n−1∑
k=0

yk+1,n − yk,n.

Hence, if we can bound yk+1,n − yk,n, we are ”done”.
We can do that by showing that the function xk 7→ yk,n is smooth.
This can be used to show variance of order O(1/n) when using an = 1/(n+ 1).
We can do acceleration via averaging. Polyak & Juditsky 92.

2.3.2 Constant step-size

Most of the results above also work for the constant step-size, in which case we can show
that if there is a unique attractor of the ODE x∗, and we use a = α, then:

lim
α→0

lim
n→∞

P(dist(x(α)
n)− x∗) = 0

We can also obtain fluctuation results. In particular, if the function f is smooth, we get:

lim
n→∞

E
[
x(α)
n

]
= x∗ + Cα+O(α2),

but the constant C is a non-zero.

3 Monte-Carlon Tree Search

3.0.1 Turn-based two players zero sum games

9

From a given position, takes the best decision. To do so, one can generate a tree of
possibilities and explore this tree (e.g.), min-max algorithm. But: what if the tree is too
big?

3.1 Min-max and alpha-beta pruning

You can construct the tree of possibilities

4

4

4

1 4

≥5

5 7

≤3

3

2 3

9

9 5

max (you)

min (opponent)

max (you)

heuristic

If the tree is two big, you stop at depth D and use a heuristic.

• You can backtrack with the min-max algorithm.

• For optimization, you can use alpha-beta pruning.

3.2 MCTS and exploration

3.2.1 Motivation for MCTS

Min-max and alpha-beta perform well (ex: Chess). . . but can be limited (ex: go).

• Tree can still be very big (AD)

• You need a good heuristic.

– Result is only available at the end

• You might want to avoid the exploration of not promising parts.

– For that you need a good heuristic.

10

3.2.2 MCTS algorithm

(figure from wikipedia)

The algorithm:

• Creates one or multiple children of the leaf.

• Obtains a value of the node (e.g. rollout)

• Backpropagates to the root

For the exploration, one typically uses bandit-like formulas: For each child, let S(c) be
the number of success and N(c) be the number of time you played c, and t =

∑
c′ N(c′).

• Explore argmaxc
S(c)
N(c) + 2

√
log t
N(c) .

Open question: no guarantee with
√
log t/N(c). Is

√
t/N(c) better?

1: while Some time is left do
2: Select a leaf node #UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf #random sampling
5: Backpropagate to the root
6: end while
7: Return argmaxc∈children(root) N(c) #or S(c)/N(c).

3.2.3 Demo / exercice

See the file connect4.tar.gz on the website.

References

[1] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer, 2009.

[2] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

11

	Monte-Carlo methods and Q-learning
	Estimation via Monte-Carlo
	TD-learning
	Relation between MC, TD and DP
	Q-learning and SARSA

	Stochastic approximation
	Introduction and example: the ODE method
	Decreasing step-size
	Going further

	Monte-Carlon Tree Search
	Min-max and alpha-beta pruning
	MCTS and exploration

