M2 ENS Lyon: MDP and RL.

1 Complexity of Policy Iteration

Recall the following definitions:
We consider a $\operatorname{MDP} \mathcal{M}=(\mathcal{S}, \mathcal{A}, R, P)$ with state space \mathcal{S} of size S, action space \mathcal{A} of size A, rewards $r(s, a)$ are all assumed to be non-negative and transition probabilities are $P(y \mid s, a)$. The discount factor is denoted λ.

The discounted value over an infinite horizon of policy $\pi=(d, d, \cdots)$ is denoted V_{π} or V_{d}. Here d denotes a decision function $(d: \mathcal{S} \rightarrow \mathcal{A})$. The optimal value is denoted V^{*}. The optimal policy is denoted $\pi^{*}=\left(d^{*}, \cdots\right)$. This means that $V^{*}=V_{\pi^{*}}=V_{d^{*}}$.

In the following, we mostly use d instead of π because here, all policies are stationary: $\pi=(d, d, d \cdots)$.

Let V be any vector in \mathbb{R}^{S}. The norm $\|V\|_{\infty}=\max _{i}\left|V_{i}\right|$. The norm of a matrix in $\mathbb{R}^{S} \times \mathbb{R}^{S}$ is $\|M\|_{\infty}=\max _{i} \sum_{j}\left|M_{i j}\right|$.

The Bellman operator is $\mathcal{L}: V \rightarrow \max _{d}\left(r_{d}+\lambda P_{d} V\right)$.
The value operator under policy $\pi=(d, d, \cdots, d)$ is $L_{d}: V \rightarrow r_{d}+\lambda P_{d} V$.
Recall Policy Iteration (PI):
d_{0} : arbitrary decision function.

Repeat

- $V_{k}:=L_{d_{k}} V_{k}$
- $d_{k+1}:=\operatorname{argmax}\left(\mathcal{L} V_{k}\right)$

Until $d_{k+1}=d_{k}$.

For simplicity we denote $L_{d_{k}}$ as L_{k} in the following.

Question 1: Show that $L_{k} V_{k} \geq L_{k} V_{k-1}$ and $L_{k} V_{k-1} \geq L_{d^{*}} V_{k-1}$. Explain why this implies $V_{k} \geq L_{d^{*}} V_{k-1}$.

Question 2: We denote by V_{k} (as in the algorithm) the value under policy $\left(d_{k}\right)$ and V^{*} the optimal value. Show that $\left\|V^{*}-V_{k}\right\|_{\infty}$ is λ-contracting: $\| V^{*}-$ $V_{k}\left\|_{\infty} \leq \lambda\right\| V^{*}-V_{k-1} \|_{\infty}$.

Hint: use $V^{*}=\mathcal{L} V^{*}=L_{d^{*}} V^{*}$ and use $V_{k} \geq L_{d^{*}} V_{k-1}$.

Question 3: We introduce the gap function: $\Delta\left(d, d^{\prime}\right)=V_{d}-L_{d^{\prime}} V_{d}$. It "measures" how much d is better that d^{\prime} under value V_{d}.

Show the following identities:
$V_{d^{\prime}}-V_{d}=\left(I-\lambda P_{d^{\prime}}\right)^{-1}\left(-\Delta\left(d, d^{\prime}\right)\right)$ and $V_{d^{\prime}}-V_{d}=\left(I-\lambda P_{d}\right)^{-1} \Delta\left(d^{\prime}, d\right)$.
Hint: Use $V_{d^{\prime}}=\left(I-\lambda P_{d^{\prime}}\right)^{-1} r_{d^{\prime}}$ and $V_{d}=\left(I-\lambda P_{d^{\prime}}\right)^{-1}\left(I-\lambda P_{d^{\prime}}\right) V_{d}$.

Question 4: Show that $\Delta\left(d^{*}, d_{k}\right) \leq V^{*}-V_{k}$ and $\Delta\left(d^{*}, d_{k}\right) \geq 0$.

Question 5: Show that $\left\|I-\lambda P_{d}\right\|_{\infty}=\frac{1}{1-\lambda}$ for any d.

Question 6: Show that $\left\|\Delta\left(d^{*}, d_{k}\right)\right\|_{\infty} \leq \frac{\lambda^{k}}{1-\lambda}\left\|\Delta\left(d^{*}, d_{0}\right)\right\|_{\infty}$.

Question 7: Let s_{0} be the state acheiving the infinite norm in $\left\|\Delta\left(d^{*}, d_{0}\right)\right\|_{\infty}$. Show that $\Delta\left(d^{*}, d_{k}\right)\left(s_{0}\right) \leq \frac{\lambda^{k}}{1-\lambda} \Delta\left(d^{*}, d_{0}\right)\left(s_{0}\right)$.

Question 8:

Explain why if d_{0} is not optimal then $\Delta\left(d^{*}, d_{0}\right)\left(s_{0}\right)>0$.
Define $k_{\lambda}=\left\lceil\frac{\log (1-\lambda)}{\log (\lambda)}\right\rceil$. Then for all $k>k_{\lambda}, \frac{\lambda^{k}}{1-\lambda}<1$.
$\left.{ }^{*}\right)$ Explain why action $d\left(s_{0}\right)$ is never taken in all the policies $d_{k}, k \geq k_{\lambda}$.

Question 9: Show that Policy iteration takes at most $S(A-1) k_{\lambda}$ steps.

