MDP and RL: Q-learning, stochastic approximation

Nicolas Gast

October 9, 2023

This document is a DRAFT of notes of the second part of the course on MDP and
reinforcement learning given at ENS de Lyon during the academic years 2023-2024 and the
forthcoming 2024-2025.

Contents

1 Monte-Carlo methods and Q-learning 2
1.1 Estimation via Monte-Carlo 2
1.2 TD-learning o . oL e 3
1.3 Relation between MC, TD and DP 4
1.4 Q-learning and SARSA 4

2 Stochastic approximation 5
2.1 Introduction and example: the ODE method 5
2.2 Decreasing step-sizeo oo e 6
2.3 Going further 8

3 Monte-Carlon Tree Search 9
3.1 Min-max and alpha-beta pruning L. 10
3.2 MCTS and exploration 10

Main references: [2] for Q-learning and variants (Section 1), and [1] (Section 2) for the
stochastic approximation part. The rest is from research papers.

1 Monte-Carlo methods and Q-learning
Recall Bellman’s equation:

V*(s) = max Q" (s, a)

Q*(s,a) =r(s,m(s)) + fyz V*(s")p(s'" | s,a)

Our assumption: we have access to a simulator.

1.1 Estimation via Monte-Carlo

6‘%‘0 [-¥3 o4 (-1 [-E] 12
Source: https://fr.wikipedia.org/wiki/Mthode_de_Monte-Carlo#Dtermination_
de_la_valeur_de_%CF%80

Figure 1: Estimation of 7 via Monte-Carlo.

See Figure 1. Area is w/4. A point (z,y) is in the red zone if 22 + y? < 1.
Estimation via rollout:

VT(Sy) =E[Gy | Sy = s,7].
e Monte-Carlo = sample Gy by using rollout. Can use every-visit or first-visit.

e Converges in O(1/y/n)

1.1.1 Monte-Carlo optimzation

Evaluate 7

improve T

https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_%CF%80
https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_%CF%80

Recall: improve can be done by using greedy:
m(s) = argmax Q(s, a).
acA
Possible problems:
e One may need many samples for all actions.
e Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (previous), importance sampling.

1.2 TD-learning

Bellman’s equation states:

V(St) =E [Rt+1 + ’}/Rt+2 +..]
=E [Ri1 + 7V (Se41)] -

This is equivalent to

0=FE |Rip1+7V(Se41) — V(S)

TD error

The TD learning algorithm uses the updates:
V(St) :=V(St) + ar(Regr + 7V (Se41) = V(S))),
where « is a learning rate such that >, a; = 400 and Y, (at)? < oc.

Proof. Main proof: see later. for some ideas:
Let B¢(s) be such that

0 ifSZSt

oy otherwise

Be(s) = {

Let V; be the V-table at time ¢. The definition of ; implies that for all s:

Vit1(s) := Vi(s) + Bi(s) | Rev1 +Vi(Stv1) —Vi(s)

=T7V;+noise

with Y, Bi(s) = co and >, B7(s) < oc.

As T™ is contracting, Theorem 1 of (On the convergence of stochastic iterative dynamic
programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93) shows that this implies
limy_, o V; = V™ almost surely. [

1.3 Relation between MC, TD and DP

V(S:) = E[Gi] MC
V(S:) =E [Rit1 + vV (Si41)] TD
V(S;) = E[Ri1] + VZ V(Si41)P(Seq1 = &) DP
S,
Monte-Carlo Temporal-Difference Dynamic Programming
V(5) « V(5) +a (G — V(S)) V(S:) « V(5:) + @Ry +7V(See1) — V(SH)) V(S ¢ Ex [Ress +1V(Seu)]

S141

(figure from Sutton and Barto)
e MC simulates a full trajectory
e TD samples one-step and uses a previous estimation of V.

e DP needs all possible values of V(s').

MC: One full trajectory for update TD: Updates take time to propagate
The tradeoff comes by using TD()):

e Use n-step returns (see Sutton-Barto, chapter 7).
Gt:t+n = Rt+1 + ’YRH-Q —+ -+ ’)/nilRH_n + ’)/t+nV(St+n).

e TD()) (see Sutton-Barto, chapter 12 or Szepesvdri, Section 2.1.3).

T
Gi(\) = (1 =X D X" Grygn + NG
n=1
1.4 (@-learning and SARSA
Bellman’s equations are:
V7T (St) =E™ [Reg1 + YV (St41)] to evaluate 7
Q" (S, A¢) =E |:Rt+1 + ymax Q" (Si41, a)] to find the best policy

This leads to two variant of:

e (Q-learning = off-policy learning.

— Choose A; ~ .

— Apply TD-learning replacing V' (s) by max, Q(s,a).
e SARSA = on-policy learning:

— Choose A1 ~ argmax,c 4 Q(Si+1,a).

— Apply TD-learning replacing V' (s) by Q(s, A¢y1).

1.4.1 (QQ-learning

At ~ T
Q(St, A) == Q(St, Ap) + o (Rt-',-l + ngeaj(Q(SHl,a) - Q(ShAt)) .

Theorem 1. Assume that v < 1 and that:
o Any station-action pair (a,s) is visited infinitely often.
o Y, ar=00and Y, af < oo.
Then: @ converges almost surely to the optimal Q*-table as t goes to infinity.
1.4.2 SARSA
SARSA (name comes from Sy, Ay, Ryy1, Si41, A1)

Apy1 ~ argmax Q(S, At) (or e-greedy)
Q(St, Ar) == Q(St, Ar) + o (R + 7Q(St41, Arp1) — Q(St, Av)) .

Open questions:
e Does it converge (and why?)
e How to choose the step-size?

e How to explore?

2 Stochastic approximation

2.1 Introduction and example: the ODE method

Tnt1 = Tn + an(f(x,) + noise),

e TD-learning or Q-learning.

e Stochastic gradient descent. We are given N couples (X1,Y71)...(Xn,Yn) and a
parametric function g,. We want to find z such that g,(X;) ~ Y; for all i. We model
this as an empirical risk minimization by using a loss function ¢:

N
F(a) = 1 S (X0, Vi) = B [(X), V)],
k=1

where the expectation is taken uniformly over all data.

We want to do x,4+1 = &p — a, Vo F(x) but this is costly. The stochastic gradient
descent is:

— Pick (X,,,Y,,) uniformly at random among all data points.

— Computes Ty 11— = an Vol(gs, (X),Y).
This rewrites as:
g1 = T, + an(f(2,) + noise),
where f(z) = V,F(z).

In what follows, we want to show that the stochastic system behaves as the solutions
of the & = f(z). This helps us to show where the iterates concentrate.

2.2 Decreasing step-size

Tnt1 = Tn + an(f(2n) + Mna),
We need the assumptions:
1. f:R% = R? is Lipschitz-continuous.
2. The step-sizes a,, > 0 is such that Y a, = +oo and Y, (a,)? = +o0.
3. M, Martingale difference sequence : E [M,11|F,] = 0 and E [|[M,,41||*|F,] < o2
4. sup,, ||| remains bounded a.s.

We define t,, = EZ;S aj and T a piecewise linear function such that Z(¢(n)) = x,. We
also write x4(t) the solution of the ODE & = f(z) with z4(s) = Z(s).

Theorem 2. For all T > 0, we have:

lim sup ||Z(t) — zs(t)|| = 0 almost surely.
570 te[s,s4+T)

The sequence x,, converges almost surely to the invariant sets of the ODE & = f(x), that
is, the set A such that if ©(0) € A, then x(t) € A for all t > 0. In particular, if the ODE
has a unique attractor x*, then

lim z,, = z*.
55— 00

Proof. For the first part, we consider s = 0 and use the following tools:

1. We compare the ODE and the discrete ODE y, 11 = y, + an f(2z5): to show that at
t(n): |lyn — Znl| = O(X,.(ak)?) by Gronwall’s inequality.
Recall the discrete-Gronwall’s lemma: if dy, 11 = € + LZZ:O axdy, then d,, < eltre
(proof = recurrence + log is convex).

2. Let B,, = Eé:o anM,+1. We have var(B,,) < 3, (a,)?0?. In particular, P(||B,|| >
) < 3, (an)?c?/e? (Chebyshev’s inequality). We can extend that to sup by using
Doob’s inequality and use the supermartingale B, = maxy<p, B),?

3. Fix T. The idea is now to consider K,, = mings, such that ¢(K,) =t, +T. By
what the assumption on a,,, we have Zkl,(z"l (ax)? — 0.

Similar to our way of defining y,,, we can define a y;, ,, that starts at z;, when n = k.

Let m(k) be such that Zznz(,]:) ~ T. We can show that:

Wk bty — r +m(k)|| < elTe,
with probability at least Z;n:(:)(ag)202/52 < o2 (ag)?o? /2.
This probability converges to 0 because Y, (a¢)? < co.

For ¢t = 400, we write A = Ny>Us>{Z(¢)}. If should be clear that x,, - A a.s. A is
invariant by using the first part of the lemma and the fact that the flow is invariant. O

Note: we can say more (A is chain transitive).

2.2.1 Application to Q-learning

For Q-learning, we can rewrite the ODE in vector form as:

QS,U« =Tsa T Zp(8/|s7 (I) g}ea'ﬁ Qs”a’ - Qs,a

s’/

::fs,a(Q)

The ODE is Q = f(Q), the variable is Q.
We can verify that this satisfy all assumption for the finite case:

e f is Lipschitz-continuous (because max is.)
e Moreover, the noise is i.i.d. if

e — If we apply to “synchronous” Q-learning (for all state s, a); or

— If we apply to “asynchronous” Q-learning with a generative model (we pick one
(st,a¢)) at random each time.

If we want to treat the general case, the problem is that the noise is not #.i.d.. In
this case, we need to treat that we have a “Markovian” noise. This is out of scope of
this course.

For T' = 400, we have:

e f can be written as f(Q) = F(Q) — Q. We know that F is contrating or the |||
(see first course on MDP). Hence, it has a unique fixed point Q*.

e Proving that the ODE converges to Q* is more complicated. For that, let us denote
u(t) = Q(t) — Q* and assume for now that F' is a-contracting for the L, norm. We
have:

d
)]

= £<§ij|ui|p>1/p
— L Py1 1 d p
= o= 15 ()
= [l pzsgn (ui)u: P71 (F(Q) - Q).

= JJul"” Zbgn ui) |ui P (F3(Q) Zbgn u)luiP (Qi — Q)
H/—’

=u;

=llul?

Recall Holder: if 1/p+1/q =1, i.e., ¢ =p/(p — 1), we have:
S iy < (3 L2 (S gl

Using this with z; = F;(Q) — F;(Q*) and y; = sgn(u;)|u;|[P~1, the first term is smaller
than:

IE(Q) = F@), Q_ (JusP =P/ =) 0=D/P = | F(Q) = F(Q7)Il, 1Q — Q"""

<alQ-Q}
=aulf’
This shows that < [lu(t)]| < (a — 1) [u(t)]].

The proof for p = +00 comes by continuity of the norm.

2.3 Going further
2.3.1 Fluctuations and averaging

Let us go back to 2,41 = ©pn + an(f(2n) + My41) and we assume in addition that:

o B [Myr1 M| F] = Qx)
e f is twice differentiable.
e The ODE has a unique fixed point that is exponentially stable.
The main idea is to use generators. For n > k, let y;, », be the hybrid term:
Yk,k = Tk
Yknt1 = Yk + anf(Ykn)-
We have:

LTn — Yk = Ynmn — Yo,n

n—1
= § Yk+1,n = Yk,n-
k=0

Hence, if we can bound yx41,n — Yk,n, we are "done”.
We can do that by showing that the function xy — y , is smooth.
This can be used to show variance of order O(1/n) when using a,, = 1/(n + 1).
We can do acceleration via averaging. Polyak & Juditsky 92.

2.3.2 Constant step-size

Most of the results above also work for the constant step-size, in which case we can show
that if there is a unique attractor of the ODE z*, and we use a = «, then:

lim lim P(dist(z{®)) — z*) =0

a—0n—o0
We can also obtain fluctuation results. In particular, if the function f is smooth, we get:
lim E {xﬁf‘)] =" + Ca + 0(a?),
n—oo

but the constant C' is a non-zero.

3 Monte-Carlon Tree Search

3.0.1 Turn-based two players zero sum games

.'\. Google DeepMind

Challenge Match

From a given position, takes the best decision. To do so, one can generate a tree of
possibilities and explore this tree (e.g.), min-max algorithm. But: what if the tree is too
big?

3.1 Min-max and alpha-beta pruning

You can construct the tree of possibilities
max (you)

min (opponent)

max (you)

heuristic

If the tree is two big, you stop at depth D and use a heuristic.
e You can backtrack with the min-max algorithm.

e For optimization, you can use alpha-beta pruning.

3.2 MCTS and exploration
3.2.1 Motivation for MCTS

Min-max and alpha-beta perform well (ex: Chess)...but can be limited (ex: go).
e Tree can still be very big (AP)
e You need a good heuristic.
— Result is only available at the end
e You might want to avoid the exploration of not promising parts.

— For that you need a good heuristic.

10

3.2.2 MCTS algorithm

Selection Expansion Simulation Backpropagation

(22) ()
@@ @@ () G @ (1)) @
@@@@@ @@@@@ G @W®E @00 EE
@@ ©Q

(figure from W1k1ped1a)
The algorithm:
e Creates one or multiple children of the leaf.
e Obtains a value of the node (e.g. rollout)
e Backpropagates to the root

For the exploration, one typically uses bandit-like formulas: For each child, let S(c) be
the number of success and N(c) be the number of time you played ¢, and t =), N(c').

S(c) log ¢
¢ N@ T2\ Ny

e Explore arg max

Open question: no guarantee with \/logt/N(c). Is v/t/N(c) better?
1: while Some time is left do

2 Select a leaf node #UCB-like
3: Expand a leaf

4: Use rollout (or equivalent) to estimate the leaf #random sampling
5. Backpropagate to the root

6: end while
7: Return arg MaX ¢ children(root) N(C) #or S(C)/N(C)

3.2.3 Demo / exercice

See the file connect4.tar.gz on the website.

References

[1] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer, 2009.

[2] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

11

	Monte-Carlo methods and Q-learning
	Estimation via Monte-Carlo
	TD-learning
	Relation between MC, TD and DP
	Q-learning and SARSA

	Stochastic approximation
	Introduction and example: the ODE method
	Decreasing step-size
	Going further

	Monte-Carlon Tree Search
	Min-max and alpha-beta pruning
	MCTS and exploration

