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1 Background
In several contexts, we need to optimize multiple optimization problems for which only a limited part of the param-
eters changes, typically in the objective. This occurs for instance when solving subproblems within a decomposition
algorithm (Benders or Dantzig-Wolfe decompositions), when there is uncertainty in the problem specification as
in stochastic and robust optimization, or when optimizing sequences of policies in Markov decision processes or
subproblems in the context of differentiable optimization layers in machine learning pipelines [2, 1].

When all problems in the series are linear, the simplex algorithm is the typical method of choice, with powerful
hot-start and warm-start capabilities using the primal or dual simplex, depending on whether the objective or
right-hand side vector change. When the problem is convex but nonlinear, the typically used algorithms (interior
point methods, sequential quadratic programming) are notoriously harder to warm-start, which means that every
new problem has to be solved from scratch. The question is then whether we can design methods that leverage the
fact that multiple similar problems are solved to avoid using the more expensive solver on every one of them.

2 Method and goals
We consider convex conic optimization problems:

(𝑃) min
𝑥

𝑐⊤𝑥

s.t. 𝐴𝑥 = 𝑏

𝑥 ∈ 𝒦 ,

with 𝒦 a Cartesian product of convex proper cones in the sense of [3]. We aim to design efficient methods to
optimize sequences of problems (𝑃) with a varying objective 𝑐 (or equivalently the right-hand side 𝑏 by duality).
The dual of (𝑃) is:

(𝐷) min
𝑦,𝑠

𝑏⊤𝑦

s.t. 𝐴⊤𝑦 + 𝑠 = 𝑐

𝑠 ∈ 𝒦 ∗

with 𝒦 ∗ the dual cone of 𝒦 . The optimality of a primal-dual triplet (𝑥, 𝑦, 𝑠) is expressed as:

(𝐾𝐾𝑇) 𝐴⊤𝑦 + 𝑠 = 𝑐

𝐴𝑥 = 𝑏

(𝑥, 𝑠) ∈ 𝒦 ×𝒦 ∗

𝑥 ◦ 𝑠 = 0.
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If after optimizing the problem for given objectives {𝑐1 , 𝑐2 , . . . 𝑐𝑡−1}, one stores the corresponding triplets
{(𝑥1 , 𝑦1 , 𝑠1), (𝑥2 , 𝑦2 , 𝑠2), . . . (𝑥𝑡−1 , 𝑦𝑡−1 , 𝑠𝑡−1)}, we can evaluate the quality of the 𝑘-th solution 𝑐⊤𝑡 𝑥𝑘 for the new
objective by finding a corresponding dual vector 𝑦, which solves the linear system:

𝐴⊤𝑦 = 𝑏 − 𝑠𝑘 .

If the system admits a solution �̂�, then (𝐾𝐾𝑇) is satisfied by (𝑥𝑘 , �̂� , 𝑠𝑘) and the primal point 𝑥 is optimal for the
new objective. The two main directions of the project will be to:

• define new methods to provide dual bounds from inexact dual certificates, i.e. compute an upper bound on
the gap between the optimal value 𝑐⊤𝑥 and that of the solution 𝑐⊤𝑥𝑘 ,

• design algorithms to reoptimize jointly (𝑦, 𝑠) for a given 𝑥.

The goal will then be to design and implement algorithms to optimize sequences of conic optimization problems
and adaptively call an underlying solver providing exact (but expensive) solutions, only when the previously-
collected solutions cannot provide a satisfactory objective value. We will compare the new method against:

1. Standard solvers solving the problem from scratch at every iteration

2. Solving methods capable of warm-starting from a single solution, such as ADMM-based methods.1

3 Candidate Profile
We are looking for a Master’s student in applied mathematics, computer science, statistics, operations research, or
related fields. The candidate should be familiar with:

1. constrained convex optimization (elements of linear and conic optimization, Lagrangian duality, modeling
in convex optimization)

2. basics of scientific programming (solving optimization problems and linear systems, building problem using
modeling language such as JuMP or CVXPy).

4 Additional information
Context
The internship may be continued as a PhD.

Contact
For more information, please contact mathieu.besancon@polymtl.ca and nicolas.gast@inria.fr.

Location
The intern will be hosted in the POLARIS Inria team which is joint between Inria and the LIG (Grenoble Computer
Science Laboratory) and is located on the Grenoble University main campus (https://batiment.imag.fr/).
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1See for instance the COSMO.jl solver https://oxfordcontrol.github.io/COSMO.jl/stable/getting_started/#Warm-starting.
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