Preferences, Utilities and Identity Economics

Bary Pradelski

Journées au vert 23-24 May 2019

The focus on a single player

To rigorously analyze behavior in interactions (e.g., humans, firms, countries) we need to define

Preferences: what does each individual strive for in the interaction

If we can express these preferences through a real-valued function we gain analytical tractability:

Utilities: a real-valued function expressing a player's preferences

Preferences

Let X be the set of decision alternatives for a player

A *binary relation* \succeq on a set *X* is a non-empty subset $P \subset X \times X$. We write $x \succeq y$ if and only if $(x, y) \in P$.

$$x \succeq y$$
: "the player weakly prefers *x* over *y*"

 $x \succ y$: "the player strictly prefers *x* over *y*"

Common assumptions on preferences

- 1. Completeness: $\forall x, y \in X : x \succeq y \text{ or } y \succeq x \text{ or both}$
- **2**. Transitivity: $\forall x, y, z \in X$: if $x \succeq y$ and $y \succeq z$, then $x \succeq z$
- 3. Continuity
- 4. Independence of irrelevant alternatives $\forall x, y, z \in X$: if $x \succ y$ then $x + z \succ y + z$

Definition. A **utility function** for a binary relation \succeq on a set *X* is a function $u : X \to \mathbb{R}$ such that

$$u(x) \ge u(y) \iff x \succeq y$$

Common assumptions on preferences

- 1. Completeness: $\forall x, y \in X : x \succeq y \text{ or } y \succeq x \text{ or both}$
- **2**. Transitivity: $\forall x, y, z \in X$: if $x \succeq y$ and $y \succeq z$, then $x \succeq z$
- 3. Continuity
- 4. Independence of irrelevant alternatives $\forall x, y, z \in X$: if $x \succ y$ then $x + z \succ y + z$

Definition. A **utility function** for a binary relation \succeq on a set *X* is a function $u : X \to \mathbb{R}$ such that

$$u(x) \ge u(y) \iff x \succeq y$$

Theorem. There exists a utility function for every transitive and complete preference ordering on any countable set.

Completeness: Choices over Chinese vegetables (for a European)

Transitivity: Choices over cars

Transitivity: Choices over cars

Let's play a game!

▶ ...

A fair coin is tossed until head shows for the first time:

- ▶ If head turns up first at 1st toss you win 1 Euro
- If head turns up first at 2^{nd} toss you win 2 Euro
- ▶ If head turns up first at 3rd toss you win 4 Euro
- If head turns up first at k^{th} toss you win 2^{k-1} Euro

You have a ticket for this lottery. For which price would you sell it?

Utility \neq **Payoff**

If you only care about expected gain:

$$\mathbb{E}[\text{lottery}] = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \dots \\ = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \\ = \infty$$

- Bernoulli suggested in 1738 the theory of diminishing marginal utility of wealth.
- Further, the need for utility characterization under uncertainty arose.

This laid the foundation for *expected utility theory*.

Expected-utility theory

Let $T = {\tau_1, ..., \tau_m}$ be a finite set and let *X* consist of all probability distributions on *T*:

$$X = \Delta(T) = \{ x = (x_1, ..., x_m) \in \mathbb{R}^m_+ : \sum_{k=1}^m x_k = 1 \}$$

That is *X* is the unit simplex in \mathbb{R}^m .

Can we define a utility function in this setting?

Existence of von Neumann-Morgenstern utility function

- Axiom 1: Completeness
- ► Axiom 2: Transitivity
- Axiom 3: Continuity
- Axiom 4: Independence of irrelevant alternatives

Theorem (von Neumann-Morgenstern) Let \succeq be a complete, transitive and continuous preference relation on $X = \Delta(T)$, for any finite set *T*.

Then \succeq admits a utility function *u* of the expected-utility form if and only if \succeq meets the axiom of independence of irrelevant alternatives.

Translation invariance

Given an expected utility function *u* for given preferences \succeq let:

 $u' = \alpha + \beta u$

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^+$. Then u' is also an expected utility function for \succeq .

- Statements like 'She likes x five times more than y' are not representable
- Measuring welfare is not possible (no interpersonal comparability)
- ► Fairness cannot be defined
- ... additional, strong assumptions are needed!

Standard vs. non-standard preferences or what we are maximizing

Standard	Non-standard
• Money	Pro-social preferences
• Time	• Altruism
• Risk	• Identity-dependent preferences which may evolve

Max Weber's (1914 [1978], pp. 958–959) view of successful bureaucracies, where "an office is a vocation" and "entrance into an office ... is considered an acceptance of a specific duty of fealty to the purpose of the office."

What is identity?

- Pareto (1920) distinguishes between *tastes* (normally seen as only input into preferences / utilities) and *norms*
 - ► How should I behave?
 - ► Who do I want to be?
- Sociologists and psychologists have long argued that people's decisions depend on the situation and who interacts with whom – *social category* describes types of people, e.g., black/white, female/male, manager/worker
- Identity is used to describe a person's
 - social category (with associated norms)
 - self-image

Akerlof & Kranton (2000, 2005, 2010)

A standard utility model

Agent *i* chooses to participate in an economic activity ($e_i = 1$) or not ($e_i = 0$).

Examples:

- *Group contribution*. $e_i = 1$ is high effort
- *Education choice*. $e_i = 1$ is college education
- Labor force participation. $e_i = 1$ is joining labor force
- Occupational choice. $e_i = 1$ is high-valued (e.g. STEM)

$$U(e_i) = y_i(e_i) - c_i(e_i)$$

where y_i is profit from action e_i and c_i is cost from action e_i .

Incorporating identity into a utility model

Agent *i* has identity $\Theta_i \in \{0, 1\}$. Suppose that for $\Theta = 1$ the 'default' action is e = 1 and for $\Theta = 0$ it is e = 0.

Examples:

- ▶ female / male
- ► black / white
- manager / worker

$$U(e_i) = y_i(e_i) - c_i(e_i) + \hat{y}(\Theta_i) - \hat{c} \cdot |\Theta_i - e_i|$$

where \hat{y} is her identity utility from being in the category and \hat{c} is the cost from diverging from her 'default' action.

Examples

Using 'worth' of identity

- ► Academic occupation: feeling of purpose, superiority, ...
- Private sector incentives: group activities / travel, 'unique culture', etc.
- Military, sports, ...

Basing decisions on identity

- ► Which hobby to choose? Ballet versus football
- ► Which career choice? 'Goldman' vs. 'public sector'

Identity and Underrepresentation

Jean-Paul Carvalho UC Irvine Bary Pradelski CNRS, Univ. Grenoble Alpes

Journées au vert 23-24 May 2019

The Representation Model

Large, but finite population *N*.

Partitioned into two groups, N_A and N_B :

- m_k is share of group $k \in \{A, B\}$
- group sizes fixed for all time

Discrete time $t = 0, 1, 2, \ldots$

► New cohort in each period

In every $t \ge 1$, each *i* chooses to participate in an economic activity ($e_i = 1$) or not ($e_i = 0$).

Economic Incentives

Economic return (net benefit) to participation: *y*

- ► Independent draw from *F* with associated density *f*
- Unless otherwise stated, groups have the same *F*
- All results hold for exponential, power-law, uniform, Beta (for certain parameters), and many other distributions

Social Identity

Members of group *A* have identity $\theta = 1$; for group *B*, $\theta = 0$.

Individuals care about their group's economic representation.

The **representation** of group *A* in period *t*

$$R^{t} = \frac{\sum_{i \in N_{A}} e_{i}^{t-1}}{\sum_{i \in N_{A}} e_{i}^{t-1} + \sum_{i \in N_{B}} e_{i}^{t-1}}$$

Group *B*'s representation is $1 - R^t$.

The Representation Dynamic

Two groups: N_A and N_B . Participation: $e_i = 1$. Non-participation: $e_i = 0$.

Retains increasing returns within groups and adds to it rivalry between groups. I.e. representation is a rival good.

Payoffs

Identity-based <u>cost</u> of participation is increasing in the other group's representation.

Participation ($e_i = 1$): payoff is

$$y - \alpha \left[\theta (1 - R^t) + (1 - \theta) R^t \right]$$
,

where $\alpha > 0$ is the (common) level of group identification.

Consistent with internalized and socially enforced identitydependent norms.

Non-participation ($e_i = 0$): payoff is zero.

Representation Dynamics

Start from arbitrary initial representation $R^1 \in [0, 1]$.

Study deterministic approximation of the stochastic dynamic:

$$r^{t+1} = \frac{m_A \left[1 - F\left(\alpha(1 - r^t)\right) \right]}{m_A \left[1 - F\left(\alpha(1 - r^t)\right) \right] + m_B \left[1 - F\left(\alpha r^t\right) \right]} \equiv G(r^t)$$

Equilibrium

An absorbing state or equillibrium r^* is a fixed point of *G*.

 $G : [0, 1] \rightarrow [0, 1]$ is continuous, so there exists at least one fixed point by Brouwer's fixed point theorem.

As *G* is strictly increasing and continuous:

Proposition 1. The process r^t converges to an equilibrium from any initial state r^1 . Every equilibrium is interior, $r^* \in (0, 1)$.

Literature

+ Expected utility theory over view Wikipedia: https://en. wikipedia.org/wiki/Expected_utility_hypothesis

+ Akerlof Kranton 2000: https://academic.oup.com/ qje/article-abstract/115/3/715/1828151

+ Akerlof Kranton 2005: https://www.aeaweb.org/ articles?id=10.1257/0895330053147930

+ Self-advertisment: https://papers.ssrn.com/sol3/ papers.cfm?abstract_id=3299477