M2 ENS Lyon: MDP and RL.

1 Optimality for all large discounts

Let us consider a MDP $\mathcal{M}=(S, A, r, P)$, with state space S, action space A, transitions P, rewards r. A stationary policy π is a function from the state space to the action space: $\pi(s) \in A$ is the action taken by policy π in state s. Under discount $\beta,(0<\beta<1)$ the discounted value of policy π starting in s at time 0 is:

$$
V_{\beta}^{\pi}(s)=\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} r\left(X_{t}, \pi\left(X_{t}\right)\right)
$$

The undiscounted gain of π is

$$
g^{\pi}(s)=\mathbb{E} \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} r\left(X_{t}, \pi\left(X_{t}\right)\right)
$$

where, in both equations, X_{t} is the state of \mathcal{M} at time t under π.
Let $r^{\pi}(s):=r(s, \pi(s))$ denote the reward under π in state s and P^{π} the transition matrix under π : The probability to go from state i to j is

$$
P^{\pi}(i, j):=P(j \mid i, \pi(i))
$$

1.1

Explain why the matrix $\left(I-\beta P^{\pi}\right)$ is always invertible for $0<\beta<1$.

1.2

The Cramer formula for the inverse of a matrix is $M^{-1}=\frac{1}{\operatorname{det}(M)}\left(C_{i, j}\right)_{i, j}$. The coefficients of this matrix are $C_{i, j}:=(-1)^{i+j} \operatorname{det}(M \backslash\{i, j\})$ where $M \backslash\{i, j\}$ is the matrix M where row i and column j are removed.

By using this formula, show that $V_{\beta}^{\pi}(s)$ is a rational function: $V_{\beta}^{\pi}(s)=\frac{F(\beta)}{G(\beta)}$, where F is a polynomial function of degree $\leq n-1$ and G is a polynomial function of degree $\leq n$, and G is never null on the open interval $(0,1)$.

1.3

Let π^{\prime} be another policy, show that $V_{\beta}^{\pi}(s)-V_{\beta}^{\pi^{\prime}}(s)$ is also a rational function of β with a non-null denominator. What is the maximal degree of the numerator? What is the maximal number of values for β in the open interval $(0,1)$ where this function can be equal to 0 (if it is not the null function).

1.4

Show that there exists $\beta^{o}<1$ such that for all $\beta \in\left(\beta^{o}, 1\right)$, the discounted values of any pair of policies and any state s always compare in the same way.

1.5

Show that there exists a policy π^{o} that is discount optimal for all $\beta \in\left(\beta^{o}, 1\right)$.

1.6

Do you think that policy π^{o} is gain optimal (also maximizes the gain $\left.g^{\pi}\right)$? Do you think that any gain optimal policy π^{*} is also discount optimal for all $\beta \in\left(\beta^{o}, 1\right)$? Explain your answers (no formal proof is required here).

