DM M2 ORCO Optimization under uncertainty

Romain Cravic, Bruno Gaujal

October 2023

The following problem is inspired from the board game ”Gods love dinosaurs”.

1 Problem statement

The goal of this homework is to design an optimal management of the food
chain to make dinosaurs prosperate in the world. We suppose there are three
types of animals :

e The rabbits (R) can reproduce on their own as long as there are some
rabbits left.

e The tigers (T) have to eat rabbits to survive and reproduce.

e The dinosaurs (D) have to eat either rabbits or tigers to survive. They
lay eggs only if they eat tigers.

The problem is modeled as follows. There are N cells arranged as a circle
as shown in Figure 1. At each time ¢t and in each cell there is either nothing, or
a rabbit, or a tiger (but no dinosaur).

Figure 1: N =6

You are god and at each time ¢ you choose one of the following actions :

Activate Rabbits (AR) : All the rabbits produce a new rabbit in their
two neighbour cells if they are currently empty. See Figure 2.

Activate Tigers (AT) : All the tigers move forward clockwise to eat
the rabbits and reproduce in the two next cells. The cells that currently
contain a rabbit are replaced by a tiger (so 0, 1, or 2 tigers appear), and
the start cell of the tiger becomes empty. See Figure 3.

Activate Dinosaur (AD) : The dinosaur eats the content of K > 1
random cells picked with a uniform probability. See Figure 4 for K = 3.

Birth Rabbit (BR) : If there is at least one empty cell, a rabbit appears
in one random empty cell picked with the uniform probability.

Birth Tiger (BT) : If there is at least one empty cell, a tiger appears in
one random empty cell picked with the uniform probability.

Figure 2 : (AR)

Figure 4 : (AD)

Whenever a dinosaure eats a tiger, it lays an egg and you win W points.
However, whenever you activate the dinosaure and it does not eat anything,
you endanger the species so you lose L points. Finally, giving birth to a rabbit
or a tiger has a cost C'r and C7p respectively.

2 Preliminaries

We want to model the above problem as a MDP (S, A, R, P).

Question 1 : Describe the state space S and the action space A. What is

the size of the state space as a function of N (without eliminating symmetries)
?

Question 2 : For the particular state s illustrated in Figure 1, and for
K = 3, describe for each action a what are the s’ that may be the next state of
the MDP with positive probability, ie s’ such that P(s|s,a) > 0.

Question 3 Write a pseudo-code for the reward function R(s,a,s’) that
returns the immediate reward if the environment is in state s, the action a is
taken, and the next state is s’. Hint : the knowleadge of s’ is necessary only for
action (AD). In this case you may first check that s' is a plausible next state for
(s, AD) (otherwise return 0), and then distinguish the different scenarios (egg,
species endangered, ...).

Note : During the course, you always saw R(s,a) instead of R(s,a,s’) for
the reward function. In the next section you’ll prove this is not a problem to
have a dependancy in s'.

3 Theoretical part

3.1 Finite-horizon setting

We first consider the problem has a finite-horizon 7. The goal is to maximize
T
Zt:1 R(sta Qt, 5t+1)'

For any Markovian policy m = {m; : S — A},.; pand 7 € {1,...,T}, we define
the value function of 7 from time 7 as
- s]

Question 4 : Show that for every 7 < T and every state s, the following
equality holds :

V() = 3 P(s'|s () [R5, m(s). 8) + Vi ()]

T
Vs, VI(s)=E ZR(st,ﬂ't(st),stH)
t=71

and Vs, V7, ,(s)=0.

We denote by V* the optimal value functions, ie Vs, 7, V(s) = max, V7 (s).

Question 5 : Show that V* satisfies the following Bellman’s equation :

Vs, 7 VX(s)= maxz P(s'|s,a) [R(s,a,s") + V', 1(s)]

Question 6 : Explain how we can compute V* for every 7, and an optimal
policy 7* = {n*} that satisfies Vs, 7, V[(s) = V*(s).

3.2 Infinite-horizon average-reward setting

In the following we consider the average-reward objective for our problem, that
is we want to maximize the average-reward ¢ :

T
. 1
g = lim T ZR(St, A, 8t+1)

T—+o0
t=1

We first need to study the structure of the MDP.

Question 7 : Show that the MDP is communicating. Hint : Describe an
action sequence that enables to get a positive probability path to go from an
arbitrary state s to an other arbitrary state s'.

Question 8 : Show that the MDP is not unichain. Hint : Find a policy
that has disjoint final classes of states.

With Question 7 you know that the optimal average-reward ¢g* does not depend
on the initial state s;.

Question 9 : Show that there exist some quantities h(s) such that g* and
the h(s) satisfy together

Vs, g*+h(s)= mgxz P(s'|s,a)[R(s,a,s") + h(s")]

Question 10 : Rewrite the previous equation in a vectorial form, with
h e RS R, = (R(s,ﬂ(s),s’))(s o) and P = (P(s’|s,7r(s)))(s o) for some
policy 7.

4 Computational part

Now you have to write a program in Python to implement an algorithm that
computes the optimal policy in the average-reward setting. Your work provides
the following functions :

e optimal_gain_gld (N, K, W, L, CR, CT) computes and returns
the optimal average-reward g* of the MDP with the corresponding pa-
rameters. The choice of the algorithm (value iteration, policy iteration,
...) is yours.

e Bonus: play_gld (N, K, W, L, CR, CT) enables to play the game
interactively. The current state and the rewards are printed on the screen
and the user can choose the action at each time.

Parameters reminder :

e N : number of cells.
e K : number of cells the dinosaur eats when activated.
e W: amont of points won when the dinosaur lays an egg.

e L : amont of points lost when the dinosaur does not eat anything when
activated.

e CR : amont of points lost when choosing action (BR).

e CT : amont of points lost when choosing action (BT).

