MDP and RL: Q-learning, stochastic approximation

Nicolas Gast

October 9, 2023

This document is a DRAFT of notes of the second part of the course on MDP and reinforcement learning given at ENS de Lyon during the academic years 2023-2024 and the forthcoming 2024-2025.

Contents

1 Monte-Carlo methods and Q-learning 2
1.1 Estimation via Monte-Carlo 2
1.2 TD-learning 3
1.3 Relation between MC, TD and DP 4
1.4 Q-learning and SARSA 4
2 Stochastic approximation 5
2.1 Introduction and example: the ODE method 5
2.2 Decreasing step-size 6
2.3 Going further 8
3 Monte-Carlon Tree Search 9
3.1 Min-max and alpha-beta pruning 10
3.2 MCTS and exploration 10

Main references: [2] for Q-learning and variants (Section 1), and [1] (Section 2) for the stochastic approximation part. The rest is from research papers.

1 Monte-Carlo methods and Q-learning

Recall Bellman's equation:

$$
\begin{aligned}
V^{*}(s) & =\max _{a \in \mathcal{A}} Q^{*}(s, a) \\
Q^{*}(s, a) & =\mathbf{r}(s, \pi(s))+\gamma \sum_{s^{\prime}} V^{*}\left(s^{\prime}\right) p\left(s^{\prime} \mid s, a\right)
\end{aligned}
$$

Our assumption: we have access to a simulator.

1.1 Estimation via Monte-Carlo

Source: https://fr.wikipedia.org/wiki/Mthode_de_Monte-Carlo\#Dtermination_ de_la_valeur_de_\%CF\%80

Figure 1: Estimation of π via Monte-Carlo.
See Figure 1. Area is $\pi / 4$. A point (x, y) is in the red zone if $x^{2}+y^{2} \leq 1$.
Estimation via rollout:

$$
V^{\pi}\left(S_{t}\right)=\mathbb{E}\left[G_{t} \mid S_{t}=s, \pi\right] .
$$

- Monte-Carlo $=$ sample G_{t} by using rollout. Can use every-visit or first-visit.
- Converges in $O(1 / \sqrt{n})$

1.1.1 Monte-Carlo optimzation

Recall: improve can be done by using greedy:

$$
\pi(s)=\underset{a \in \mathcal{A}}{\arg \max } Q(s, a) .
$$

Possible problems:

- One may need many samples for all actions.
- Some action-pair might not be visited.

Solutions: exploration/exploitation tradeoff (previous), importance sampling.

1.2 TD-learning

Bellman's equation states:

$$
\begin{aligned}
V\left(S_{t}\right) & =\mathbb{E}\left[R_{t+1}+\gamma R_{t+2}+\ldots\right] \\
& =\mathbb{E}\left[R_{t+1}+\gamma V\left(S_{t+1}\right)\right] .
\end{aligned}
$$

This is equivalent to

$$
0=\mathbb{E}[\underbrace{R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)}_{\text {TD error }}]
$$

The TD learning algorithm uses the updates:

$$
\left.V\left(S_{t}\right):=V\left(S_{t}\right)+\alpha_{t}\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)\right),
$$

where α is a learning rate such that $\sum_{t} \alpha_{t}=+\infty$ and $\sum_{t}\left(\alpha_{t}\right)^{2}<\infty$.
Proof. Main proof: see later. for some ideas:
Let $\beta_{t}(s)$ be such that

$$
\beta_{t}(s)= \begin{cases}0 & \text { if } s=S_{t} \\ \alpha_{t} & \text { otherwise }\end{cases}
$$

Let V_{t} be the V-table at time t. The definition of β_{t} implies that for all s :

$$
V_{t+1}(s):=V_{t}(s)+\beta_{t}(s)(\underbrace{R_{t+1}+\gamma V_{t}\left(S_{t+1}\right)}_{=T^{\pi} V_{t}+\text { noise }}-V_{t}(s)) .
$$

with $\sum_{t} \beta_{t}(s)=\infty$ and $\sum_{t} \beta_{t}^{2}(s)<\infty$.
As T^{π} is contracting, Theorem 1 of (On the convergence of stochastic iterative dynamic programming algorithms., Jaakkola, Jordan, Singh, NeurIPS 93) shows that this implies $\lim _{t \rightarrow \infty} V_{t}=V^{\pi}$ almost surely.

1.3 Relation between MC, TD and DP

$$
\begin{array}{lr}
V\left(S_{t}\right)=\mathbb{E}\left[G_{t}\right] & M C \\
V\left(S_{t}\right)=\mathbb{E}\left[R_{t+1}+\gamma V\left(S_{t+1}\right)\right] & T D \\
V\left(S_{t}\right)=\mathbb{E}\left[R_{t+1}\right]+\gamma \sum_{s^{\prime}} V\left(S_{t+1}\right) \mathbb{P}\left(S_{t+1}=s^{\prime}\right) & D P
\end{array}
$$

(figure from Sutton and Barto)

- MC simulates a full trajectory
- TD samples one-step and uses a previous estimation of V.
- DP needs all possible values of $V\left(s^{\prime}\right)$.

MC: One full trajectory for update The tradeoff comes by using $\operatorname{TD}(\lambda)$:

- Use n-step returns (see Sutton-Barto, chapter 7).

$$
G_{t: t+n}=R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{n-1} R_{t+n}+\gamma^{t+n} V\left(S_{t+n}\right) .
$$

- $T D(\lambda)$ (see Sutton-Barto, chapter 12 or Szepesvári, Section 2.1.3).

$$
G_{t}(\lambda)=(1-\lambda) \sum_{n=1}^{T} \lambda^{n-1} G_{t: t+n}+\lambda^{T} G_{t} .
$$

1.4 Q-learning and SARSA

Bellman's equations are:

$$
\begin{array}{rlr}
V^{\pi}\left(S_{t}\right) & =\mathbb{E}^{\pi}\left[R_{t+1}+\gamma V^{\pi}\left(S_{t+1}\right)\right] & \text { to evaluate } \pi \\
Q^{*}\left(S_{t}, A_{t}\right) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a} Q^{*}\left(S_{t+1}, a\right)\right] & \text { to find the best policy }
\end{array}
$$

This leads to two variant of:

- Q -learning $=$ off-policy learning.
- Choose $A_{t} \sim \pi$.
- Apply TD-learning replacing $V(s)$ by $\max _{a} Q(s, a)$.
- SARSA $=$ on-policy learning:
- Choose $A_{t+1} \sim \arg \max _{a \in \mathcal{A}} Q\left(S_{t+1}, a\right)$.
- Apply TD-learning replacing $V(s)$ by $Q\left(s, A_{t+1}\right)$.

1.4.1 $\quad Q$-learning

$$
\begin{aligned}
A_{t} & \sim \pi \\
Q\left(S_{t}, A_{t}\right) & :=Q\left(S_{t}, A_{t}\right)+\alpha_{t}\left(R_{t+1}+\gamma \max _{a \in \mathcal{A}} Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right) .
\end{aligned}
$$

Theorem 1. Assume that $\gamma<1$ and that:

- Any station-action pair (a, s) is visited infinitely often.
- $\sum_{t} \alpha_{t}=\infty$ and $\sum_{t} \alpha_{t}^{2}<\infty$.

Then: Q converges almost surely to the optimal Q^{*}-table as t goes to infinity.

1.4.2 SARSA

SARSA (name comes from $S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1}$)

$$
\begin{aligned}
& A_{t+1} \sim \arg \max \\
&\left.Q\left(S_{t}, A_{t}\right) \text { (or } \varepsilon \text {-greedy }\right) \\
& Q\left(S_{t}, A_{t}\right):=Q\left(S_{t}, A_{t}\right)+\alpha_{t}\left(R_{t+1}+\gamma Q\left(S_{t+1}, A_{t+1}\right)-Q\left(S_{t}, A_{t}\right)\right) .
\end{aligned}
$$

Open questions:

- Does it converge (and why?)
- How to choose the step-size?
- How to explore?

2 Stochastic approximation

2.1 Introduction and example: the ODE method

$$
x_{n+1}=x_{n}+a_{n}\left(f\left(x_{n}\right)+\text { noise }\right),
$$

- TD-learning or Q-learning.
- Stochastic gradient descent. We are given N couples $\left(X_{1}, Y_{1}\right) \ldots\left(X_{N}, Y_{N}\right)$ and a parametric function g_{x}. We want to find x such that $g_{x}\left(X_{i}\right) \approx Y_{i}$ for all i. We model this as an empirical risk minimization by using a loss function ℓ :

$$
F(x)=\frac{1}{N} \sum_{k=1}^{N} \ell\left(f_{x}\left(X_{k}\right), Y_{k}\right)=\mathbb{E}\left[\ell\left(f_{x}(X), Y\right)\right],
$$

where the expectation is taken uniformly over all data.
We want to do $x_{n+1}=x_{n}-a_{n} \nabla_{x} F(x)$ but this is costly. The stochastic gradient descent is:

- Pick (X_{n}, Y_{n}) uniformly at random among all data points.
- Computes $x_{n+1}-=a_{n} \nabla_{x} \ell\left(g_{x_{n}}(X), Y\right)$.

This rewrites as:

$$
x_{n+1}=x_{n}+a_{n}\left(f\left(x_{n}\right)+\text { noise }\right),
$$

where $f(x)=\nabla_{x} F(x)$.
In what follows, we want to show that the stochastic system behaves as the solutions of the $\dot{x}=f(x)$. This helps us to show where the iterates concentrate.

2.2 Decreasing step-size

$$
x_{n+1}=x_{n}+a_{n}\left(f\left(x_{n}\right)+M_{n+1}\right),
$$

We need the assumptions:

1. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is Lipschitz-continuous.
2. The step-sizes $a_{n} \geq 0$ is such that $\sum_{n} a_{n}=+\infty$ and $\sum_{n}\left(a_{n}\right)^{2}=+\infty$.
3. M_{n} Martingale difference sequence : $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=0$ and $\mathbb{E}\left[\left\|M_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right] \leq \sigma^{2}$.
4. $\sup _{n}\left\|x_{n}\right\|$ remains bounded a.s.

We define $t_{n}=\sum_{k=0}^{n-1} a_{k}$ and \bar{x} a piecewise linear function such that $\bar{x}(t(n))=x_{n}$. We also write $x_{s}(t)$ the solution of the ODE $\dot{x}=f(x)$ with $x_{s}(s)=\bar{x}(s)$.

Theorem 2. For all $T>0$, we have:

$$
\lim _{s \rightarrow \infty} \sup _{t \in[s, s+T]}\left\|\bar{x}(t)-x_{s}(t)\right\|=0 \text { almost surely. }
$$

The sequence x_{n} converges almost surely to the invariant sets of the $O D E \dot{x}=f(x)$, that is, the set A such that if $x(0) \in A$, then $x(t) \in A$ for all $t>0$. In particular, if the $O D E$ has a unique attractor x^{*}, then

$$
\lim _{s \rightarrow \infty} x_{n}=x^{*} .
$$

Proof. For the first part, we consider $s=0$ and use the following tools:

1. We compare the ODE and the discrete $\mathrm{ODE} y_{n+1}=y_{n}+a_{n} f\left(x_{n}\right)$: to show that at $t(n):\left\|y_{n}-\bar{x}_{n}\right\|=O\left(\sum_{k}\left(a_{k}\right)^{2}\right)$ by Gronwall's inequality.
Recall the discrete-Gronwall's lemma: if $d_{n+1}=\varepsilon+L \sum_{k=0}^{n} a_{k} d_{k}$, then $d_{n} \leq e^{L t_{n}} \varepsilon$ (proof $=$ recurrence $+\log$ is convex).
2. Let $B_{n}=\sum_{k=0}^{L} a_{n} M_{n+1}$. We have $\operatorname{var}\left(B_{n}\right) \leq \sum_{n}\left(a_{n}\right)^{2} \sigma^{2}$. In particular, $\mathbb{P}\left(\left\|B_{n}\right\| \geq\right.$ $\varepsilon) \leq \sum_{n}\left(a_{n}\right)^{2} \sigma^{2} / \varepsilon^{2}$ (Chebyshev's inequality). We can extend that to sup by using Doob's inequality and use the supermartingale $B_{n}^{+}=\max _{k \leq b} B_{n}$?
3. Fix T. The idea is now to consider $K_{n}=\min _{K>n}$ such that $t\left(K_{n}\right)=t_{n}+T$. By what the assumption on a_{n}, we have $\sum_{k=1}^{K_{n}}\left(a_{k}\right)^{2} \rightarrow 0$.
Similar to our way of defining y_{n}, we can define a $y_{k, n}$ that starts at x_{k} when $n=k$. Let $m(k)$ be such that $\sum_{\ell=k}^{m(k)} \approx T$. We can show that:

$$
\left\|y_{k, k+m(k)}-x_{k}+m(k)\right\| \leq e^{L T} \varepsilon,
$$

with probability at least $\sum_{\ell=k}^{m(k)}\left(a_{\ell}\right)^{2} \sigma^{2} / \varepsilon^{2}<\sum_{\ell=k}^{\infty}\left(a_{\ell}\right)^{2} \sigma^{2} / \varepsilon^{2}$.
This probability converges to 0 because $\sum_{\ell=1}^{\infty}\left(a_{\ell}\right)^{2}<\infty$.
For $t=+\infty$, we write $A=\cap_{t \geq 0} \overline{\cup_{s \geq t}\{\bar{x}(t)\}}$. If should be clear that $x_{n} \rightarrow A$ a.s. A is invariant by using the first part of the lemma and the fact that the flow is invariant.

Note: we can say more (A is chain transitive).

2.2.1 Application to Q-learning

For Q-learning, we can rewrite the ODE in vector form as:

$$
\dot{Q}_{s, a}=\underbrace{r_{s, a}+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \max _{a^{\prime} \in \mathcal{A}} Q_{s^{\prime}, a^{\prime}}-Q_{s, a}}_{=: f_{s, a}(Q)}
$$

The ODE is $\dot{Q}=f(Q)$, the variable is Q.
We can verify that this satisfy all assumption for the finite case:

- f is Lipschitz-continuous (because max is.)
- Moreover, the noise is i.i.d. if
- - If we apply to "synchronous" Q-learning (for all state s, a); or
- If we apply to "asynchronous" Q-learning with a generative model (we pick one $\left.\left(s_{t}, a_{t}\right)\right)$ at random each time.

If we want to treat the general case, the problem is that the noise is not i.i.d.. In this case, we need to treat that we have a "Markovian" noise. This is out of scope of this course.

For $T=+\infty$, we have:

- f can be written as $f(Q)=F(Q)-Q$. We know that F is contrating or the $\left\|\|_{\infty}\right.$ (see first course on MDP). Hence, it has a unique fixed point Q^{*}.
- Proving that the ODE converges to Q^{*} is more complicated. For that, let us denote $u(t)=Q(t)-Q^{*}$ and assume for now that F is α-contracting for the L_{p} norm. We have:

$$
\begin{aligned}
& \frac{d}{d t}\|u(t)\| \\
& =\frac{d}{d t}\left(\sum_{i}\left|u_{i}\right|^{p}\right) 1 / p \\
& =\frac{1}{p}\left(\sum_{i}\left|u_{i}\right|^{p}\right) 1 / p-1 \frac{d}{d t}\left(\sum_{i}\left|u_{i}\right|^{p}\right) \\
& =\|u\|^{1-p} \sum_{i} \operatorname{sgn}\left(u_{i}\right)\left|u_{i}\right|^{p-1}(F(Q)-Q) \\
& =\|u\|^{1-p}[\sum_{i} \operatorname{sgn}\left(u_{i}\right)\left|u_{i}\right|^{p-1}\left(F_{i}(Q)-F_{i}\left(Q^{*}\right)\right)-\underbrace{\sum_{i} \operatorname{sgn}\left(u_{i}\right)\left|u_{i}\right|^{p-1} \underbrace{\left(Q_{i}-Q_{i}^{*}\right)}_{=\|u\|^{p}}}_{i}]
\end{aligned}
$$

Recall Hölder: if $1 / p+1 / q=1$, i.e., $q=p /(p-1)$, we have:

$$
\sum_{i} x_{i} y_{i} \leq\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

Using this with $x_{i}=F_{i}(Q)-F_{i}\left(Q^{*}\right)$ and $y_{i}=\operatorname{sgn}\left(u_{i}\right)\left|u_{i}\right|^{p-1}$, the first term is smaller than:

$$
\begin{aligned}
\left\|F(Q)-F\left(Q^{*}\right)\right\|_{p}\left(\sum_{i}\left(\left|u_{i}\right|^{p-1}\right)^{p /(p-1)}\right)^{(p-1) / p} & =\left\|F(Q)-F\left(Q^{*}\right)\right\|_{p}\left\|Q-Q^{*}\right\|^{p-1} \\
& \leq \alpha\left\|Q-Q^{*}\right\|_{p}^{p} \\
& =\alpha\|u\|^{p}
\end{aligned}
$$

This shows that $\frac{d}{d t}\|u(t)\| \leq(\alpha-1)\|u(t)\|$.
The proof for $p=+\infty$ comes by continuity of the norm.

2.3 Going further

2.3.1 Fluctuations and averaging

Let us go back to $x_{n+1}=x_{n}+a_{n}\left(f\left(x_{n}\right)+M_{n+1}\right)$ and we assume in addition that:

- $\mathbb{E}\left[M_{n+1} M_{n+1}^{T} \mid \mathcal{F}_{n}\right]=Q\left(x_{n}\right)$
- f is twice differentiable.
- The ODE has a unique fixed point that is exponentially stable.

The main idea is to use generators. For $n \geq k$, let $y_{k, n}$ be the hybrid term:

$$
\begin{aligned}
y_{k, k} & =x_{k} \\
y_{k, n+1} & =y_{k, n}+a_{n} f\left(y_{k, n}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
x_{n}-y_{k} & =y_{n, n}-y_{0, n} \\
& =\sum_{k=0}^{n-1} y_{k+1, n}-y_{k, n} .
\end{aligned}
$$

Hence, if we can bound $y_{k+1, n}-y_{k, n}$, we are "done".
We can do that by showing that the function $x_{k} \mapsto y_{k, n}$ is smooth.
This can be used to show variance of order $O(1 / n)$ when using $a_{n}=1 /(n+1)$.
We can do acceleration via averaging. Polyak \& Juditsky 92.

2.3.2 Constant step-size

Most of the results above also work for the constant step-size, in which case we can show that if there is a unique attractor of the $\operatorname{ODE} x^{*}$, and we use $a=\alpha$, then:

$$
\lim _{\alpha \rightarrow 0} \lim _{n \rightarrow \infty} \mathbb{P}\left(\operatorname{dist}\left(x_{n}^{(\alpha)}\right)-x^{*}\right)=0
$$

We can also obtain fluctuation results. In particular, if the function f is smooth, we get:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[x_{n}^{(\alpha)}\right]=x^{*}+C \alpha+O\left(\alpha^{2}\right),
$$

but the constant C is a non-zero.

3 Monte-Carlon Tree Search

3.0.1 Turn-based two players zero sum games

From a given position, takes the best decision. To do so, one can generate a tree of possibilities and explore this tree (e.g.), min-max algorithm. But: what if the tree is too big?

3.1 Min-max and alpha-beta pruning

You can construct the tree of possibilities

If the tree is two big, you stop at depth D and use a heuristic.

- You can backtrack with the min-max algorithm.
- For optimization, you can use alpha-beta pruning.

3.2 MCTS and exploration

3.2.1 Motivation for MCTS

Min-max and alpha-beta perform well (ex: Chess)... but can be limited (ex: go).

- Tree can still be very big $\left(A^{D}\right)$
- You need a good heuristic.
- Result is only available at the end
- You might want to avoid the exploration of not promising parts.
- For that you need a good heuristic.

3.2.2 MCTS algorithm

(figure from wikipedia)
The algorithm:

- Creates one or multiple children of the leaf.
- Obtains a value of the node (e.g. rollout)
- Backpropagates to the root

For the exploration, one typically uses bandit-like formulas: For each child, let $S(c)$ be the number of success and $N(c)$ be the number of time you played c, and $t=\sum_{c^{\prime}} N\left(c^{\prime}\right)$.

- Explore $\arg \max _{c} \frac{S(c)}{N(c)}+2 \sqrt{\frac{\log t}{N(c)}}$.

Open question: no guarantee with $\sqrt{\log t / N(c)}$. Is $\sqrt{t} / N(c)$ better?
1: while Some time is left do
2: Select a leaf node \#UCB-like
3: Expand a leaf
4: Use rollout (or equivalent) to estimate the leaf
\#random sampling
5: Backpropagate to the root
6: end while
7: Return arg $\max _{c \in \text { children(root) }} N(c)$ $\#$ or $S(c) / N(c)$

3.2.3 Demo / exercice

See the file connect4.tar.gz on the website.

References

[1] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.
[2] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT press Cambridge, 1998.

