
Stochastic bandit:
n arms with iid stochastic rewards (Ra,i)i∈N wtih mean ra, 1 ≤ a ≤ n.

UCB algorithm:

• At time 1 each arm is sampled once.

• At each time t > 1:

1. Compute an upper confidence bound for each a:

UCBa(t) = r̂a(Na(t)) +
√

α log t
2Na(t)

2. Choose At+1 ∈ argmaxa UCBa(t).

Where we denote by Na(t) the number of times that UCB chooses arm a up

to time t and r̂a(Na(t)) =
1

Na(t)

∑Na(t)
s=1 Ra,s.

Theorem 1. If all arms have bounded rewards in [0, 1], ∀α > 2,∃Cα > 0 s.t.
E(Na(T )) ≤ 2α log T

(r∗−ra)2
+ Cα for all suboptimal arm a.

Proof. Main ingredient of the proof is Hoeffding inequality.
Let X1, X2, · · · be independent variables whose support is bounded: vi ≤

Xi ≤ ui for all i and means E(Xi) = mi. Then

P(X1 + · · ·+Xs − (m1 + · · ·+ms) ≤ −ϵ) ≤ exp

(
−2ϵ2∑s

i=1(ui − vi)2

)
P(X1 + · · ·+Xs − (m1 + · · ·+ms) ≥ ϵ) ≤ exp

(
−2ϵ2∑s

i=1(ui − vi)2

)
How to use this here for one arm: Xi = Ra,i and vi = 0, ui = 1.

Therefore by multiplying by s, for any s, Hoeffding says

P(r̂a(s) ≤ ra − ϵ) ≤ exp(−2ϵ2s).

Let S = Na(t). Then,

P(UCBa(t) ≤ ra) = P(r̂a(S) ≤ ra −
√

α log t

2S
)

Since S = Na(t) is random and depends on the values of Ra,s, Hoeffing does
not hold for S = Na(t).

Instead we use the union bound:

P(UCBa(t) ≤ ra) = P

(
r̂a(S) ≤ ra −

√
α log t

2S

)

≤ P

(
∃s ≤ t, r̂a(s) ≤ ra −

√
α log t

2s

)

≤
t∑

s=1

P

(
r̂a(s) ≤ ra −

√
α log t

2s

)
(union bound).
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Now we can use Hoeffding for all s:

P(UCBa(t) ≤ ra) ≤
t∑

s=1

exp

(
−2s

α log t

2s

)

=

t∑
s=1

1

tα

=
1

tα−1

Finally,

P(UCBa(t) ≤ ra) ≤
1

tα−1
. (1)

Similarly, we can define LCBa(t) = r̂a(Na(t)) −
√

α log t
2Na(t)

. Using the same

proof (and Hoeffding for ≥ ϵ instead of ≤ −ϵ),

P(LCBa(t) ≥ ra) ≤
1

tα−1
. (2)

Now we look at special events. To simplify notation, we assume wlog that
arm 1 is optimal and arm 2 is not optimal. Let τ by any stopping time of the
algorithm (any time that only depends on the past steps, 1, ..., T ).

N2(T )−N2(τ) =

T∑
t=τ+1

1{At=2}

=

T∑
t=τ+1

1{At=2∧UCB1(t)≤r1} +

T∑
t=τ+1

1{At=2∧UCB1(t)>r1}

=

T∑
t=τ+1

1{At=2∧UCB1(t)≤r1} +

T∑
t=τ+1

1{At=2∧UCB2(t)>r1} (2 was chosen)

≤
T∑

t=τ+1

1{UCB1(t)≤r1} +

T∑
t=τ+1

1{UCB2(t)>r1}

=

T∑
t=τ+1

1{UCB1(t)≤r1} +

T∑
t=τ+1

1{UCB2(t)>r1∧LCB2(t)<r2} +

T∑
t=τ+1

1{UCB2(t)>r1∧LCB2(t)>r2}

≤
T∑

t=τ+1

1{UCB1(t)≤r1} +

T∑
t=τ+1

1{UCB2(t)>r1∧LCB2(t)<r2} +

T∑
t=τ+1

1{LCB2(t)≥r2}

Let us first study the middle term:

1{UCB2(t)>r1∧LCB2(t)<r2} ≤ 1{
√

α log t
2N2(t)

> r1−r2
2 }

= 1{N2(t)<
2α log t

(r1−r2)2
}.
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Let us denote K(t) = 2α log t
(r1−r2)2

.

We get

N2(T )−N2(τ) ≤ C +

T∑
t=τ+1

1{N2(t)<K(t)}.

Using Equations (1) and (2),

E(C) =

T∑
t=τ+1

Pr(UCB1(t) ≤ r1) +

T∑
t=τ+1

Pr(LCB2(t) ≥ r2)

≤ 2

∞∑
t=1

1

tα−1
=: Cα

notice that Cα is finite if α > 2.
Now it is time to choose τ .
Let us consider τ = max{t ≤ T |N2(t) < K(t)} (exists because N2(2) ≤ 2 <

K(2)).
if τ < T ,

E(N2(T ) ≤ E(N2(τ)) + Cα + 0.

Moreover, E(N2(τ)) < K(τ) < K(T ). This implies that

EN2(T ) < Cα +
2α log T

(r1 − r2)2
.

If τ = T , then directly N2(τ) = N2(T ) < K(T ) so E(N2(T )) < K(T ).
QED.

A direct consequence of this theorem is

Reg(UCB, T ) = E

(
T∑

t=1

r1 −RA(t),NA(t)(t)

)
=
∑
a ̸=1

(r1 − ra)ENa(T )

< nr1Cα +

∑
a̸=1

2α

r1 − ra

 log T.
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