
Multi-Armed Bandits

Victor Boone∗ Bruno Gaujal Nicolas Gast

September 29, 2023

Abstract

Quick introduction to Bandits. This course is intented to last about 4 fat
hours. I try to construct a comprehensible landscape of tools and notions that
appears in the modern theory of bandit algorithms. They are so many things
I cannot do justice for; and simply don’t even mention so many others.

I intended do make a rather classical introduction to the subject. Mostly
frequentist.

A good book on the subject: [Lattimore and Szepesvári, 2020].

Contents
1 A Brief Introduction to Multi-Armed Bandits 2

1.1 History . 2
1.2 Notations and Concepts . 2

2 Explore-Then-Commit Algorithms 3
2.1 ETC: How Would the Newcomer Solve Bandits? 4
2.2 Main Tool: Concentration Inequalities 4
2.3 Regret Guarantees of ETC and Tuning 5

3 UCB and Optimism 6
3.1 The “Optimism-in-Face-of-Uncertainty” Principle 6
3.2 Regret Guarantees of UCB . 6
3.3 About Tuning UCB . 8

4 Lower Bounds 9
4.1 Changes of Measure . 9
4.2 Asymptotical Lower Bound . 11

5 Minimax Analysis, Quickly 13
5.1 Getting Minimax Bounds for Free 13
5.2 A Few Words About the Lower Bound 13

∗Refer to me for typos and questions: victor.boone@univ-grenoble-alpes.fr

1

1 A Brief Introduction to Multi-Armed Bandits

1.1 History

So there was this Thompson guy, an Canadian entomologist living in the UK,
studying medical trials [Thompson, 1933]. You want to provide medicine to people
while dynamically learn the efficiency of drugs, and your purpose is to cure as
many patients as possible. Thompson provided a Bayesian rule to address the
problem, but barely showed anything about it (checked posteriors are Beta, and
that the numerically, the algorithm seems to work for the first 10-ish iterations –
well, he had no computer).

Thompson did not give any follow up to his paper. Never, ever.
We have to wait up to 1952 so that Robbins [Robbins, 1952], an american

mathematician, to take the problem on. As a statistician, Robbins thought of the
problem as a sequential allocation task; Statistics mainly focused on the analysis
of experiments in which the observed samples are fixed before-hand. What if the
samples are functions of observations themselves, i.e., that the statistician chooses
from whose population make samples out of its current knowledge? Robbins
already defines what is now refered to as the regret, although his seminal work
was still only skratching the surface of what is now know as Multi-Armed Bandit
Theory.

The topic has since been exploding.

1950 1960 1970 1980 1990 2000 2010 2020

102

103

104

Figure 1: Number of papers refering to “multi-armed bandits” refered by Google
Scholar, per 5 year slices.

1.2 Notations and Concepts

The gambler can sample from a set of unknonwn probability distributions {Fa : a}
labeled by an action set A (finite). At time t, she picks an arms At and observed a

2

reward Rt ∼ F(At), generated independently of all the previous stuff. To simplify
the course, we assume distributions are Bernoulli, i.e., Fa ≡ B(µa). The goal of
the gambler is to maximize the expected sum of rewards, E[R1 + . . . + RT], or,
equivalently, to minimize the expected regret:

Reg(T) := Tµ∗ −
T∑
t=1

Rt. (1)

An arm is any arm achieving maximal expected reward µ∗ := maxa µa, and sub-
optimal otherwise. While the two tasks are obviously equivalent, the interesting
point is that the regret provides a metric, by measuring how behind the algo-
rithm is from optimal performance. The quantity Tµ∗ is what you would actually
score if you knew everything in advance. The regret measures how far behind the
gambler’s performance is from the optimal one.

The number of visits of arm a at time T is Na(T) :=
∑T−1

t=1 1 (At = a). The
number of successes (resp. empirical estimate) of arm a after n pulls of it is denoted
Sa,n (resp. µ̂a,n). The number of successes (resp. empirical estimate) of arm a at
time t is Sa(t) := Sa,Na(t) (resp. µ̂a(t) := µ̂a,Na(t)). The optimality gap of arm a
is ∆a := µ∗ − µa. It is the expected cost indured when the gambler picks arm a.
The total number of arms is denoted k.

Lemma 1. The expected regret satisfies:

E[Reg(T)] =
∑
a

E[Na(T)]∆a.

Proof. We have E[Reg(T + 1)] = E[Reg(T)] + E[µ∗ − RT]. The right-term is
obtained as follows:

E [µ∗ −Rt] =
∑
a

∑
r

(µ∗ − r)P(AT = a,RT = r)

=
∑
a

(∑
r

(µ∗ − r)P(RT = r|AT = a)

)
P(AT = a)

=
∑
a

(µ∗ − µa)P(AT = a) =
∑
a

E[1 (AT = a)]∆a.

We conclude by induction.

Remark. Multi-arm bandits (MAB) are a special case of MDPs. The state space
is here trivial, say {1}, and the action space is A with reward distributions B(µa).
A deterministic policy is a map {1} → A, hence a choice of arm; It is optimal
(discounted, finite-horizon, average) if, and only if it picks an optimal arm.

2 Explore-Then-Commit Algorithms
How should a gambler pick actions so that E[Reg(T)] is small? This problem is
not easy and is considered as the simplest version of the exploration-exploitation

3

dilemma. How much should I pick an arm to make sure about its average reward?
How quickly should I only pick the arm that only provides the optimal observed
reward?

2.1 ETC: How Would the Newcomer Solve Bandits?

The Explore-Then-Commit algorithm is a simple way to manage the exploration-
exploitation dilemma by decoupling exploration and exploitation. The idea is to
pull every arm m times, then to commit everything to the arm that is observed
as empirically optimal.

Algorithm 1 Explore-Then-Commit
Require: m ≥ 1 a sampling parameter.
1: Pick every arm m times;
2: for t = mk, . . . do
3: Pick At achieving maxa µ̂a(mk);
4: end for

In the ETC algorithm given in Algorithm 1, how should m be tuned?

2.2 Main Tool: Concentration Inequalities

The material introduced here is about concentration inequalities for random vari-
able supported in [0, 1]. We will heavily rely on this from now on. I don’t prove
Hoeffding’s Lemma, because the proof is boring and not especially informative.
The result is important and instructive. The proof is not.

Lemma 2 (Hoeffding’s Lemma). Let Y a random variable with Y ∈ [a, b] with
E[Y] = 0. Then for all t ∈ R, E[etY] ≤ exp(t

2(b−a)2

8
).

Lemma 3 (Hoeffding’s inequality). Let (Xk) a sequence of independent variables
with Xk ∈ [0, 1] for all k ≥ 1. Denote Sn := X1 + . . .+Xn. Then, for all ϵ > 0,

P (Sn − E[Sn] ≥ ϵ) ≤ exp

(
−2ϵ2

n

)
Proof. Classical use of the Laplace transform (also called “Chernoff method”). Let
ϵ > 0 and t > 0. We have:

P (Sn − E[Sn] ≥ ϵ) = P
(
et(Sn−E[Sn]) ≥ etϵ

)
≤ e−tϵE

[
et(Sn−E[Sn])

]
(Markov)

= e−tϵE

[
n∏

k=1

et(Xk−E[Xk])

]

= e−tϵ

n∏
k=1

E
[
et(Xk−E[Xk])

]
(independance)

≤ e−tϵ+ 1
8
t2n. (Hoeffding’s Lemma)

4

Minimizing in t, e.g. t = 4ϵ
n
, we find P(Sn − E[Sn] ≥ ϵ) ≤ exp(−2ϵ2

n
).

We will use Hoeffding’s inequality to control the deviation of empirical esti-
mates (denoted µ̂a(t)), as follows:

P(µ̂a,n − µa > ϵ) ≤ exp(−2nϵ2). (2)

2.3 Regret Guarantees of ETC and Tuning

Theorem 1. The expected regret of ETC(m) is given by:

E[Reg(T)] ≤
∑
a

(
m∆a + 2T∆a exp

(
−1

2
m∆2

a

))
.

Proof. For denotational simplicity, assume that a = 1 is an optimal arm. This is
a direct calculation:

E[Reg(T)] =
∑
a

(
m∆a +

T∑
t=mk

∆aE [1 (At = a)]

)

≤
∑
a

∆a

(
m+

T∑
t=mk

E [1 (µ̂1,m ≤ µ̂a,m)]

)

≤
∑
a

∆a

(
m+

T∑
t=mk

E
[
1
(
µ̂1,m ≤ µ1 − ∆a

2

)
+ 1

(
µ̂a,m ≥ µa +

∆a

2

)])
≤
∑
a

∆a

(
m+ 2T exp(−1

2
m∆2

a)
)
.

That’s it!

The algorithm is, in general, a bit annoying to tune when k ≥ 3. But for
k = 2 this is straight forward. Denote ∆ the gap between the optimal and the
suboptimal arm. We choose m in order to minimize m + 2T exp(−1

8
m∆2). The

function of m is convex with unique minimum that we find by searching a zero
of its derivative. We find m∗ = 2

∆2 log(T∆
2). By choosing m = ⌈m∗⌉, ETC(m)

achieves performance:

E[Reg(T)] ≤ 2

∆
log(T∆2) + 3∆. (3)

Remark. This proof is not tight by about a factor 2, and so is m∗.

Extensions. Thankfully the story doesn’t stop here, for many reasons.

• The tuning depends on the horizon T which is supposed to be known in
advance. This is not the case in many settings. There is a standard technique
to overcome this technicality: The doubling trick. This adds a multiplicative
factor of 2 in the regret bounds though.

5

• This algorithm is far from being optimal – things get even worse when one
adds in the doubling trick. In fact, ETC algorithms can never be asymptot-
ically optimal [Garivier et al., 2016], however tight the confidence intervals
are chosen; and even if the exploration is non-uniform.

From the second point, we want to claim that algorithms needs to be adapta-
tive. This is not exactly true. There is an algorithm called Double Explore-Then-
Commit, that adds a second exploration phase after the first exploration phase
that helps to “correct” the algorithm’s mistakes.

3 UCB and Optimism
The use of optimism is a way to design methods achieving small regret without
explicit dependance on the horizon T . Also, this leads to the design of methods
that can achieve better performance than ETC. The idea is this: Say arm a = 1
has been pulled 100 times with average reward µ̂1 = 0.6 while arm a = 2 has been
pulled 10 times with average reward µ̂2 = 0.5. Do you pull arm 1 or arm 2? To
take account of the greater uncertainty about the value of arm a = 2, we add a
bonus to the average value of arms by considering

Ia(t) := µ̂a(t) + bonus(t, Na(t))

where the bonus is increasing in t and decreasing in Na(t). When picking the
arm maximizing Ia(t), this will force the algorithm to overestimate arms that are
picked less. This is, roughly speaking, the idea of optimism.

3.1 The “Optimism-in-Face-of-Uncertainty” Principle

The “optimism-in-face-of-uncertainty” principle goes back at least to the seminal
paper of [Lai and Robbins, 1985]. The idea is to sample an arm according to an
optimistic estimate of its value. This optimistic value is usually chosen such that
with high enough probability, the optimistic value is an upper-bound of the arm’s
value. Beware, the question of by how much optimistic we should be is a tricky
question, that is still only partially understood today (check [Lattimore, 2018] for
a recent overview, but it is only specific to bandits).

A simpler introduction to optimism is due to [Auer et al., 2002] with the fa-
mous UCB algorithm. The rule is simple. The optimistic value (or index) of an
arm consists in its empirically observed value plus a bonus that decreases with
the number of visits. Then pick the arm maximizing that index.

The exploration function is f(t) = 1 + t log2(t).

3.2 Regret Guarantees of UCB

Theorem 2. The expected regret of UCB is bounded as:

E[Reg(T)] ≤
∑
a̸=a∗

∆a inf
δ∈(0,1]

{ 1
2
log(T)

(∆a − δ)2
+

2

δ2
+ 1

}

6

Algorithm 2 UCB
1: Pick every arm once;
2: for t = 1, 2, . . . do
3: Pick At maximizing the index Ia(t) := µ̂a(t) +

√
log f(t)
2Na(t)

;
4: end for

In particular, the expected regret scales with:

lim sup
T→∞

E[Reg(T)]

log(T)
≤
∑
a̸=a∗

1

2∆a

.

Proof. Without loss of generality, we can assume that the optimal arm is a∗ = 1,
and denote ∆a := µ∗ − µa. The regret satisfies E[Reg(T)] =

∑
a E[Na(T)]∆a,

hence we will upper bound E[Na(T)]. Let a ̸= 1 a suboptimal arm. We have:

Na(T) ≤
T∑
t=1

1 (At = a)

≤
T∑
t=1

1 (I1(t) < µ1 − δ) +
T∑
t=1

1 (µ̂a(t) > µa + δ, At = a)

+
T∑
t=1

1 (I1(t) ≥ µ1 − δ, µ̂a(t) ≤ µa + δ, At = a)

where δ ≤ 1 is an arbitrary positive number. We bound the expectation of each
term separately.

For the first one, check that

E[−] ≤
T∑
t=1

t−1∑
n=1

E

[
1

(
µ̂1(t) +

√
log f(t)

2N1(t)
< µ1 − δ,N1(t) = n

)]

=
T∑
t=1

t−1∑
n=1

E

[
1

(
µ̂1,n +

√
log f(t)

2n
< µ1 − δ

)]

≤
T∑
t=1

t−1∑
n=1

exp

−2n ·

(√
log f(t)

2n
+ δ

)2

=
T∑
t=1

1

f(t)

t−1∑
n=1

exp(−2nδ2) ≤ 3

2δ2
.

The last inequality is mostly calculus. We use e−c

1−e−c ≤ 1
c
, that holds for c > 0, to

show that
∑

n≥1 exp(−2nδ2) ≤ 1
2δ2

. Then a serie-integral comparison shows that∑
t≥1

1
f(t)

≤ 3.

7

For the second one, check that:

E[−] =
T∑
t=1

E [1 (µ̂a(t) > µa + δ, At = a)]

=
T∑
t=1

E

[
t−1∑
n=0

1 (µ̂a,n > µa + δ, At = a,Na(t) = n)

]

≤ 1 +
T−1∑
n=1

E [1 (µa,n > µa + δ)]

≤ 1 +
T−1∑
n=1

exp(−2nδ2) ≤ 1 +
1

1− e−2δ2
≤ 1 +

1

2δ2
.

For the last inequality, we use again e−c

1−e−c ≤ 1
c
, that holds for c > 0.

For the third term, we have:

E[−] ≤
T−1∑
t=1

E

[
1

(
µa + δ +

√
log(t)

2Na(t)
≥ µ1 − δ, At = a

)]

≤
T−1∑
t=1

E

[
1

(
Na(t) ≤

log(t)

2(∆a − 2δ)2
≥ µ1, At = a

)]
≤ log(T)

2(∆a − δ)2
.

In the end, we find that for all δ > 0, we have:

E[Na(T)] ≤ 1 +
2

δ2
+

1
2
log(T)

(∆a − 2δ)2
.

To optimize in δ > 0 asymptotically in T , pick δ ≡ δ(T) = log−1/4(T).

3.3 About Tuning UCB

UCB can be tuned, because the index can be parametrized as follows:

µ̂a(t) +

√
α log f(t)

Na(t)

where α > 0. In the above, α is the related to the power level (of t) for which the
confidence interval µ̂a(t) ±

√
α log f(t)/Na(t) holds. In theory, choosing α < 1

2

may lead to Ω(log(T)) expected regret. In practical scenarios, this is quite often
that α is chosen very small, sometimes close to 0. Also, f(t) is usually chosen as
f(t) = 1 + t instead of the weird 1 + t log2(t).

Although the expected regret may be Ω(log(T)), one can show that for all
α > 0, UCB eventually ends up picking mostly optimal arms. The thing is that
the probability of UCB mistaking the suboptimal arm for the optimal one may
be large enough so that the expected regret is big. This probability nonetheless
goes to 0 as T → ∞.

8

4 Lower Bounds
So we have presented ETC. Said that it was not optimal. We suggested UCB,
that has better asymptotic guarantees. Can we do better? How efficient can an
algorithm be? It depends.

Consider the algorithm that only picks the arm a = 1. If the arm a = 1 is
optimal by any chance, then the algorithm will have null regret. If it isn’t, then
E[Reg(T)] = Ω(T). This algorithm is not very interesting however, because it
doesn’t work on every instance. This leads to the following definition:

Definition 1. An algorithm is said to be uniformly consistent if for all distribution
F on arms, for all ϵ > 0, we have EF[Reg(T)] = o(T ϵ); or equivalently, if whenever
a is a suboptimal arm under F, we have EF[Na(T)] = o(T ϵ).

We will only consider uniformly consistent algorithm from now on.
To lower bound the expected regret of an algorithm, the idea is to relate what

the algorithm is doing on the bandit model F to what it is doing to another
bandit model F′; Because whatever happens on F′ has some positive probability
of happening on F as well. If the algorithm is consistent and arm a = 1 is optimal
under F′, then it has a large probability to pick arm a a lot when running under F′.
Since everything that happens under F′ has a positive probability of happening
under F, it means that the large number of visits of a = 1 under F′ force the
algorithm to visit a = 1 a lot with positive probability under F, even though a
may not be optimal under F. Taking the expectation, this produces a lower bound
on EF[Na(T)].

Now, we will make this formal.

4.1 Changes of Measure

Fix a learning algorithm and assume it is deterministic for splicity, so that At

is a deterministic function of (A1, R1, . . . , At−1, Rt−1) := Ht. We say that At is
determined by the history Ht.

First, we need to relate what the algorithm is doing on F to what it is doing
on F′, so consider two distributions F and F′ on arms. Denote fa (resp. f ′

a) the
p.d.f. of arm a under F (resp. F′). Because the algorithm is deterministic, the
probability of observing the current history under F is

T−1∏
t=1

fAt(Rt).

This is called the likelihood of HT . The likelihood ration between F and F′ is∏T−1
t=1 fAt(Rt)/f

′
At
(Rt). A quantity which is equivalent to it, and very important

in statistics, is the log-likelihood ratio of the observations up to time T under a
fixed learning algorithm, given by

LT ≡ LT (A1, R1, . . . , AT−1, RT−1) :=
T−1∑
t=1

log

(
fAt(Rt)

f ′
At
(Rt)

)
. (4)

9

The log-likelihood ratio is useful to change measures, as driven by Lemma 4.

Lemma 4. Let E a σ(HT)-measurable event. Then PF′(E) = EF[1 (E) exp(−LT)].

Proof. This is actually a fancy way of saying something simple. To see what hap-
pens, let us assume that there is a single arm; so that LT ≡ LT (R1, . . . , RT−1) =∑T−1

t=1 log(f(Rt)/f
′(Rt)) where I drop the subscript on f (there is a single action).

A history is then a sequence of observed rewards of length T , and a σ(HT)-
measurable event is a set of T -histories. We have:

PF′(E) =
∑

h≡(r1,...,rt−1)

1 (h ∈ E)
t−1∏
i=1

f ′(ri)

=
∑

h≡(r1,...,rt−1)

1 (h ∈ E) exp

(
−

t−1∑
i=1

log

(
f(rt)

f ′(rt)

)) t−1∏
i=1

f(ri)

≡
∑

h≡(r1,...,rt−1)

1 (h ∈ E) exp(−LT (h))
t−1∏
i=1

f(ri) = EF[1 (E) exp(−LT)].

The proof is the same for k ≥ 2, but becomes denotationally much more involved.

The next result is the central result from which we will derive lower bounds
on achievable performance. It may look a little bit shy or technical, but it is
nonetheless very important.

Lemma 5. If E is σ(HT)-measurable, then EF[LT] ≥ kl(PF(E),PF′(E)).

Proof. So E is a set of T -histories. By the previous lemma, we have:

PF′(E) = EF[1 (E) exp(−LT)]

=
∑
h∈E

exp(−LT (h))PF(HT = h)

= PF(E)
∑
h∈E

exp(−LT (h))
PF(HT=h)

PF(E)

≥ PF(E) exp

(
−
∑
h∈E

LT (h)
PF(HT=h)

PF(E)

)
≡ PF(E) exp(−E[LT |E]).

Similarly, with the same proof for E∁, we get PF′(E∁) ≥ PF(E
∁) exp(−E[LT |E∁]).

Therefore,

EF[LT] = EF[LT |E]PF(E) + EF[LT |E∁]PF(E
∁)

≥ PF(E) log

(
PF(E)

PF′(E)

)
+PF(E

∁) log

(
PF(E

∁)

PF′(E∁)

)
≡ kl(PF(E),PF′(E)).

When distributions are not discrete, the proof is essentially the same, but the
material is a bit more advanced.

10

4.2 Asymptotical Lower Bound

The last element that we need to understand where this is all doing is the following
expression of EF[LT], obtained by Wald’s equation (or by induction on T):

EF[LT] =
∑
a

EF[Na(T)]kl(µa, µ
′
a). (5)

Proof. Observe that EF[LT+1] = EF[LT] + EF[log(fAT
(RT)/f

′
AT

(RT))]. So we
prove this by induction. We have:

EF

[
log

(
fAT

(RT)

f ′
AT

(RT)

)]
=
∑
a

∑
r∈{0,1}

log

(
fa(r)

f ′
a(r)

)
PF(RT = r|AT = a)PF(AT = a)

=
∑
a

 ∑
r∈{0,1}

fa(r) log

(
fa(r)

f ′
a(r)

)EF [1 (AT = a)]

=
∑
a

kl(µa, µ
′
a)EF [1 (AT = a)]

Overall, we get by induction: EF[LT+1] =
∑

a kl(µa, µ
′
a)
∑T

t=1EF[1 (At = a)].

This is very similar to the expected regret EF[Reg(T)] =
∑

a EF[Na(T)]∆a. To
us, the take-away from the above expression is that, combined with Lemma 5, we
know that if we find an event E which is rare under F but is frequent under F′,
then we will have∑

a

EF[Na(T)]kl(µa, µ
′
a) ≥ kl(PF(E),PF′(E)) ≫ 1.

Therefore, there must a EF[Na(T)]kl(µa, µ
′
a) ≫ 1. We will be able to deduce that

a properly selected Na(T) must have high enough expected value.

Theorem 3. Fix F the distributions over arms, with Fa ≡ B(µa). Every uniformly
consistent algorithm satisfies:

lim inf
T→∞

EF[Na(T)]

log(T)
≥ 1

kl(µa, µ∗)
.

Proof. Let a a suboptimal arm under F and assume, without loss of generality,
that the optimal arm under F is a = 1. Let δ > 0 small enough. Let F′, similar
in every way to F, excepted that µ′

a = µ1 + δ; hence a is optimal by exactly δ.
Therefore, F′ is chosen so that:

EF[LT] = EF[Na(T)]kl(µa, µ1 + δ).

Consider the event
E :=

(
Na(T) ≥ 1

2
T
)
.

11

The idea is that this event is eventually very probable under F′, but is eventually
very rare under F. Fix ϵ > 0.

Under F, on the one hand, we have:

EF[Na(T)] ≥ 1
2
TE

[
1
(
Na(T) ≥ 1

2
T
)]

.

On the over hand, because a is suboptimal we have ∆aEF[Na(T)] ≤ EF[Reg(T)],
which is eventually smaller than T ϵ by uniform consistency. Both together, we
obtain

E
[
1
(
Na(T) ≥ 1

2
T
)]

≤ 2
∆a

T ϵ−1. (6)

Under F′, on the one hand we have

EF′ [Na(T)] ≤ 1
2
T
(
1− EF′

[
1
(
Na(T) ≥ 1

2
T
)])

+ TEF′
[
1
(
Na(T) ≥ 1

2
T
)]

= 1
2
T + 1

2
TEF′

[
1
(
Na(T) ≥ 1

2
T
)]

.

On the other hand and provided that δ > 0 is small enough, we have EF′ [Reg(T)] ≥
δ(T − EF′ [Na(T)]) (because a is the only optimal arm, and is δ-optimal), and by
uniform consistency EF′ [Reg(T)] ≤ T ϵ eventually. Rearraging terms, we see that
EF′ [Na(T)] ≥ T − δ−1T ϵ. Overall,

EF′
[
1
(
Na(T) ≥ 1

2
T
)]

≥ 2
T
EF′ [Na(T)]− 1

≥ 1− 2
δ
T ϵ−1. (7)

We now conclude the proof. We get:

EF[Na(T)]kl(µa, µ1 + δ) ≥ kl
(

2
∆a

T ϵ−1, 1− 2
δ
T ϵ−1

)
∼

T→∞
log
(
T 1−ϵ

)
= (1− ϵ) log(T).

Therefore,

lim inf
T→∞

EF[Na(T)]

log(T)
≥ 1− ϵ

kl(µa, µ1 + δ)
. (8)

This holds for all δ > 0 and ϵ > 0. Conclude by summing over arms.

A few remarks.

• This analysis is inspired from [Kaufmann et al., 2016].

• We observe that UCB is nowhere close to achieving the lower bound for
Bernoulli bandits. However, we can show that UCB is optimal for bandits
with Gaussian rewards, where the standard deviations are known. Our proof
would need to be generalized to Gaussian distributions.

• This lower bound inspired the design of many asymptotically optimal algo-
rithms: KL-UCB, MED, IMED are the most important. The design of MED
was directly inspired by the lower bound, as written in the original paper
[Honda and Takemura, 2010]. The idea is to sample arm a with probability
proportional to exp(−Na(t)kl(µ̂a(t), µ̂

∗(t)). These three algorithms greatly
outperform UCB in practice.

12

• The algorithm of Thompson [Thompson, 1933], mentionned in the introduc-
tion, is asymptotically optimal [Kaufmann et al., 2012] but it was only shown
recently.

5 Minimax Analysis, Quickly
One issue that people have with the lower bound of Theorem 3, is that it may be
vacuous. When T is fixed, we can always choose F such that kl(µa, µ1) is so small
that (µ1−µa)· log(T)

kl(µa,µ1)
≫ T . The issue is that when µ1 ≈ µa, kl(µa, µ1) ≈ (µ1−µa)2

µ1(1−µ1)
,

so that
(µ1 − µa) log(T)

kl(µa, µ1)
≈ µ1(1− µ1) log(T)

µ1 − µa

.

This issue, by the way, already arises in UCB’s regret upper bound. This raises
one question: If a run a given algorithm, what is

max
F

EF[Reg(T)] ?

When, of course, F lives in a fixed space of probability distributions (e.g. Bernoulli).

5.1 Getting Minimax Bounds for Free

For simplicity, assume that A = {1, 2} (only two arms) and denote ∆ := maxµa−
minµa the suboptimality gap.

Proposition 1. Assume that the algorithm is such that there exists a universal
constant C > 0 such that, for all F, EF[Reg(T)] ≤ C

∆
log(T). Then

max
F

EF[Reg(T)] ≤
√

CT log(T).

Proof. We have EF[Reg(T)] ≤ min
{
∆T, C

∆
log(T)

}
. The left term ∆T is increas-

ing with ∆, while the second C
∆
log(T) is decreasing with ∆. The two are equal

when ∆T = C
∆
log(T), i.e., when

∆ =

√
C log(T)

T
.

So min
{
∆T, C

∆
log(T)

}
≤
√

CT log(T).

5.2 A Few Words About the Lower Bound

Theorem 4. Every algorithm must satisfy maxF EF[Reg(T)] = Ω(
√
kT).

Hence, the
√

T log(T) in the previous proposition is not tight. Getting rid of
this extra

√
log(T) is not easy, and algorithms that are minimax optimal (achiev-

ing the
√
kT , see MOSS [Bubeck and Cesa-Bianchi, 2012]) are usually different

from those why good logarithmic regret guarantees.
One active area of research is the design of algorithms that are doubly optimals:

both achieving minimal optimality and asymptotic optimality.

13

References
[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-Time

Analysis of the Multiarmed Bandit Problem. Mach. Learn., 47(2–3):235–256.

[Bubeck and Cesa-Bianchi, 2012] Bubeck, S. and Cesa-Bianchi, N. (2012). Regret
Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.

[Garivier et al., 2016] Garivier, A., Lattimore, T., and Kaufmann, E. (2016). On
explore-then-commit strategies. Advances in Neural Information Processing
Systems, 29.

[Honda and Takemura, 2010] Honda, J. and Takemura, A. (2010). An Asymp-
totically Optimal Policy for Finite Support Models in the Multiarmed Bandit
Problem.

[Kaufmann et al., 2016] Kaufmann, E., Cappé, O., and Garivier, A. (2016). On
the Complexity of Best-Arm Identification in Multi-Armed Bandit Models.
Journal of Machine Learning Research, 17(1):1–42.

[Kaufmann et al., 2012] Kaufmann, E., Korda, N., and Munos, R. (2012).
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis.
arXiv:1205.4217.

[Lai and Robbins, 1985] Lai, T. and Robbins, H. (1985). Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics, 6(1):4–22.

[Lattimore, 2018] Lattimore, T. (2018). Refining the confidence level for opti-
mistic bandit strategies. The Journal of Machine Learning Research, 19(1):765–
796. Publisher: JMLR. org.

[Lattimore and Szepesvári, 2020] Lattimore, T. and Szepesvári, C. (2020). Bandit
algorithms. Cambridge University Press.

[Robbins, 1952] Robbins, H. (1952). Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society, 58(5):527 – 535.
Publisher: American Mathematical Society.

[Thompson, 1933] Thompson, W. R. (1933). On the Likelihood that One Proba-
bility Exceeds Another in View of the Evidence of Two Samples. Biometrika,
25(3-4):285–294.

14

	A Brief Introduction to Multi-Armed Bandits
	History
	Notations and Concepts

	Explore-Then-Commit Algorithms
	ETC: How Would the Newcomer Solve Bandits?
	Main Tool: Concentration Inequalities
	Regret Guarantees of ETC and Tuning

	UCB and Optimism
	The ``Optimism-in-Face-of-Uncertainty'' Principle
	Regret Guarantees of UCB
	About Tuning UCB

	Lower Bounds
	Changes of Measure
	Asymptotical Lower Bound

	Minimax Analysis, Quickly
	Getting Minimax Bounds for Free
	A Few Words About the Lower Bound

